Sizing and Operations of Energy Systems Using GBOML

Meeting ULiège, Belgium Summer 2023

Bardhyl Miftari, Guillaume Derval and Damien Ernst

Table Of Content

- Energy System Sizing and Operations
- Mixed Integer Linear Programming
- Solvers
- Modeling Tools
 - Overview
 - GBOML
 - Examples
- Demo
- Conclusion
- Q&A

Energy System Sizing and Operations Examples

FIGURE 1: renewable energy community

FIGURE 2: Belgian energy model

Energy System Sizing and Operations Properties

• Time is essential component

- Time-dependent systems
- Optimized over a time period
- Network of components
 - Interconnection of independent components
 - Unique topologies

Energy System Sizing and Operations The Basics

Energy System Modeling

- achieve a certain goal

• Energy System Sizing

• Finding the optimal energy system size in order to achieve a certain goal *e.g.* What are the battery capacities needed in a given system?

• Energy System Operations

• Finding the optimal operations to perform in order to achieve a certain goal *e.g.* When do I charge or discharge my battery?

• Overall Objective

e.g. Minimizing the overall cost (investments and operation) or the environmental footprint

- Energy systems sizing and operations
 - One depends on the other

• Modeling: Creating a (mathematical) representation of a physical system in order to enable its study • Energy System Modeling: Creating a representation of an energy system to answer a certain question or

Energy System Sizing and Operations An Example

FIGURE 3: Installing the optimal battery capacity given a known demand and a known hourly price of electricity and operating it.

Energy System Sizing and Operations Finding a Solution

- Heuristics or iterative methods
 - Genetic algorithms
- Mathematical optimization
 - Expressed as optimizing a function over a feasible set
 - $\min f(\mathbf{x})$
 - The function f and the expression of the set \mathcal{X} determines the optimization type (quadratic, non-linear, mixed integer, [...] programming)
- s.t. $\mathbf{x} \in \mathcal{X}$

Mixed-Integer Linear Programming The Basics

- Problem formulation:
 - Linear objective function
 - Feasible set is expressed as linear constraints

- Enables to deal with relatively large models
- Non-linearities can be approximated with linear-piecewise functions

- min $\mathbf{c}^T \mathbf{x}$
 - s.t. $Ax \leq b$

Mixed-Integer Linear Programming An MILP Example

Known: *battery_price*

battery_input[*T*]

battery_capacity * *battery_price*

Mixed-Integer Linear Programming An MILP Example

Optimization horizon : T = 24 * 365 and $t \in [0, T - 1]$

Known: electricity_demand[*T*] Known: electricity_price[*T*] Known: battery_price 365 and $t \in [0, T - 1]$ state_of_charge[T] electricity_exchanged[T] battery_output[T] battery_input[T] battery_capacity

Energy balance:

 $battery_output[t] + electricity_exchanged[t] = = electricity_demand[t] + battery_input[t]$

Objective function

min : electricity_exchanged[t] * electricity_price[t] + battery_capacity * battery_price

 $state_of_charge[t] \ge 0$ $electricity_exchanged[t] \ge 0$ $battery_output[t] \ge 0$ $battery_input[t] \ge 0$ $battery_capacity \ge 0$

Mixed-Integer Linear Programming Workflow

Modeling Tool

Solver

• Commercial solvers GUROBI OPTIMIZATION []

• Open-source solvers

- Meta-solvers
 - **DSP** [7]

Solvers An Overview

Encoding

Inner representation

Figure 4: Modelling tools workflow

Solver Interface

Modeling Tools AMLs

- Algebraic Modeling Languages (AMLs)
 - Formulation close to mathematical notation
 - Very expressive (e.g. can represent any mixed-integer nonlinear program)
 - Often interface with multiple solvers
 - Examples:

Modeling Tools OOMEs

- Object-Oriented Modeling Environments (OOMEs)
 - Focus on one particular application (e.g. energy system sizing and operations)
 - Usually make use of predefined components that are "imported"
 - Typically have advanced data processing capabilities tailored to the application
 - Often open-source
 - Examples:

Modeling Tools **Drawbacks of AMLs and OOMEs**

- AMLs:
 - Fail to expose block structure
 - Do not enable reuse or do not have import-like capabilities
- **OOMEs:** \bullet
 - Lack the expressiveness of AMLs
 - Often cumbersome to add new components
 - Often rely on AMLs and inherit their shortcomings

Going Further **GBOML**

- strengths of AMLs and OOMEs
 - Open-Source and Stand-alone
 - Can represent any MILP
 - Exploits structure in various ways
 - Syntax close to the mathematical notation
 - Time-indexed models can be encoded easily
 - Allows component definition, re-use and component assembling
 - Interfaces with various solvers

• The Graph-Based Optimization Modeling Language (GBOML)[19-20] combines the

Modeling Tools **GBOML**

- Software developed in Python:
 - Few dependencies (PLY, NumPy, SciPy)
 - Provides two methods to encode models (text file and Python API)
 - Interfaces with several Solvers (Cplex, Gurobi, Xpress, HiGHS, CLP/CBC, DSP)
 - Produces plain .csv and structured .json outputs
- Fully documented Clear issue handling

• In GBOML, structure is exploited at all levels:

Encoding

Inner representation

Structure encoded via a hierarchical hypergraph

Symbolic representation hierarchical hypergraph representation

Figure 5: GBOML structure exploiting workflow

Instance

Parallel instance generation

Solver Interface

Interface to structure exploiting methods

Structured output

FIGURE 6: Representation of one particular hierarchical hypergraph made-up of 5 nodes and 2 hyperedges. The node most to the left and to the right both contain a hypergraph themselves.

FIGURE 7 : Representation of one node made-up of parameters, internal/external variables, constraints, objectives and a hypergraph. The hyperedges connect only the external variables of different nodes.

Modeling Tools **GBOML** Language **#TIMEHORIZON** $T = \langle value \rangle;$

#NODE <node_name> **#PARAMETERS** <param def> **#VARIABLES** <var def> **#CONSTRAINTS** <constr def> **#OBJECTIVES** <obj def>

Modeling Tools **GBOML** Language **#TIMEHORIZON** $T = \langle value \rangle;$ **#NODE** <node_name> **#PARAMETERS** <param def> **#VARIABLES** <var def> **#CONSTRAINTS** <constr def> **#OBJECTIVES** <obj def>

T = <value>; **#NODE** <node_name> **#PARAMETERS** <param def> **#VARIABLES** <var def> **#CONSTRAINTS** <constr def> **#OBJECTIVES** <obj def>

Modeling Tools **GBOML** Language

#TIMEHORIZON

#HYPEREDGE <edge name> **#PARAMETERS** <param def> **#CONSTRAINTS** <constr def>

Modeling Tools An Example in GBOML: Battery System

FIGURE 8 : Installing the optimal battery capacity given a known demand and a known hourly price of electricity and operating it.

operating it.

#TIMEHORIZON T = 24 * 365;

#NODE Bat House Grid

#PARAMETERS

elec demand = import «demand.csv»; elec price = import «elec price.csv»; bat price = 120;

#VARIABLES

```
internal: electricity exchanged[T];
internal: battery output[T];
internal: battery input[T];
internal: state of charge[T];
internal: battery capacity;
```

#CONSTRAINTS

electricity exchanged[t] >= 0; battery output[t] >= 0; state of charge[t] >= 0; battery capacity >= 0; battery capacity >= state of charge[t]; battery input[t] <= battery capacity;</pre> battery output[t] <= battery_capacity;</pre> state of charge[0] == state of charge[T-1]; state of charge[t+1] == state_of_charge[t]+battery_input[t]-battery_output[t]; battery output[t]+electricity exchanged[t] == elec demand[t]+battery input[t]; **#OBJECTIVES**

min: electricity exchanged[t]*elec price[t]; min: battery capacity*bat price;

FIGURE 8 : Installing the optimal battery capacity given a known demand and a known hourly price of electricity and operating it.

#TIMEHORIZON $T = 24 \times 365;$

#NODE Battery **#PARAMETERS** bat price = 120;**#VARIABLES** external: battery output[T]; external: battery_input[T]; internal: state of_charge[T]; internal: battery_capacity; **#CONSTRAINTS** battery output[t] >= 0; state of charge[t] >= 0; battery_capacity >= 0; battery capacity >= state_of_charge[t]; battery input[t] <= battery_capacity;</pre> battery_output[t] <= battery_capacity;</pre> state of charge[0] == state of charge[T-1]; state of charge[t+1] == state of charge[t] + battery_input[t] - battery output[t]; **#OBJECTIVES** min: battery_capacity*bat_price; **#NODE** Grid **#PARAMETERS** elec price = import «elec price.csv»; **#VARIABLES** external: electricity exchanged[T]; **#CONSTRAINTS** electricity exchanged[t]>=0; **#OBJECTIVES** min: electricity_exchanged[t]*elec_price[t];

#CONSTRAINTS

Battery.battery_output[t]+Grid.electricity_exchanged[t] == House.demand[t]+Battery.battery input[t];

FIGURE 9: Installing the optimal battery capacity and PV capacity given a known demand and a known hourly price of electricity and operating it.

#TIMEHORIZON T = 24 * 365;

```
#NODE Battery = import Battery from "house bat grid 3 node.txt";
#NODE Grid = import Grid from "house bat grid 3 node.txt";
#NODE House = import House from "house bat grid 3 node.txt";
#NODE PV panels
  #PARAMETERS
    cost = 110;
    irradiance = import "irradiance.csv";
  #VARIABLES
    external: electricity prod[T];
    internal: capacity;
  #CONSTRAINTS
    electricity prod[t] == irradiance[t]*capacity;
  #OBJECTIVES
    min: capacity*cost;
#HYPEREDGE Interconnection
  #CONSTRAINTS
    == House.demand[t]+Battery.battery input[t];
```


Battery.battery output[t]+Grid.electricity exchanged[t]+PV panels.electricity prod[t]

Modeling Tools An Example in GBOML: Renewable Energy Community

FIGURE 10 : Installing the optimal battery capacity and PV capacity in a renewable energy community

#NODE Prosumer **#PARAMETERS** elec demand = import "elec.csv"; cost = 110;irradiance = import "irradiance.csv"

- **#NODE** House = import Grid from "house_bat_grid_3_node.txt" with elec demand = Prosumer.elec demand;
- **#NODE** PV = import PV panels from "house bat grid pv.txt" with cost = Prosumer.cost; irradiance = Prosumer.cost;

#VARIABLES

external : pv_prod[T] <- PV.electricity_prod[T];</pre> external : demand[T] <- House.demand[T];</pre>

#NODE Bat consumer **#PARAMETERS** cost bat = 110;elec demand = import "elec_demand.csv";

#NODE House = import House from "house_bat_grid_3_node.txt" with elec demand = Bat consumer.elec demand;

#NODE Battery = import Battery from "house_bat_grid_pv.txt" with bat_price = Prosumer.cost bat;

#VARIABLES

internal	•	<pre>bat_input[T] <- Battery.bat</pre>
external	•	<pre>bat_output[T] <- Battery.ba</pre>
internal	•	energy_demand[T] <- House.
external	•	demand[T];

#CONSTRAINTS

demand[t] == bat_input[t] + energy_demand[t];

tery_input[T]; ttery output[T]; demand[T];

Modeling Tools An Example in GBOML: Renewable Energy Community

FIGURE 10 : Installing the optimal battery capacity and PV capacity in a renewable energy community

#**TIMEHORIZON** T = 24*365;

#NODE Bat consumer = import Bat-consumer from "bat_consumer.txt";

#NODE Prosumer1 = import Prosumer from "prosumer.txt";

#NODE Prosumer2 = import Prosumer from "prosumer.txt";

#NODE Grid = import Grid from "house bat grid 3 node.txt";

#HYPEREDGE Interconnection

#CONSTRAINTS

Grid.electricity exchange[t]

- + Bat consumer.bat output[t]
- + Prosumer1.pv_prod[t]
- + Prosumer1.pv prod[t] == Prosumer1.demand[t]
 - + Prosumer2.demand[t]

+ Bat consumer.demand[t];

```
"version": "0.1.3",
"model": {
    "horizon": 10,
    "number_nodes": 1,
    "global_parameters": {},
    "nodes": {
        "H": {
            "number_parameters": 1,
            "number_variables": 1,
            "number_constraints": 1,
            "number_expanded_constraints": 10,
            "number_objectives": 1,
            "number_expanded_objectives": 10,
            "parameters": {
                "b": [
                     4
            },
            "variables": [
                "x"
    "hyperedges": {}
},
"solver": {
    "name": "linprog",
    "status": true
},
"solution": {
    "status": "optimal",
```

{

Modeling Tools GBOML Output

	Α
1	DISTRIBUTION.operating_cost
2	DISTRIBUTION.power_import
3	DISTRIBUTION.unnamed_object
4	DEMAND.consumption
5	BATTERY.capacity
6	BATTERY.investment_cost
7	BATTERY.energy
8	BATTERY.charge
9	BATTERY.discharge
10	BATTERY.unnamed_objective
11	SOLAR_PV.capacity
12	SOLAR_PV.investment_cost
13	SOLAR_PV.electricity
14	SOLAR PV.investment

Modeling Tools **GBOML** Performance[29]

FIGURE 11 : Time taken to generate the matrices in different modeling tools for a growing time horizon for the remote hub [21]

http://tiny.cc/gboml_demo

Conclusion **GBOML**

- Explained the sizing and operations of energy system
- •Overview of the resolution process
- operations
 - Easy to use and install
 - •Allows model combination and re-use
 - Enables structure encoding
 - •Fast
 - Interfaces with structure exploiting algorithms
- Illustrated several examples

•Introduced GBOML, a modeling tool for supply chain management and energy system sizing and

Acknowledgments

- We would like to thank
 - through the INTEGRATION project

on renewable energy communities

• SPF Economie (Federal government of Belgium)[22] for their financial support

economie

• The Walloon Region for their financial support through the INTEGCER project

References

- [1] Gurobi Optimization, LLC. All Rights Reserved. https://www.gurobi.com/
- [2] FICO® Xpress Optimization. https://www.fico.com/en/products/fico-xpress-optimization
- [3] IBM ILOG CPLEX Optimizer. https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
- [4] SCIP, Solving Constraint Integer Programs. https://www.scipopt.org/
- [5] HiGHS high performance software for linear optimization. https://highs.dev/
- [6] CBC/CLP from COIN-OR Foundation, Inc..https://www.coin-or.org/
- [7] DSP, Argonne National Laboratory. https://github.com/Argonne-National-Laboratory/DSP
- [8] The General Algebraic Modeling Language, GAMS. https://www.gams.com/
- [9] JuMP <u>https://jump.dev/JuMP.jl/stable/</u>
- [10] A Mathematical Programming Language, AMPL. https://ampl.com/
- [11] Pulp. <u>https://github.com/coin-or/pulp</u>
- [12] Pyomo. <u>http://www.pyomo.org/</u>
- [13] PyPSA, Python for Power System Analysis. https://pypsa.org/
- [14] Calliope. Calliope: a multi-scale energy systems modelling framework. https://calliope.readthedocs.io/en/stable/#
- [15] Plexos, The Energy Analytics and Decision Platform for all Systems. https://www.energyexemplar.com/plexos
- [16] Balmorel, http://www.balmorel.com/
- [17] oemof.solph, https://github.com/oemof/oemof-solph
- [18] The Dispa-SET model. http://www.dispaset.eu/en/latest/
- [19] Bardhyl Miftari et al., "GBOML: Graph-Based Optimization Modeling Language", https://joss.theoj.org/papers/10.21105/joss.04158, 2022
- [20] Bardhyl Miftari et al., "GBOML repository", https://gitlab.uliege.be/smart_grids/public/gboml, 2021-23
- [21] Bardhyl Miftari et al., "GBOML: a Structure-exploiting Optimization Modeling Language in Python", https://orbi.uliege.be/handle/2268/296930, 2022
- [22] SPF Economie, Region Wallonne Belgique. https://economie.fgov.be/fr