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To date, dissipative phase transitions (DPTs) have mostly been studied for quantum systems
coupled to idealized Markovian (memoryless) environments, where the closing of the Liouvillian gap
constitutes a hallmark. Here, we extend the spectral theory of DPTs to arbitrary non-Markovian
systems and present a general and systematic method to extract their signatures, which is funda-
mental for the understanding of realistic materials and experiments such as in the solid-state, cold
atoms, cavity or circuit QED. We first illustrate our theory to show how memory effects can be
used as a resource to control phase boundaries in a model exhibiting a first-order DPT, and then
demonstrate the power of the method by capturing all features of a challenging second-order DPT
in a two-mode Dicke model for which previous attempts had fail up to now.

Introduction. Finding new ways to control phase tran-
sitions in quantum systems to access different properties
is at the forefront of research for developing new materi-
als and technologies. In this context, driven-dissipative
mechanisms obtained via the coupling of systems to en-
gineered environments and fields offer opportunities to
generate matter phases otherwise inaccessible [1–3].

However, so far, dissipative phase transitions (DPTs)
have mostly been studied for systems coupled to mem-
oryless reservoirs [4–6]. Yet, most realistic systems are
coupled to reservoirs with a spectral structure [7], giv-
ing the latter a memory of past system-bath exchanges,
which considerably complicates their dynamics. Such
non-Markovian effects are crucial to be understood, not
least because they can be used as a resource to gener-
ate useful phenomena, such as non-Markovian-assisted
steady state entanglement [8], quantum transport [9],
spin squeezing [10], chaotic behaviors [11] or new dy-
namical phases [12]. Moreover, from a computational
perspective, it is sometimes desirable to derive reduced
descriptions of a large Markovian open quantum system
in order to deal with a smaller Hilbert space, which usu-
ally implies dealing with non-Markovian effects [13, 14].

Here, we extend the spectral theory of DPTs to ar-
bitrary non-Markovian systems and present a general
method to characterize their signatures, opening pos-
sibilities for exploring DPTs in a wider range of sys-
tems. Our approach is based on the Hierarchical Equa-
tions of Motion (HEOM) [15–20], a numerical method for
non-Markovian dynamics extensively used in quantum
physics and chemistry, from which one can define a gen-
eralization of the Liouvillian usually associated with the
Lindblad master equation for Markovian systems whose
spectral properties are connected to DPTs. Indeed, one
of the necessary conditions for DPTs is the closing of the
Liouvillian gap [4]. To the best of our knowledge, we are
the first to show that HEOM can be used to define a
similar quantity for non-Markovian systems and derive a
spectral theory of non-Markovian DPTs.

Non-Markovian effects in DPTs have been studied via

other techniques, such as Green functions to study the
impact of the environment spectral density on the critical
exponent [21, 22], Lindblad master equations with time-
dependent rates to characterize the dynamics of a probe
coupled to a non-Markovian environment [23], or time-
evolving matrix product operators (TEMPO) to localize
DPT in the spin-boson model [24]. However, such stud-
ies are sparse and mostly focused on the paradigmatic
spin-boson model [25–27]. As our approach is the natu-
ral extension of the powerful spectral theory machinery
widely used for Markovian systems, it provides an ideal
framework to complement previous studies and explore
non-Markovian effects in new regimes and systems rele-
vant for real materials and experiments.

Below, we first present the central element of this work:
the generalization of the Liouvillian for non-Markovian
systems. We then derive its properties and their connec-
tions with DPTs and symmetries. As a first example, we
study a generalized Lipkin-Meshkov-Glick model [28] and
show that deviations from a Markovian reservoir lead to
a shift of the phase transition boundary. Finally, we show
our framework can capture all the features of a DPT in
a challenging two-mode Dicke model [14] for which all
previous non-Markovian descriptions had fail so far.
Theoretical framework. We consider an arbitrary quan-

tum system S linearly coupled to a bosonic environment
E of harmonic oscillators at zero temperature, keeping in
mind that the theory below is easily generalizable to mul-
tiple bosonic or fermionic baths at finite temperatures.
The total Hamiltonian reads (we set ℏ = 1)

H = HS +
∑

k

ωka
†
kak

︸ ︷︷ ︸
≡ HE

+
∑

k

(gkakL
†
k + g∗ka

†
kLk)

︸ ︷︷ ︸
≡ Hint

, (1)

where HS is the system Hamiltonian, HE is the en-
vironment Hamiltonian with ak (a†k) the annihilation
(creation) operator for the k-th mode of frequency ωk,
and Hint is the interaction Hamiltonian with Lk being
arbitrary system operators and gk being the system-
bath coupling strengths. The effect of the environment
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FIG. 1. (a): General sketch of a system S interacting
with a structured environment E characterized by a specified
spectral density J(ω) which can be decomposed into three
Lorentzians, as if the system was coupled to three pseudo-
modes coupled to their own unstructured bath (b). If one en-
larges the system S by including the pseudo-modes (system
SM in the dashed black box), the dynamics can be treated by
a standard Lindblad description.

on the system is encoded in the spectral density (SD)
J(ω) = π

∑
k |gk|2δ(ω − ωk) or equivalently in the bath

correlation function (CF) α(τ) =
∑

k |gk|2e−iωkτ which
are related to each other in the continuum limit via the
relation α(τ) = (1/π)

∫∞
0

J(ω)eiωτdω. The SD is a pos-
itive function whose specific structure depends on the
details of the model, so as the CF. In what follows, we
assume it is a sum of M decaying exponentials

α(τ) =
M∑

j=1

Gj e
−iωjτ−κj |τ |, (2)

with κj , ωj , Gj ∈ R. This decomposition can be per-
formed in a wide range of applications, either exactly
or with great precision [19, 29–31]. This amounts to
decomposing the non-Markovian structured environment
E into a set of M modes of frequencies {ωj} which are
damped with rates {κj} due to their coupling to inde-
pendent Markovian baths, as illustrated in Fig. 1. This
so-called pseudo-mode picture [32–39] can be applied to a
wide range of systems, from atoms in a lossy cavity, to su-
perconducting qubits coupled to leaky resonators [40, 41],
electrons coupled to damped phonons [42, 43], or emit-
ters in plasmonic cavities [44]. The form (2) of the CF
with the assumption that the global system is initially
in the product state ρ(0) = ρS(0) ⊗ ρB(0) allows us to
describe the complete dynamics of our model via a nu-
merically exact method called the hierarchical equations
of motion (HEOM) which takes the form [15–19]

dρ(n⃗,m⃗)

dt
= −i[HS , ρ

(n⃗,m⃗)] − (w⃗∗ · n⃗ + w⃗ · m⃗)ρ(n⃗,m⃗)

+
M∑

j=1

{
Gj

(
njLjρ

(n⃗−e⃗j ,m⃗) + mjρ
(n⃗,m⃗−e⃗j)L†

j

)

+ [ρ(n⃗+e⃗j ,m⃗), L†
j ] + [Lj , ρ

(n⃗,m⃗+e⃗j)]
}
, (3)

where n⃗ = (nj) and m⃗ = (mj) are multi-indices in NM ,
w⃗ = (κj + i ωj) ∈ CM , e⃗j = (δjj′) unit vectors, and

a⃗ · b⃗ =
∑

j a
∗
j bj the standard scalar product in CM . In

Eq. (3), ρ(⃗0,⃗0) ≡ ρS corresponds to the physical density
operator of the system S with which all the system cor-
relations are computed, while ρ(n⃗,m⃗) for (n⃗, m⃗) ̸= (⃗0, 0⃗),
which are also operators acting on the system Hilbert
space HS , correspond to auxiliary states from which bath
correlations can be obtained [10]. Although the hierarchy
is formally infinite, it can be truncated in practice at large
hierarchy depth indices n⃗ and m⃗. In general, the stronger
the non-Markovianity, the larger the number of auxiliary
states we need to retain to obtain convergence of the re-
sults. Here, we choose a triangular truncation condition
such that ρ(n⃗,m⃗)(t) = 0 ∀ n⃗, m⃗ :

∑
j(nj + mj) > kmax,

where kmax is the truncation order, yielding a total of
K = (2M + kmax)!/((2M)! kmax!) auxiliary states [10].

An effective non-Markovian Liouvillian matrix can
be derived by exploiting the Choi-Jamio lkowski isomor-
phism between linear maps and states [45]. Vectoriz-
ing (3) with |i⟩ ⟨j| ∼= |i⟩ ⊗ |j⟩, we get

d|ρ(n⃗,m⃗)⟩⟩
dt

= −i
[
HS ⊗ 1− 1⊗HT

S − (w⃗ · n⃗ + w⃗∗ · m⃗)
]
|ρ(n⃗,m⃗)⟩⟩

+

M∑

j=1

Gj

(
njLj ⊗ 1|ρ(n⃗−e⃗j ,m⃗)⟩⟩ + mj1⊗ L∗

j |ρ(n⃗,m⃗−e⃗j)⟩⟩
)

+

M∑

j=1

[
(1⊗ L∗

j − L†
j ⊗ 1)|ρ(n⃗+e⃗j ,m⃗)⟩⟩

− (1⊗ L∗
j − L†

j ⊗ 1)†|ρ(n⃗,m⃗+e⃗j)⟩⟩
]
, (4)

where |ρ(n⃗,m⃗)⟩⟩ denotes the vectorization of the matri-
ces ρ(n⃗,m⃗) and 1 the identity matrix acting on HS . We
also used the notation L∗

j (LT
j ) for the conjugate (trans-

pose) matrix of Lj . By stacking in a vector |ρ⟩⟩ all the
vectorized matrices |ρ(n⃗,m⃗)⟩⟩, we can construct a matrix
LHEOM(kmax), called HEOM’s Liouvillian, such that the
system of linear equations (4) takes the form (see Sup-
plemental Material (SM) for an example of explicit con-
structions of LHEOM)

d|ρ⟩⟩
dt

= LHEOM(kmax) |ρ⟩⟩. (5)

LHEOM(kmax) is the generator of the non-Markovian
dynamics of the system which generalises Lindblad’s
Markovian Liouvillian. Equation (5) becomes exact for
a CF of the form (2) in the limit kmax → +∞. Al-
ternatively, to obtain the dynamics of the system, we
could enlarge it by including explicit bosonic degrees of
freedom for the pseudo-modes and considering standard
Lindblad damping channels for them, as illustrated in
Fig. 1(b). This would define a standard Markovian Li-
ouvillian LM for the global system SM . However, as
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explained in the SM, using LHEOM is computationally
more favorable than LM , especially for large M .

Properties of the HEOM’s Liouvillian. The superop-
erator LHEOM is linear and in general non-Hermitian.
We assume it is diagonalizable and denote its eigen-
vectors and eigenvalues by |ρi⟩⟩ and λi. For a trun-
cation order kmax, its dimension is D = (2M +
kmax)!dim(HS)2/[(2M)!kmax!]. It admits the following
properties (see proofs in the SM): (i) its spectrum is
symmetric with respect to the real axis; (ii) it preserves

the trace of the physical state ρ(⃗0,⃗0); (iii) the eigen-
value 0 is always in its spectrum, guaranteeing the exis-
tence of a stationary state; (iv) all the eigenvalues must
have a negative real part in the limit kmax → +∞; (v)
Tr[1(⃗0,⃗0)ρi] = 0 if ρi is a right eigenoperator of LHEOM

associated to the eigenvalue λi with Re[λi] ̸= 0. As
in [4, 5], we order the eigenvalues of LHEOM so that
|Re[λ0]| < |Re[λ1]| < · · · < |Re[λD]|, where λ0 = 0.

DPT and HEOM’s Liouvillian spectrum. Consider an
open system dynamics described by Eq. (5) which ad-
mits a valid thermodynamic limit N → ∞ and a unique
steady state ρss for all finite N . We say that the system
undergoes a phase transition of order M when a non-
analytical change in a g-independent system observable
O occurs when the parameter g tends to a critical value
gc in the limit N → ∞, i.e., [4]

lim
g→gc

∣∣∣∣
∂M

∂gM
lim

N→+∞
⟨O⟩ss

∣∣∣∣ = +∞, (6)

where ⟨O⟩ss = Tr[Oρ
(⃗0,⃗0)
ss ]. This definition of DPTs is

the same as for Markovian systems. The only difference
is that the steady state is obtained from the HEOM (5)
instead of the a Lindblad master equation. As for the
Markovian case, a non-analytical change as described
by (6) must occur due to a level crossing in the spec-
trum of LHEOM, and thus to the closing of the HEOM’s
Liouvillian gap λ ≡ |Re[λ1]|.

Symmetries and DPTs. We call weak symmetry of
LHEOM any unitary operator U such that [LHEOM,U ] =
0. If U is a symmetry, then the matrix representing
LHEOM in the eigenvector basis of U is block-diagonal

LHEOM =



Lu0 · · · 0

...
. . .

...
0 · · · Lun


 , (7)

where each block Luk
is associated with each distinct

eigenvalue uk of U , in number n+ 1. We define the sym-
metry sector Lu as the subspace spanned by the eigen-
vectors of U associated with the eigenvalue u. Without
any symmetry, all the ρ(n⃗,m⃗) states are coupled together
by (3). In the presence of a symmetry U , the Liouvil-
lian is partitioned into uncoupled blocks and independent
hierarchies for sets of components of the physical state

ρ(⃗0,⃗0) can be written. We can prove that if the steady-
state |ρss⟩⟩ of (5) is unique, then |ρss⟩⟩ ∈ Lu=1 [46].
Again, in close analogy with the Markovian case [4], a
DPT associated with a spontaneous symmetry breaking
(SSB) is characterized by the occurrence of several eigen-
vectors, belonging to different symmetry sectors, associ-
ated with the same eigenvalue λ = 0 for g ≥ gc if g
(gc) is the order parameter (its critical value) associ-
ated with the DPT. To be specific, if we assume that
LHEOM can be written as a direct sum of n+ 1 blocks as
in (7) and if the eigenvalues are sorted in each symme-

try block k as |Re[λ
(k)
0 ]| < |Re[λ

(k)
1 ]| < · · · < |Re[λ

(k)
l(k)]|

(with
∑

k l(k) = D), a SSB in the thermodynamic limit

is signaled by λ
(1)
0 , λ

(2)
0 , . . . , λ

(n)
0 → λ

(0)
0 = 0 for g ≥ gc

when N → +∞ [47]. Physically, this means that the in-
dependent hierarchies associated with each block mix in
the limit N → +∞ so that ρss is no longer an eigenvec-
tor of U . Instead, ρss becomes a statistical mixture of
eigenvectors associated with different symmetry sectors
for g ≥ gc. The existence of such a symmetry greatly
simplifies the numerical computation, thanks to the block
structure (7). The remainder of this work is devoted to
the analysis of DPTs in experimentally relevant mod-
els where only Markovian dissipation regimes have been
studied or where standard Lindblad descriptions fail.
First-order DPT. We first consider a Lipkin-Meshkov-

Glick (LMG) model of the form

HLMG =
V

N

(
S2
x − S2

y

)
=

V

2N

(
S2
+ + S2

−
)
, (8)

where Sα =
∑N

k=1 σ
(k)
α /2 (α = x, y, z) are the collective

spin operators defined in terms of N single-spin Pauli op-

erators σ
(k)
α and S± = Sx ± iSy. When the spin system

undergoes collective decay as described by Lindblad’s
master equation

ρ̇ = −i[HLMG, ρ] +
γ

2N
D[S−] (9)

where D[o] = 2oρo† − {o†o, ρ}, as would occur if coupled
to an unstructured bath, the model is known to exhibit
a first order DPT at the critical point V M

c = γ/2 [28],
separating a steady state phase where ⟨Sz⟩/(N/2) → −1
for N → ∞ (V < V M

c ) to a phase where ⟨Sz⟩/(N/2) → 0
(V > V M

c ), as can be seen in Fig.2(a). For V > V M
c ,

a mean-field analysis predicts an infinite number of pure
steady states corresponding to stable orbits on the Bloch
sphere around fixed points located at the equator, yield-
ing persistent oscillations of ⟨Sz⟩ that nonetheless aver-
aged to zero over time [Fig.2(g)] [28]. Here, we generalize
the study of this DPT to the non-Markovian regime by
considering that the damping of the collective spin orig-
inates from the coupling of the system to a structured
bath with a correlation function α(τ) = Ge−κ|τ |−iωτ ,
via an interaction Hamiltonian Hint =

√
G (S−a† +S+a)

with G = γκ/(2N) and a the annihilation operator of a
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FIG. 2. Signatures of the first-order DPT for the generalized dissipative LMG model (8) obtained from LHEOM, showing how
environmental spectral structures affect the emergence of the DPT. (a,b): Steady state magnetization ⟨Sz⟩ /(N/2) as a function
of V/γ for ω/κ = 50 (a) and ω/κ = 1 (b). The critical points are V −

c = 0.25γ, V c ≈ 0.332γ, V +
c = 0.354γ for κ = γ = ω. (c,d):

Liouvillian gap −Re[λ
(0)
0 ] (c) and −Re[λ

(1)
0 ] (d) as a function of V/γ, indicating respectively the DPT and the SSB associated

with the DPT. The insets of (a) show the same quantities for the Markovian case. Truncation orders are kmax = 2 (a) and
kmax = 6 (N = 10, 20, 30), kmax = 7 (N = 40), kmax = 9 (N = 50) (b-d). (e-j) Stream plots showing the mean-field pure state
trajectories of the collective spin on the Bloch sphere for N → ∞ as a function of V/γ and of the degree of spectral density
structures ω/κ. In the Markovian limit (ω/κ → 0), there is a phase transition at V M

c = 0.5γ between a phase with a unique
pure steady state (blue dot at the south pole) [V < V M

c , (e,f)] and a phase with an infinite set of (initial-state-dependent) pure
steady states orbiting around four center fixed points (blue dots at the equator) [V > V M

c , (g)]. As ω/κ increases, the stream
lines twist around the z-axis (h) and a region of parameters (V −

c < V < V +
c ) emerges where both the stable steady state at

the south pole or a persistent oscillation can be observed depending on the initial condition (i). For V > V +
c , only persistent

oscillations remain (j).

damped pseudo-mode of Hamiltonian HE = ωa†a. This
model allows us to study non-Markovian effects on the
DPT and compare them to the Markovian case by tun-
ing the “loss” rate κ of the pseudo-mode. Indeed, the
collective spin and the pseudo-mode form an extended
Markovian system governed by the master equation

ρ̇tot = −i[H, ρtot] + κD[a] (10)

with H = HLMG + HE + Hint. Adiabatic elimination of
the pseudo-mode’s degrees of freedom recovers Eq. (9)
in the limit κ → ∞ (see SM). When κ is finite, mem-
ory effects arise and affect the DPT as described be-
low. The model under consideration has a Z2 sym-
metry represented by the superoperator U2 = U2 ⊗ U†

2

with U2 = eiπ(Sz+a†a). U2 has two distinct eigenvalues
uk = eikπ = ±1 with k = 0, 1 and so there are two sec-
tors of symmetry associated with the parity of the total
number of excitations, with Lu0=1 containing ρss.

The impact of memory effects on the DPT based on
the study of the non-Markovian Liouvillian LHEOM for
the spin system can be seen in Fig. 2. First, we see in
panel (b) that the steady state spin magnetization ⟨Sz⟩
exhibits a transition at a critical point V c smaller than
in the Markovian case shown in Fig. 2(a). A mean-field
analysis (10) provides an explanation of this observation
(see SM for all details). In a nutshell, the fully polarized

steady state yielding ⟨Sz⟩/(N/2) → −1 becomes unsta-
ble for V > V +

c = γ/(2
√

1 + ω2/κ2), while the fixed
points at the Bloch sphere equator become unstable only
for V < V −

c = γ/(2(1 + ω2/κ2)). For V −
c < V < V +

c , a
new phase emerges where both the fully polarized state
at the south pole and orbits around the fixed points can
be valid steady states, as can be seen in panel (i). For
V >∼ V −

c , only orbits closed to the fixed points are sta-
ble. As V increases, more orbits become stable, meaning
that the mean-field critical point depends on the initial
conditions on the Bloch sphere. As the HEOM’s Liou-
villian describes the statistical behavior of the system, it
predicts the transition at the averaged mean-field critical
points, which for ω/κ = 1 is V c/γ ≈ 0.332 (see SM).

From a physical point of view, the shift in the critical
point can be understood as follows: the smaller κ, the
greater the probability that excitations escaping from the
system will be reabsorbed by the system at later times.
The degree of openness of the system therefore decreases
as κ decreases, which leads to a stabilisation of the phase
dominated by the Hamiltonian (8) for small values of V .
In the limit κ → 0 (i.e. for a closed system), the phase
transition disappears because the Hamiltonian dynamics
no longer competes with dissipative dynamics. In the
opposite limit κ → ∞, we recover the Markovian case as
V ±
c , V c → V M

c . The HEOM’s Liouvillian spectrum cor-
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rectly captures all DPT signatures. Indeed, it captures
the emergence of both the level-touching at the critical

point in the symmetry sector k = 0, i.e., −Re[λ
(0)
0 ] → 0

at V = V c as N → ∞ (a necessary and sufficient condi-
tion for a first-order DPT) and the SSB associated to the

DPT, i.e., −Re[λ
(1)
0 ] → 0 for V ≥ V c as N → ∞. These

features can be seen in panels (c) and (d).
Note that this DPT can be studied via an approximate

reduced description of the collective spin dynamics, by
performing an adiabatic elimination of the pseudo-mode
(see [13] for a similar approach for the Dicke model).
However, this approach gives incorrect quantitative re-
sults for finite N , which prevents finite-size effects from
being estimated correctly. Also, it cannot always account
for all the features of a DPT, as discussed in the next sec-
tion, which motivates the use of our framework.

Second order DPT. We now examine the case of a sec-
ond order DPT with SSB in a model for which the re-
duced Redfield descriptions (to order 2 and 4) of the sys-
tem fail to capture the relaxation dynamics correctly: a
two-mode Dicke model described by [14, 48]

H = ω0Sz+ωAa
†a+ωBb

†b+
g√
N

(aS++bS−+h.c.), (11)

where Sz, S± are collective spin operators and a, b (a†,
b†) bosonic annihilation (creation) operators, to which
we add damping of the modes a and b at the same rate
κ yielding the Lindblad master equation (11)

ρ̇tot = −i[H, ρtot] + κ(D[a] + D[b]). (12)

This model is known to undergo a second-order DPT be-
tween a normal phase with ⟨a⟩ = ⟨b⟩ = 0, | ⟨Sz⟩ | = N/2
and a superradiant phase with ⟨a⟩ , ⟨b⟩ ≠ 0, | ⟨Sz⟩ | < N/2
as N → ∞ [48]. For ωA = ωB = ω, the critical
value gc of the coupling g that drives the transition can
be calculated from a mean-field approach and satisfies
2g2cN = ω0(ω2 + κ2)/ω. The model (12) exhibits a con-
tinuous U(1) symmetry described by the superoperator

U1 = U1 ⊗ U†
1 with U1 = eiα(Sz+a†a−b†b) (α ∈ R), spon-

taneously broken in the superradiant phase as N → ∞.
Reduced descriptions of the collective spin dynamics

have been studied and compared in [14] with the mean-
field results summarized above. It has been shown that,
unlike the previous dissipative LMG model (and the
Dicke model [13]), a standard Redfield approach com-
pletely misses the DPT, while a fourth-order Redfield
master equation (i.e., a fourth-order perturbative treat-
ment in the interaction Hamiltonian) appears to capture
the correct steady state and critical point but fails to
predict the closing of the gap, a necessary condition for
DPT. Our numerically exact and systematic method, on
the other hand, captures all features of the DPT and the
SSB, as shown in Fig. 3, which displays the magnetiza-

tion ⟨Sz⟩/(N/2) (a), the closing of the gap |Re[λ
(k>0)
0 ]|

(c,d) and the imaginary part of λ
(k>0)
0 (b).

FIG. 3. Signatures of the second order DPT for the two-mode
Dicke model (11) obtained from LHEOM for κ = ω = 5ω0. (a):
Steady state magnetization ⟨Sz⟩ /(N/2) as a function of g/gc
for N = 10, 20, 30, 40, 50 (kmax = 7) and 60 (kmax = 8). As N
increases, the curves get closer to the mean-field result (dot-

ted line). (b) Imaginary part λ
(k>0)
0 of the eigenvalue with

the largest real part in the symmetry sector k that does not
contain the steady state as a function of g/gc, confirming the

SSB. The inset shows the scaling of λ
(k>0)
0 as a function of N

at g/gc = 1.49. (c) −Re[λ
(k>0)
0 ] as a function of g/gc showing

a decreasing gap in the superradiant phase as N increases.
The vertical dashed lines show the values g/gc = 1.49 (red)
and g/gc = 0.6 (black) used in panel (d) to compare the scal-

ing of −Re[λ
(k>0)
0 ] (circles) and of the Liouvillian gap of the

4th Redfield master equation of [14] (crosses) as a function of
1/N [with N = 60, 70, 80, 90 (kmax = 8) and 100 (kmax = 9)].
In the normal phase (black), both methods are in good agree-
ment, while in the superradiant phase (red), only LHEOM gives
the expected closing. The points at 1/N = 0 were extrapo-
lated from a linear fit of the two last points of our data.

Conclusion. We developed a comprehensive frame-
work for studying DPTs in arbitrary non-Markovian sys-
tems, relevant for realistic experimental conditions. Our
method is numerically exact, systematic, easily imple-
mentable (as it is built on the well-established HEOM
technique available in open access libraries [19, 20]), and
provides a considerable computational advantage over a
standard embedding technique. We first illustrated our
method to characterize the impact of memory effects
on a first-order DPT with a discrete SSB arising in a
dissipative LMG model, and demonstrated that devia-
tions from a flat environmental spectral density lead to
a shift of the transition point, which could be observed
e.g. in cavity QED or trapped ions. Secondly, we have
shown that our method correctly captures all the defining
features of a second-order DPT arising in a challenging
U(1)-symmetric Dicke model for which other previously
studied reduced descriptions had so far failed [14].

Our work makes it possible to explore out-of-
equilibrium matter phases beyond the idealized Marko-
vian limit, featuring non-markovianity as a resource for
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controlling them. This is so far an unexplored territory as
most works dealing with dissipative many-body dynamics
is generally constrained to standard Lindblad dissipation,
which potentially hinders the evidences of DPTs [13, 14].
Our method could be further improved via hybridiza-
tion with advanced numerical techniques, such as corner-
space renormalization [49] or matrix product operators
(as in [43, 50–52]), to tackle DPTs in strongly interact-
ing systems. Other perspectives include investigations in
the non-Markovian regime of connections between DPTs
and symmetry breaking [53, 54], geometric phase cur-
vature [55, 56], or dynamical phase transitions [57, 58],
measurement-induced phase transitions [59, 60], or dissi-
pation engineering of long-range order [61].

Computational resources were provided by the Consor-
tium des Equipements de Calcul Intensif (CECI), funded
by the Fonds de la Recherche Scientifique de Belgique
(F.R.S.-FNRS) under Grant No. 2.5020.11.
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I. EXPLICIT MATRIX FORM OF THE HEOM’S LIOUVILLIAN

For the sake of clarity, we explicitly construct the different blocks of the matrix representation of the HEOM’s
Liouvillian for an environment made of only one damped pseudo-mode (M = 1). For this special case, the vectorized
HEOM reads

d|ρ(n⃗,m⃗)⟩⟩
dt

= [−i
(
HS ⊗ 1− 1⊗HT

S ) − ((n−m)iωc + (n + m)κ)1⊗ 1
]

︸ ︷︷ ︸
≡Dnm

|ρ(n,m)⟩⟩

+ (Gn L⊗ 1)︸ ︷︷ ︸
≡An

|ρ(n−1,m)⟩⟩ + (Gm 1⊗ L∗)︸ ︷︷ ︸
≡Bm

|ρ(n,m−1)⟩⟩

+ (1⊗ L∗ − L† ⊗ 1)︸ ︷︷ ︸
≡C

|ρ(n+1,m)⟩⟩ + (L⊗ 1− 1⊗ LT )︸ ︷︷ ︸
≡−C†

|ρ(n,m+1)⟩⟩.
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Therefore, if kmax = 1 the stacked vector |ρ⟩⟩ is given by |ρ⟩⟩ = (|ρ(0,0)⟩⟩, |ρ(0,1)⟩⟩, |ρ(1,0)⟩⟩)T and

LHEOM(kmax = 1) =



D00 −C† C
B1 D01 0
A1 0 D10


 , (S1)

while for kmax = 2, we get |ρ⟩⟩ = (|ρ(0,0)⟩⟩, |ρ(0,1)⟩⟩, |ρ(0,2)⟩⟩, |ρ(1,0)⟩⟩, |ρ(1,1)⟩⟩, |ρ(2,0)⟩⟩)T and

LHEOM(kmax = 2) =




D00 −C† 0 C 0 0
B1 D01 −C† 0 C 0
0 B2 D02 0 0 0
A1 0 0 D10 −C† C
0 A1 0 B1 D11 0
0 0 0 A2 0 D20




. (S2)

II. COMPUTATIONAL ADVANTAGE OF LHEOM - GENERAL ARGUMENT

In this section, we compare the dimension of the HEOM Liouvillian LHEOM to the one of the Liouvillian for the
enlarged Markovian system that includes the pseudomodes, which we denote by LM. This provides an overall idea of
what kind of computational advantage of using LHEOM instead of LM can be expected. A more detailed comparison
for the LMG model investigated in the main text can be found in Sec. V.

The dimension of the matrix representing LHEOM is

D = dim (LHEOM) =
(2M + kmax)!

(2M)!kmax!
dim(HS)2 (S3)

It depends on the size of the system Hilbert space HS , and of the truncation order kmax and the number of pseudo
modes M which determines the number of auxiliary matrices of the hierarchy.

To compare with the dimension of the matrix representing the Liouvillian of the enlarged Markovian system LM,
we need to introduce a cutoff Nc for the pseudo-mode Fock spaces {|ni⟩} (ni = 0, 1, . . . ,∞ and i = 1, 2, . . . ,M), which
are in principle infinite. We choose here Nc = kmax, motivated by the fact that the pseudo-mode correlation functions
are related to the traces of the auxiliary matrices according to (for M = 1) [S1]

⟨an(a†)m⟩ =
Tr

[
ρ(n,m)

]

(iG)n(−iG)m
, (S4)

which means that if we truncate the hierarchy at kmax, we need at least to truncate the pseudo-mode Fock space at
Nc = kmax to be able to compute the same correlations. The dimension of LM should thus be

dim (LM) = dim(HS)2(kmax + 1)M . (S5)

The ratio dim (LHEOM) /dim (LM) is plotted as a function of kmax and M in Fig. S1. We see that the advantage can
be significant, especially for large numbers of pseudo-modes.

III. PROPERTIES OF THE HEOM’S LIOUVILLIAN

We provide here the proofs of the properties of the HEOM’s Liouvillian. To show that the spectrum of LHEOM is

symmetric with respect to the real axis, we note that
(

dρ(n⃗,m⃗)

dt

)†
= d

dtρ
(m⃗,n⃗) = d

dt (ρ
(n⃗,m⃗))†, where we used the property

(ρ(n⃗,m⃗))† = ρ(m⃗,n⃗) [S1], implies LHEOM[ρ†] = (LHEOM[ρ])†. The trace preserving property of LHEOM is immediate
from Eq. (3) of the main text. This implies that

0 =
dTr[ρ(⃗0,⃗0)]

dt
= Tr

[
d

dt
ρ(⃗0,⃗0)

]
= Tr

[
1(⃗0,⃗0) LHEOM[ρ]

]

= ⟨⟨1(⃗0,⃗0)|LHEOM|ρ⟩⟩ ∀ ρ, (S6)
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FIG. S1. Overall comparison between the dimensions of LHEOM and LM: ratios dim (LHEOM) /dim (LM) as a function
kmax and M (a), as a function of kmax for M = 1, 2 and 3 (b), and as a function of M for kmax = 1, 2 and 3 (c). Since
dim (LHEOM) /dim (LM) < 1, this means that we need less computational memory to store LHEOM than LM.

where we used the Hilbert-Schmidt inner product ⟨⟨A|B⟩⟩ ≡ Tr[A†B] and the projector onto the physical state space
1(⃗0,⃗0). Equation (S6) leads to ⟨⟨1(⃗0,⃗0)|LHEOM = 0, meaning that ⟨⟨1(⃗0,⃗0)| is a left eigenvector of LHEOM associated to

the eigenvalue 0. Therefore, the eigenvalue 0 is always in the spectrum of LHEOM, which guarantees the existence of a
stationary state. The fact that all the eigenvalues must have a negative real part in the limit kmax → +∞ comes from
the fact that in this limit, the solution of Eq. (3) of the main text in the sector (⃗0, 0⃗) is exactly the reduced density
operator of the system. Thus, any positive real part eigenvalues would lead to unphysical matrices in the sector
(⃗0, 0⃗), therefore contradicting our last statement. Lastly, to prove that Tr[1(⃗0,⃗0)ρi] = 0 if ρi is a right eigenoperator of

LHEOM associated to the eigenvalue λi with Re[λi] ̸= 0, we note that LHEOM preserves the trace in the sector (⃗0, 0⃗)
and ρi(t) = eLHEOMtρi → 0 for t → +∞ if Re[λi] ̸= 0 and kmax → +∞.

IV. FIRST-ORDER DISSIPATION PHASE TRANSITION

In this section, we present details on the generalized dissipative Lipkin-Meshkov-Glick model considered in the
main text, which generalizes the study made in Ref. [S2] to the non-Markovian regime. The master equation for the
collective spin and pseudo-mode density matrix reads [Eq. (10) in the main text]

ρ̇tot = −i [H, ρtot] + κ
(
2aρtota

† − {a†a, ρtot}
)

with H = HLMG + ωa†a +

√
γκ

2N

(
S−a

† + aS+

)
.

(S7)

In the following, we first show how adiabatic elimination of the cavity mode recovers the original model [Eq.(9) in the
main text] in the “bad cavity” limit before performing a mean-field analysis of our generalized model.

A. Adiabatic elimination of the cavity mode in the bad cavity limit

Let us perform a standard derivation of a Redfield master equation for the collective spin only, first dividing
H = H0 + H1 and then working in the interaction picture with respect to H0 = HLMG + ωa†a. In this interaction
picture, the interaction Hamiltonian H1 takes the form:

H1(t) =

√
γκ

2N
(a(t)S+(t) + a†(t)S−(t)), (S8)

where S±(t) = eiHLMGtS±e−iHLMGt. The master equation for the collective spin density operator ρ = TrE(ρtot) reads
in the Markov approximation [S3]:

ρ̇ = −
∫ t

0

dt′TrE ([H1(t), [H1(t′), ρ]]) . (S9)
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Considering the Born approximation ρtot(t) ≈ ρ(t)⊗ρE with ρE the vacuum state for the pseudo mode and expanding
the double commutator makes appear the correlation function

α(t− t′) =
( γκ

2N

)
TrE

(
a(t)a†(t′)ρE

)
=

γκ

2N
e−iω(t−t′)−κ|t−t′|. (S10)

In the “bad cavity” limit κ → ∞, we have α(t − t′) → (γ/N)δ(t − t′), which allows us to perform the integration
straightforwardly and obtain the Redfield equation in the Schrödinger picture

ρ̇ = −i [HLMG, ρ] +
γ

2N
(2S−ρS+ − {S+S−, ρ}) (S11)

which is exactly Eq. (9) in the main text.

B. Mean-field analysis

1. Mean-field semiclassical equations of motions

We first start by writing the Heisenberg equations of motion for a, Sx, Sy and Sz from Eq. (S7)

ȧ = −(κ + iω)a− i

√
γκ

2N
S−

Ṡx = −V

N
{Sy, Sz} + i

√
γκ

2N
Sz(a− a†)

Ṡy = −V

N
{Sx, Sz} −

√
γκ

2N
Sz(a + a†)

Ṡz = 2
V

N
{Sx, Sy} + i

√
γκ

2N

(
a†S− − aS+

)

(S12)

Using ⟨AB⟩ = 1
2 ⟨{A,B} + [A,B]⟩ ≈ ⟨A⟩⟨B⟩ + 1

2 ⟨[A,B]⟩, we get the mean-field semiclassical equations of motion

⟨ȧ⟩ = −(κ + iω)⟨a⟩ − i

√
γκ

2N
⟨S−⟩ (S13)

⟨Ṡx⟩ = −2
V

N
⟨Sy⟩⟨Sz⟩ + i

√
γκ

2N
⟨Sz⟩(⟨a⟩ − ⟨a†⟩) (S14)

⟨Ṡy⟩ = −2
V

N
⟨Sx⟩⟨Sz⟩ −

√
γκ

2N
⟨Sz⟩(⟨a⟩) + ⟨a†⟩) (S15)

⟨Ṡz⟩ = 4
V

N
⟨Sx⟩⟨Sy⟩ + i

√
γκ

2N
(⟨a†⟩⟨S−⟩ − ⟨a⟩⟨S+⟩), (S16)

which are exact in the thermodynamic limit N → ∞. In the following, we are interested in finding the fixed points
of these equations and studying their stability as a function of the parameters of the model, in order to deduce the
different possible steady states and build a phase diagram as in [S2].

2. Fixed points of the mean-field equations

The fixed points {(⟨a∗⟩, ⟨S∗
x⟩, ⟨S∗

y⟩, ⟨S∗
z ⟩)} of Eqs. (S13)-(S16) can be obtained by setting the left-hand-side of all

the equations to zero. In particular, from the first equation, setting ⟨ȧ⟩ = 0 gives

⟨a∗⟩ = −i

√
γκ
2N ⟨S∗

−⟩
κ + iω

, (S17)
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i.e., slaving the pseudo-mode degree of freedom to the collective spin one, and makes it possible to obtain a closed set
of equations for the collective spin variables ⟨S∗

x⟩, ⟨S∗
y⟩ and ⟨S∗

z ⟩, i.e.,

0 = −2
V

N
⟨S∗

y⟩⟨S∗
z ⟩ +

γ

N
⟨S∗

z ⟩
(
q1⟨S∗

x⟩ − q2⟨S∗
y⟩
)
, (S18)

0 = −2
V

N
⟨S∗

x⟩⟨S∗
z ⟩ +

γ

N
⟨S∗

z ⟩
(
q1⟨S∗

y⟩ + q2⟨S∗
x⟩
)
, (S19)

0 = 4
V

N
⟨S∗

x⟩⟨S∗
y⟩ −

γ

N
q1

(
⟨S∗

x⟩2 + ⟨S∗
y⟩2

)
, (S20)

where we introduced the factors

q1 =
κ2

κ2 + ω2
,

q2 =
κω

κ2 + ω2
.

(S21)

It is worth noting that as an adiabatic elimination of the pseudo-mode also corresponds to setting ȧ = 0, a weak-
coupling spin-only Redfield theory derived from Eq. (S7) would predict the exact fixed points, i.e., the Redfield theory
is exact in the thermodynamic limit. Note also that in the limit κ/ω → ∞, we have q1 → 1 and q2 → 0 and we
recover the semiclassical equations of the Lindblad model [S2]. Equations (S18)-(S20) together with the normalization
condition ⟨S∗

x⟩2 + ⟨S∗
y⟩2 + ⟨S∗

z ⟩2 = (N/2)2 admit as for the Markovian case two classes of fixed points:

(
S∗
x, S

∗
y , S

∗
z

)
=

N

2
(0, 0,±1) (S22)

and

(
S∗
x, S

∗
y , S

∗
z

)
=

N

2




√
1 ±

√
1 − q21γ

2

4V 2

√
2

,
q1γ

4V

√
2√

1 ±
√

1 − q21γ
2

4V 2

, 0


 (S23)

(
S∗
x, S

∗
y , S

∗
z

)
= −N

2




√
1 ±

√
1 − q21γ

2

4V 2

√
2

,
q1γ

4V

√
2√

1 ±
√

1 − q21γ
2

4V 2

, 0


 , (S24)

In the following, we analyse the stability of these fixed points to determine the steady states of the model.

3. Linear stability analysis

Let us first perform a linear stability analysis around the first class of fixed points:
(
S∗
x, S

∗
y , S

∗
z

)
= (0, 0,±N/2).

To do so, we replace
(
S∗
x, S

∗
y , S

∗
z

)
by (x, y, z ± (N/2)) where (x, y, z) denotes fluctuations around the fixed points.

Linearizing Eqs. (S18)-(S20) yields



ẋ
ẏ
ż


 = ±γ

2




q1 − 2V
γ − q2 0

− 2V
γ + q2 q1 0

0 0 0






x
y
z


 . (S25)

The eigenvalues of the matrix are 0, ±γ(q1 −
√

4(V/γ)2 − q22)/2 and ±γ(q1 +
√

4(V/γ)2 − q22)/2. For the fixed point(
S∗
x, S

∗
y , S

∗
z

)
=

(
0, 0, N

2

)
, i.e., plus sign case above, the eigenvalue γ(q1+

√
4(V/γ)2 − q22)/2 is always positive, meaning

that it is always unstable. For the fixed point
(
S∗
x, S

∗
y , S

∗
z

)
=

(
0, 0,−N

2

)
, i.e., minus sign case above, the eigenvalue

−γ(q1 −
√

4(V/γ)2 − q22)/2 is positive (and so the fixed point unstable) for

V >
γ

2
√

1 + ω2/κ2
≡ V +

c . (S26)
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To decide on the stability of the fixed point for V < V +
c , we need to rely on a higher-order stability analysis because

one of the eigenvalues of the matrix of the linear set of equations is zero, as elaborated on in the next subsection.
Similarly, let us perform a linear stability analysis around the second class of fixed points of the form

(
S∗
x, S

∗
y , S

∗
z

)
=(

s∗x, s
∗
y, 0

)
, where s∗x and s∗y are given by the right-hand side of Eqs. (S23) or (S24). Here, the EOM for the fluctuations

reads


ẋ
ẏ
ż


 =




0 0 q1γs
∗
x − (2V + q2γ)s∗y

0 0 q1γs
∗
y − (2V − q2γ)s∗x

4V s∗y − 2q1γs
∗
x 4V s∗x − 2q1γs

∗
y 0






x
y
z


 +




0
0

−Nγ
4


 . (S27)

The eigenvalues are 0, −N
√

(±q2
√

4V 2 − γ2q21 + γ2q21 − 4V 2)/2 and N
√

(±q2
√

4V 2 − γ2q21 + γ2q21 − 4V 2)/2 for the

fixed points of the form
(
s∗x, s

∗
y, 0

)
, where the ± sign relate to the ± sign in Eqs. (S23) and (S24. The fixed points are

unstable as soon as the real part of these eigenvalues become positive. This happens for

V <
γ

2 (1 + ω2/κ2)
≡ V −

c (S28)

for the two fixed points with the ‘-’ sign in Eqs. (S23) and (S24) and for

V < V +
c (S29)

for the two fixed points with the ‘+’ sign.
While the linear stability analysis cannot provide a full understanding of the stability of the system, we already see

strong deviations from the Markovian limit. Indeed, in this latter where ω/κ → 0, we have V −
c = V +

c = V M
c = γ/2 so

that there is no region of parameters where the two kind of fixed points are not unstable, hampering the possibility
for a coexistence of two distinct phases. More specifically, in [S2], it was shown that for V < V M

c the fixed point
(0, 0,−N/2) is the unique steady state while for V > V M

c the fixed points
(
s∗x, s

∗
y, 0

)
are center fixed points and there

exists an infinite set of oscillating (initial-state-dependent) steady states corresponding to orbits around these fixed
points on the Bloch sphere. While these steady states are persistent spin oscillations, they average to zero along
the z direction over time, so that the Markovian scenario well-describes a first-order transition between a phase with
⟨Sz⟩ ̸= 0 (V < V M

c ) and ⟨Sz⟩ = 0 (V > V M
c ). In the non-Markovian case (ω/κ ̸= 0), however, we have V −

c < V +
c , so

the possibility that the fixed points and thus two distinct phases coexist in this region of parameter (which increases
as ω/κ increases) is not excluded. This is confirmed in the next section.

4. Higher-order stability analysis

As the equations of motion are cumbersome beyond linearization, we rely on a numerical analysis of the stability
of the fixed points, as summarized below.

For 0 ≤ V < V −
c , the fixed point (0, 0,−N/2) is the unique steady state, as shown in the stream plots in Fig. S2

(a,b,e). Note that in this regime all the fixed points of the form
(
s∗x, s

∗
y, 0

)
are not physical fixed points as they are

complex vectors.
For V −

c < V < V +
c , we observe a bistability phenomenon as the steady state depends on the initial conditions: the

fixed point (0, 0,−N/2) is still a possible steady state, but an infinite number of steady states corresponding to stable
orbits on the Bloch sphere around the two center fixed points (S23) and (S24) with the ‘-’ sign become available, as
shown in Fig. S2(f). For V ≳ V −

c , only orbits close to the fixed points are stable. As V increases, more orbits become
stable. This is in sharp contrast with the Markovian case where all the points on the sphere belong to stable orbits
as soon as V > V M

c [panel (c,d)]. Here, in the regime V −
c < V < V +

c , each point on the Bloch sphere undergoes the
phase transition at a different critical point. But as the HEOM’s Liouvillian describes the statistical behaviour of the
system, the critical point V c observed in the main text corresponds to the mean of the critical points obtained from
all possible pure state initial conditions. To show this, we numerically solved the set of Eqs S13-(S16) for a sample
of 40000 random initial states on the Bloch sphere and computed for each of them the critical value Vc at which the
average over time of ⟨Sz⟩/(N/2) switches from −1 to 0. The histogram S3 shows the distributions of the critical
points for ω/κ = 1, that all lie between V −

c and V +
c . The distribution is almost flat everywhere, except at V +

c where
there is a peak indicating that around half of the initial conditions lead to a critical point at V +

c . The purple vertical
line indicates the position of the mean of the critical points, which is V c/γ ≈ 0.332 for ω/κ = 1.

For V > V +
c , the fixed point (0, 0,−N/2) is no longer stable and all the four fixed points (S23) and (S24) become

center fixed points, as can be seen in Fig. S2(g,h). Note that since V +
c < V M

c , this means going beyond the limit of a
flat spectral density has the effect to renormalize to lower values the critical point by a function of the bath SD. We
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FIG. S2. Stream plots obtained from the mean-field equations (S13)-(S16) after adiabatic elimination of the cavity mode
showing the trajectories of the collective spin on the Bloch sphere in the thermodynamic limit as a function of the ratio V/γ
between coherent and dissipative rates (not in scale) and of the degree of spectral density structures ω/κ. In the Markovian
limit (ω/κ → 0), there is a phase transition at V = V M

c = γ/2 between a phase with a unique pure steady state (0, 0,−N/2)
(blue dot at the south pole) [V < V M

c , (a,b)] and a phase with an infinite set of (initial-state-dependent) pure steady states
orbiting around four center fixed points (blue dots at the equator) [V > V M

c , (c,d)]. As ω/κ increases, the stream lines twist
around the z-axis (e) and a region of parameters (V −

c < V < V +
c ) emerges where both the steady state (0, 0,−N/2) or a

steady orbit can be observed depending on the initial condition (f). Overall, the phase space where the coherent dynamics
dominates over the dissipative one is enlarged due to non-Markovian effects. Parameters are V/γ = 0.11 (a,e), V/γ = 0.31
(b,f), V/γ = 0.51 (c,g) and V/γ = 0.71 (d,h). For ω/κ = 1, V −

c /γ = 0.25 and V +
c /γ ≈ 0.354. (i) Positions of the relevant fixed

points on the Bloch sphere as a function of spherical coordinates ϕ and θ and V/γ for the Markovian limit ω/κ = 0 (dashed
red) and for ω/κ = 1 (blue).

FIG. S3. Histogram showing the distribution of the critical points obtained from solving the time-dependent equations of
motion (S13-S16) for a sample of 40000 random initial conditions uniformly distributed on the Bloch sphere for ω/κ = 1. The
vertical dashed lines indicate the positions of the critical points V −

c and V +
c that constitute the lower and upper limit of the

distribution, as well as the mean V c of the critical points, which is the critical value predicted by LHEOM in the main text.

interpret this phenomenon as a consequence of memory effects: for smaller κ/ω, the excitations escaping the system
are more likely to be re-absorbed by the system at later times, protecting its coherence and hence stabilizing the
phase dominated by the Hamiltonian term to lower ratio V/γ.
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V. CONVERGENCE ANALYSIS AND NUMERICAL EFFICIENCY

The only parameter relevant to the convergence analysis of LHEOM is the truncation order kmax. We introduce the
following measures of convergence

Ckmax(O) ≡ |Tr [ρss(kmax)O − ρss(kmax + 1)O]| ,
Skmax(λ) ≡ |λ(kmax) − λ(kmax+1)|, (S30)

to assess the convergence of LHEOM with respect to the steady state expectation value of a given operator O or
with respect to one of its eigenvalue λ, such as the HEOM Liouvillian gap. Here, ρss(kmax) is the steady state of
LHEOM(kmax) and similarly λ(kmax) is λ computed with LHEOM(kmax). Note that the convergence measure Ckmax

(O)
is a natural choice often chosen to study the convergence of hierarchy of equations [S4]. The first part of this section
is dedicated to the convergence analysis of LHEOM(kmax) while the second part shed light on the numerical advantage
of LHEOM over enlarged Markovian systems.

A. Convergence analysis of LHEOM(kmax)

In Fig. S4, we show the two measures of convergence (S30) for the LMG model for O = Sz [panels (a) and (b)]

and λ = λ
(1)
0 [panels (c) and (d)]. As the hierarchy depth kmax increases, both measures of convergence Ckmax(Sz)

and Skmax
(λ

(1)
0 ) globally decrease, showing that the truncation order kmax can be used to control the numerical errors

inherent to the LHEOM(kmax) scheme. A comparison of the panels (a) and (c) with the panels (b) and (d) indicates
that errors scale up as N increases. We also note that it is numerically more challenging to extract the spectral

quantity λ
(1)
0 than the steady state expectation value ⟨Sz⟩, as indicated by the change in scale on the y-axis between

panels (a) and (c) or (b) and (d).
These general observations still hold for the U(1)-symmetric Dicke model of the main text, as illustrated in Fig S5,

which is the analog of Fig S4 for the U(1)-symmetric Dicke model. We note that both Ckmax
(Sz) and Skmax

(λ
(k>0)
0 )

increases as the coupling g increases, highlighting the numerical challenge of the so-called strong coupling regime.

Moreover, this observation combined with the fact that the computation of λ
(k>0)
0 is numerically more demanding that

of ⟨Sz⟩ could explain why a fourth order Redfield master equation seems to capture the right steady state but predicts
a non-vanishing gap [S5]. We indeed foresee that the spectrum of LHEOM converges faster for larger eigenvalues.

FIG. S4. Measures of convergence Cmax(Sz) and Skmax(λ
(0)
1 ) as defined by Eq. (S30) for the LMG model discussed in the main

text displayed in logarithmic scale as a function of V/γ. For all plots, the parameters are κ = ω = γ and N = 10 for panels (a)
and (c) and N = 20 for panels (b) and (d).
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FIG. S5. Measures of convergence Cmax(Sz) and Skmax(λ
(0)
1 ) as defined by Eq. (S30) for the U(1)-symmetric Dicke model

discussed in the main text displayed in logarithmic scale as a function of V/γ. For all panels, the parameters are κ = ω = 5ω0

and N = 10 for panels (a) and (c) and N = 20 for panels (c) and (d).

B. Comparison with enlarged Markovian systems

Let us illustrate the numerical advantage of our method to characterize DPTs over the standard technique of
analysing the spectrum of the Liouvillian for the enlarged Markovian system of the LMG model. For this model, this
Markovian Liouvillian superoperator LM is defined through

ρ̇tot = −i [H, ρtot] + κ
(
2aρtota

† − {a†a, ρtot}
)
≡ LM [ρtot]. (S31)

where H = HLMG + ωa†a +
√

γκ
2N (S−a† + S+a). As the dimension of LM is infinite, one has to introduce a cutoff in

order to determine the steady state of LM numerically. We denote by Nc and L(Nc) the effective dimension of the
truncated Fock space of the pseudo-mode and the associated truncated Markovian Liouvillian. In order to compare
LM and LHEOM, we fix a threshold of tolerance for the measures of convergence, namely ϵ = 0.001. We then choose
kmax and Nc accordingly: we take the first value of kmax and Nc that satisfy

Ckmax
(Sz) < ϵ and CNc

(Sz) ≡ |tr(ρss(Nc)Sz − ρss(Nc + 1)Sz)| < ϵ, (S32)

where ρss(Nc) is the steady state associated with LM (Nc). We then compute the effective dimension of LM and
LHEOM for the truncation parameters kmax and Nc previously determined. Figure S6(a) shows that the ratio
dim(LHEOM)/dim(LM ) is below 0.4 for all V/γ and N considered. Moreover, this ratio decreases with N , which
shows that the LHEOM scheme is more suited for the study of DPTs for which one must consider the thermodynamic
limit N → +∞. Let us finally mention that the generators LHEOM and LM give the same results at the chosen
tolerance threshold as illustrated in Fig. S6(b).
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FIG. S6. Comparison of the convergence of LHEOM and LM. (a): Ratio between the dimension of the HEOM generator
LHEOM and the Markovian one LM as a function of V/γ for ϵ = 0.0001, proving the numerical gain of using LHEOM instead of
LM for the enlarged Markovian system. (b): Differences in logarithmic scale between the steady state expectation value ⟨Sz⟩
computed with LHEOM(kmax) (resp. LM(Nc)) denoted by ⟨Sz⟩ (kmax) (resp. ⟨Sz⟩ (Nc)) for ϵ = 0.0001. The two methods are in
good agreement at the given tolerance.
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