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Abstract

Many problems in life sciences can be brought back to a comparison of graphs. Even though a multitude of such techniques exist, often,
these assume prior knowledge about the partitioning or the number of clusters and fail to provide statistical significance of observed
between-network heterogeneity. Addressing these issues, we developed an unsupervised workflow to identify groups of graphs from
reliable network-based statistics. In particular, we first compute the similarity between networks via appropriate distance measures
between graphs and use them in an unsupervised hierarchical algorithm to identify classes of similar networks. Then, to determine
the optimal number of clusters, we recursively test for distances between two groups of networks. The test itself finds its inspiration in
distance-wise ANOVA algorithms. Finally, we assess significance via the permutation of between-object distance matrices. Notably,
the approach, which we will call netANOVA, is flexible since users can choose multiple options to adapt to specific contexts and
network types. We demonstrate the benefits and pitfalls of our approach via extensive simulations and an application to two real-life
datasets. NetANOVA achieved high performance in many simulation scenarios while controlling type I error. On non-synthetic data,
comparison against state-of-the-art methods showed that netANOVA is often among the top performers. There are many application
fields, including precision medicine, for which identifying disease subtypes via individual-level biological networks improves prevention
programs, diagnosis and disease monitoring.
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Introduction
Subjects or objects can often be linked to systems, and studying
the differences between their corresponding system representa-
tions is of particular interest to precision medicine. Examples of
systems in biology include the nervous system, the circulatory
system and the respiratory system. Graphs lend themselves per-
fectly to visualize systems [1]. A graph consists of nodes and edges
as primary building blocks. Only the characteristics of these ele-
ments may differ since they can be labelled, attributed, weighted
and directed (see Section 2.1). Sometimes, the term ‘graph’ may
be reserved to describe an abstract data structure, whereas the
term ‘network’ would refer to a concretization of a graph. Here,
the terms graph and network are interchangeably used. Graph-
based machine learning [2] has already been used to disentangle
complex diseases and improve personalized care. Lung cancer
was predicted from a protein–protein interaction (PPI) network
integrated with gene expression data using a combination of
spectral clustering and deep learning methods [3]. Breast cancer
subtype classification was performed from PPI networks enriched
with gene expression data via the integration of deep learning
methods and a relational network [4].

Most of the graph analyses for complex diseases aggregate
information across a whole cohort, failing to detect individual

characteristics [5]. Exploiting individual-specific interactions
rather than population-level systems will capture the hetero-
geneity between individuals and enhance the identification of
new biomarkers for precision medicine. This observation paves
the way for developing individual networks, where nodes and/or
edges are individual-specific. For each individual, nodes are
variables (e.g. genes), and edges show the link between these
variables for that individual.

In this work, we want to understand what makes (individual)
networks different. We aim at comparing entire networks to
create groups of graphs that are homogeneous. In other words,
we start from a set of graphs, and we are interested in finding
sub-groups of graphs to learn about their different characteristics
and examine the driving factors for similarity or dissimilarity.
Unsupervised learning is required as in the medical context,
grouping labels are not necessarily known and the goal is to
discover discriminating properties among the data. The number
of classes may not be known either, so the algorithm has to derive
it. Finally, the method needs to include notions of statistics to
assess that the groups are significantly different.

The advancement of machine learning has led to the emer-
gence of various network analytics tools and techniques [2, 6].
In this work, we focus on the scenario where we have a list of
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graphs as input and aim to create groups of similar graphs. One
option is to represent the edge weights as a vector and use these
vectors as input to downstream analyses. This approach is easy to
implement but ignores the topology of networks and is restricted
to situations where networks have the same set of nodes. Another
possibility is to derive graph summary statistics (e.g. average
degree and path length). This method has proven successful ([7, 8])
but tends to ignore local structures. To take into account local dis-
similarities, an alternative is to apply network-specific distances
[9] or graph kernels [10] to estimate the similarity/dissimilarity
between networks and use the network similarities in kernel-
based ML methods to identify groups of homogeneous graphs.
However, the number of groups may not be known a priori, so
there is a need to incorporate an algorithm that derives it. Also,
this method often suffers from a high computational burden.
Deep learning methods can help solve this scalability issue while
bringing strong performance. Initially, these methods were con-
structed to work on vectors. Graph neural networks (GNNs) [11]
extend them to graphs. GNNs include graph embedding and graph
convolutional networks (GCNs).

Graph embedding aims at computing a fixed-size vector rep-
resentation of a graph to decrease dimensionality. Structural
properties in the embedding should correspond to the proper-
ties of the networks. For instance, InfoGraph [12] maximizes the
mutual information between the graph-level representation and
the representations of substructures of different scales (e.g. nodes,
edges, triangles). In the GraPHmax approach [13], the concept of
periphery representation of a graph into a single framework is
introduced and combined with hierarchical GNNs and mutual
information maximization. The graph2vec algorithm [14] extends
document embedding neural networks by considering an entire
graph as a document and the rooted subgraphs (i.e. non-linear
substructures) around every node in the graph as words, to cre-
ate embeddings of entire graphs. With all these approaches, the
derived representations in the embedding space can be used
for classification (e.g. elastic net, SVM-L1, signal subgraph, dlda,
lasso) or clustering (e.g. hierarchical clustering, k-means, spectral
clustering). Notably, classification has received a lot of attention.
However, in many fields, group labels are not known, and unsu-
pervised learning is required. Also, deriving the optimal number
of clusters is often decoupled from the mainstream analysis [13].

GCNs adapt convolutional neural network methodologies for
graph-structured data. To provide a network representation simi-
lar to the image convolution, GCN algorithms use a spectral [15],
or spatial-based [16] convolution over the graph. GNNs’ draw-
backs include their lack of interpretability which is an important
issue for instance in biology where the goal is to understand
the processes involved in the system studied [17], and in pre-
cision medicine, where physicians will need to understand the
prediction to trust it [18]. However, some progress has been made
recently [19]. Furthermore, GNNs require a large amount of data
to provide accurate predictions. It can be an issue in personal-
ized medicine where it is complex to collect large samples for
feasibility and privacy reasons [20]. Deep learning methods for
graph clustering have been shown to achieve high performance
[21–23]. As clustering methods are typically driven by particular
characteristics of the data, no holy grail generic method is likely
to prevail. Wu et al. [24] showed that improved performance can be
obtained with more traditional graph clustering approaches over
deep learning ones in specific scenarios (in their work, the WL-CT
kernel).

In response to the illustrated shortcomings, with our novel
netANOVA analysis workflow we aim to exploit information about

structural and dynamical properties of networks to identify signif-
icantly different groups of similar networks. We do so by develop-
ing a novel group comparison testing workflow that sequentially
evolves down a hierarchical tree. The netANOVA test statistic
relies on additive partitioning rather than centroids; the latter
is typical in traditional analysis of variance (ANOVA) hypothesis
testing [25]. Statistical significance is assessed empirically to
avoid reliance on distributional assumptions. Furthermore, our
flexible analysis workflow accommodates small datasets (smaller
than 20) as well as larger ones (up to a few thousand), and can
be used in multiple contexts via customizable hyperparameter
settings, handling weighted, sparse or multi-layered networks.

In summary, our analysis workflow can be used to identify
and formally test for differences between objects that can be
represented as graphs. Hence, application areas include, but are
not restricted to, precision medicine and the challenging task of
identifying endotypes for biomarker development.

Materials and methods
Network and graphs
A network is a data structure consisting of nodes and edges
modelling the relations between two nodes. A network G can be
defined as G = (V, E), where V is the set of nodes, and E are the
edges between them. In biology, nodes can be genes, messenger
RNAs, proteins or metabolites, and edges can represent molecular
regulation, genetic interactions, co-localization or co-occurrence.

For binary networks, a graph is completely described by its
adjacency matrix A ∈ 0, 1n×n, where A(i, j) = 1 if and only if the link
(i, j) ∈ E. If matrix A is symmetric, then the graph is undirected,
otherwise directed. For weighted networks, A(i, j) = wij, with i, j ∈
N. Attributed networks have labels and/or attributes on the nodes
and/or edges. Attributes (resp. labels) are commonly expected to
be real values (resp. alphabetic values).

Distances and similarities between networks
Distance and similarity are related concepts: when distance
increases, similarity decreases. A ‘distance metric’ is a function
that satisfies the non-negativity, identity, symmetry and triangle
inequality properties [26]. Often, some properties are not
necessary, and a ‘distance measure’ may be used. The latter also
captures how different two objects are but is a function that
does not satisfy at least one of the four properties. A similarity
function satisfies the non-negativity, boundedness, identity and
symmetry properties. A distance can be calculated based on
similarity and vice versa. NetANOVA is based on a distance
matrix (Algorithm 2). Hence, when the link between networks
is directly computed using a distance measure (e.g. the edge
difference distance or the hamming distance), no additional
transformation is needed. However, when similarities are used
to study the link between networks (e.g. with the shortest path
kernel or the random walk kernel), we need to convert them
into distances. Specifically, when a similarity is computed via
a kernel, then the distance between two networks G1 and G2

can be calculated as the difference between the self-similarities
K(G1, G1) + K(G2, G2) and the cross-similarity K(G1, G2) [27]:
d(G1, G2) = K(G1, G1) + K(G2, G2) − 2K(G1, G2). The multiplicative
factor 2 is needed to ensure that d(G, G) = 0.

The choice of distance and similarity measures is a critical
step in clustering efforts. An extensive range of graph compar-
ison measures exists. Requiring time-computational efficiency
when clustering a large number of graphs dramatically reduces
the options. Moreover, most of the remaining distances handle
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undirected [28–30] and unweighted [31–33] networks only. Hence,
defining a distance between graphs is a cumbersome task, which
requires seeking a context-dependent balance between compu-
tational efficiency, performance and interpretability. Following
Tantardini et al. [9], we group network-based distances into two
main classes: Known Node-Correspondence (KNC) and Unknown
Node-Correspondence (UNC) methods.

In the KNC scenario, the networks have the same set of nodes
or at least a common subset, and the pairwise correspondence
between the networks nodes is known. In other words, a distance
requires node correspondence when some meaningful mapping
between the node sets of the graphs exists. Typically, there is
Known Node-Correspondence when networks come from the
same application field. KNC distances gather all the methods,
such as Euclidean, Jaccard or DeltaCon distances, which require
a priori to know the correspondence between the nodes of the
compared networks. These methods allow comparing networks
where nodes are labelled and hence not exchangeable.

UNC approaches do not require knowledge of the correspon-
dence between nodes. UNC methods, such as spectral distances,
graphlet-based measures and Portrait Divergence, are suited for
global structural comparison. They indicate how much the struc-
tures of graphs differ. We will pay special attention to graph kernel
measures [10]. A kernel is a measure of similarity between objects
and must satisfy two mathematical requirements: it must be
symmetric and positive semi-definite. Notably, there are much
more UNC approaches than KNC ones.

Our netANOVA workflow accommodates multiple measures:
the edge difference distance [34], a customized KNC version of k-
step random walk kernel (see Supplementary) [35], DeltaCon [36],
GTOM [37] and the Gaussian kernel on the vectorized networks
[38] are proposed as KNC methods. The Hamming distance [39],
Shortest path kernel [40], k-step random walk kernel and Graph
Diffusion Distance [34] are optional UNC methods. More details
about these distance and similarity measures, and the reasoning
behind these choices are given in Supplementary.

Identification of homogeneous subgroups
Distance-based clustering evolves around finding homogeneous
subgroups of objects, where objects with minimal distances
between them are assigned to the same cluster. The two most
popular distance-based clustering approaches are hierarchical
clustering and k-means clustering. The first clusters objects
sequentially, via inter-cluster distances. The latter classifies
objects into subgroups via inter-cluster variances that need to be
minimized. Hierarchical clustering has the additional advantage
that a tree (dendrogram) visualizes different granularities in the
clustering process, which we will exploit in our workflow.

NetANOVA is built around hierarchical distance-based cluster-
ing, with distance measures as in Section 2.2. We use the standard
agglomerative clustering which first considers each object as a
cluster and then merges clusters successively until one cluster
contains all objects.

Deriving the optimal number of clusters
To determine the optimal number of clusters, we recursively test
for distances between two groups of networks, progressing from
the root node to the end nodes of the clustering dendrogram
(Figure 1(A)). Many clustering methods require the user to pre-
specify the number of clusters. However, this information is often
not known. Incorrect estimation will prevent learning the real
clustering structure. Here, the algorithm derives the number of

classes. If the two groups created from a node of the dendro-
gram are statistically different, the algorithm to find the optimal
number of clusters proceeds in the child nodes (Algorithm 1).
Details about the underlying formal hypothesis test are given
next (Section 2.5). There are two stopping conditions: the two
subgroups are too small or are not statistically significantly dif-
ferent. The first requires setting a threshold for the minimum
allowable size of a subgroup. The result is a decision tree where
the end leaves are the final clusters, and splitting is based on
a formal group comparison test between network collections.
Note that when one of the two groups tested (a and b) has a
size not surpassing the minimum size threshold (for example
group a), the statistical test is applied to the other group (group
b giving rise to subgroups b1 and b2). If subgroups b1 and b2 are
statistically different, group a is regarded to be outlying and hence
an independent group.

Algorithm 1. Derivation of the optimal number of clusters

Input: List of networks {G1, . . ., Gx}, minimum number of networks
per group (t), distance measure (distance), method of clustering
(mtclust), significance threshold (pthreshold)
Output: Networks clustering

for each pair of networks Gi, Gj do
Dist[i, j] = distance(Gi, Gj)

end for
group1, group2 = mtclust(Dist, groups = 2)

if size(group1) > t & size(group2) > t then
Compute the p-value from Algorithm 2 to assess the differ-

ence between the two groups
if p-value> pthreshold then

return the p-value
else

Apply Algorithm 1 to group1 and group2

end if
end if
if size(group1) > t then

Apply Algorithm 1 to group1

if group1 can be divided into significantly different groups
then

group2 is an independent group
end if

end if
if size(group2) > t then

Apply Algorithm 1 to group2

if group2 can be divided into significantly different groups
then

group1 is identified as an independent group
end if

end if
print “group 1 and group 2 are both too small”

With the aforementioned sequential procedure, false-positive
control is a concern. We include two options to correct for multiple
testing. First, we correct the P-values using the depth of the tree,
i.e. no correction at the root node, padj = p × 2 at level 2 of the
dendrogram, padj = p × 3 at level 3 of the dendrogram, and so
forth. If at a node of the dendrogram, the difference between
the two associated groups is not tested because one of the two
groups is smaller than the minimum group size threshold, then
the level (i.e. depth of the dendrogram) is not incremented. Also,
we implement the correction developed by Meinshausen [41] and
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Figure 1. (A) NetANOVA workflow. Starting from the list of networks, the pairwise distance between each pair of networks is computed. Then a
hierarchical clustering is applied to the distance matrix to derive a dendrogram and identify preliminary groups. Algorithm 2 is applied to the two
first groups (from the top to the bottom of the dendrogram). If the two first groups are statistically different, Algorithm 2 is applied to each of the two
subgroups. Recursively (Algorithm 1), a tree is built to derive the optimal number of clusters, with two stop conditions: the groups are too small, or the
groups are not significantly different. (B) The sum of squared distances from individual points to their centroid is equal to the sum of squared interpoint
distances divided by the number of points. (C) Simulation set-up. An original network with m nodes and density d is generated. The baseline network has
a random structure (simulated from the Erdos–Renyi model), a density of 0.05, 100 nodes and binary edges. Group networks are derived by perturbing
(rewiring, adding or removing edges) the original graph. Individual networks are derived by perturbing the group networks.

created for variable selection. It controls the FWER at level α ∈
(0, 1), by performing the hypothesis test described in Section 2.5
at each node j, with the significance threshold αadj = α × Nj−1

N−1

with Nj the number of networks clustered at node j and N the
total number of networks. It gives increased power to the first
nodes (near the root) of the tree. Also, we include the possibility
of not correcting for multiple testing in the workflow. Strikingly,
computing the total number of tests and applying a Bonferroni
correction to each test to keep FWER under control would bypass
the hierarchical structure of the analysis.

In Section 3.1, we evaluate these multiple testing corrections
for FWER control. We define FWER of the entire workflow as the
probability of falsely rejecting the null hypothesis at least once
when moving down the fixed hierarchical tree.

A novel network-based empirical testing strategy
The netANOVA compares the variation within a group of graphs
and the variation between groups of graphs, using the ratio of
the F-statistic [42]. The higher the value of F, the more likely
the null hypothesis H0 of no difference among the group means
is false. In univariate ANOVA, the total sum of squares (SST) is
computed from sums of squared differences between observa-
tions and their group mean (SSW), and between group means and
the overall sample mean (SSA). A multivariate ANOVA is derived
by adding up the sums of squares across all variables. Hence, a
classical ANOVA test uses the concept of the mean of a group,
which is complex for networks. To overcome this issue, we take
advantage of the following property [25]: the sum of squared
distances between points and their centroid is equal to the sum
of squared interpoint distances divided by the number of points
(Figure 1(B)).

Therefore, the total sum of square can be expressed as

SST = 1
N

N−1∑

i=1

N∑

j=i+1

d2
Gi ,Gj

. (1)

The within-group sum of squares is

SSW =
k∑

l=1

N−1∑

i=1

N∑

j=i+1

1
nl

eijl × d2
Gi ,Gj

. (2)

The among-group sum of squares is

SSA = SST − SSW. (3)

Finally, the F-ratio is

F = SSA/(k − 1)

SSW/(N − k)
, (4)

with N the total number of individuals, nl the number of networks
in group l, k the number of groups, dGi ,Gj the distance between
graph i and graph j, and eijl takes the value 1 if network i and
network j are in the group l, and 0 otherwise.

Another benefit of not using a mean relates to the distance
used. For Euclidean distances, the mean for each variable across
observations within a group constitutes a measure of central
location of the group. This is not true for many non-Euclidean
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distances. The statistic is also interesting in terms of the com-
putational burden. Even though the distance between each pair
of networks is required, it is computed only once. No additional
computation is required on permutation replicates. In contrast,
traditional ANOVA settings would require repetitive computation
of network averages and distances to network averages.

Since the actual statistic distribution may not have a closed
form and distributional assumptions may not hold on large sam-
ples, significance is derived via permutation replicates. One crit-
ical assumption for this test is that the observations need to be
exchangeable under a true null hypothesis. Thus, one needs to
be careful regarding the interpretation of the significance assess-
ment to ensure that the difference between groups is not due
to differences in dispersion (i.e. difference in the distributions).
Permutation tests in standard ANOVA settings typically rely on
permuting known group labels. In our context, group labels are
a priori unknown and inferred via a clustering procedure. Group
label reshuffling, conditioning on two clusters in a clustering, will
inflate overall type I error [43]. To circumvent this we apply the
following procedure to create appropriate null distributions of test
statistics. Instead of permuting group labels at each dendrogram
node, we permute the distances between the investigated graphs
and re-apply hierarchical clustering to identify two groups. If
both groups have a size surpassing the group size threshold, we
compute the statistics described above. For instance, we repeat
the procedure 99 times and compare the permuted statistics Fπ

with the observed statistic F:

p − value = #(Fπ ≥ F) + 1
Total#Fπ + 1

(5)

We emphasize that when permuting the values in the original
distance matrix, the new matrix cannot be considered a distance
matrix because the measure violates the triangular inequality.
After applying the permutations, we can indeed obtain dGi ,Gl >

dGi ,Gk + dGk ,Gl . The linkage criteria in the hierarchical clustering
are then limited to methods requiring dissimilarities to be non-
negative and symmetric only, such as complete and average link-
age methods [44]. The evaluation of the impact of this linkage
criteria is shown in Section 3.1. In the available code, the user can
select ‘complete’ (default) or ‘average’ linkage.

In Section 3.1, we also compare different perturbation levels of
the distance matrix and set the default amount of perturbation in
the distance matrix to 20% and the default number of replicates
to 99. These parameters are customizable, as is the significance
threshold (default 0.05).

Evaluation and application
All the experiments are conducted on a Scientific Linux release
7.2 (Nitrogen) cluster.

Simulations—Type I error
To evaluate the statistical relevance of the detected groups and
the impact of our significance assessment, we study if the pro-
posed workflow controls the Type I error. We perform a simu-
lation analysis based on 1000 replicates for that purpose. First,
we generate an original random graph with m nodes and a den-
sity d. For weighted networks, we simulate binary networks and
replace the value of edges present by a random number from a
normal distribution with a mean of 0.5 and standard distribution
of 0.5∗0.5. The edge values are scaled via the min–max scaling
algorithm so that values of the adjacency matrix range from 0 and

1. Importantly, we consider the minimum and maximum values
across all objects, so these boundaries are the for all networks.

Then, in both the binary and the weighted contexts, we derive
n graphs by randomly rewiring the edges while preserving the
original graph’s degree distribution [45] of the original graph.
Specifically, the algorithm chooses two arbitrary edges ((Na,Nb)
and (Nc,Nd)) and substitutes them with (Na,Nd) and (Nc,Nb) if they
do not yet exist.

We evaluate the impact on the type I error of the level of
perturbation, the number of graphs, the number of nodes, the
graph density, the minimum group size, the distance used to
compute dissimilarity between graphs and the minimum number
of networks per group. In the baseline, the original network has
a random structure (simulated from the Erdos–Renyi model),
generated using the function erdos.renyi.game() from the R pack-
age igraph [45]. It has a density of 0.05, 100 nodes and binary
edges. When at least two groups are detected via netANOVA in a
permutation, that permutation is considered a false positive (FP).
This allows us to compute the type I error rate as # FP

1000 .

Simulations—power
We simulate the situation where each network represents its
own individual (e.g. patients), the nodes are labelled and shared
across all networks (e.g. genes) and several populations exist
(e.g. disease sub-type). The goal is to identify and compare the
different populations. To this end, the following experimental set-
up (Figure 1(C)) is implemented. First, we generate an original
network and perturb it to derive group networks. Then, we perturb
each group network to create individual networks. The goal is
to apply the unsupervised netANOVA to assign the individual
networks to the correct groups. We validate the clustering via
Jaccard similarity.

We consider the same baseline original network as in
Section 2.6.1: a network with a random structure, a density of
0.05, 100 nodes and binary edges. In the baseline, we switch 40%
of the original edges while preserving the degree distribution. This
is done 10 times to create 10 group networks. Then, we switch 40%
of the edges for each group network while preserving the degree
distribution, 10 times to create 10 individual networks per group.

We create 800 replicates, and we evaluate the impact of multi-
ple parameters. Some parameters are associated with the network
properties, such as network size or structure. Others are related
to the method, such as the correction for multiple testing or the
distance between graphs. The influence of the perturbation types
and the minimum size of the groups are also studied.

Real-life data application
We apply netANOVA to two real-life bioinformatics graph
datasets. For both applications, we use datasets with known
clusterings to be able to use these ‘true’ clusters to compute the
performance of netANOVA. Hence, a supervised model could be
used to define group membership. Still, the goal here is to evaluate
the unsupervised procedure; we do not use any information about
the groups in the netANOVA workflow.

UNC scenario
The graph dataset MUTAG [46] contains collection of nitroaro-
matic compounds. The aim is usually to predict the mutagenicity
of the compounds on Salmonella typhimurium. The nodes rep-
resent atoms, while edges are bonds between the corresponding
atoms. The dataset includes 188 samples of chemical compounds.
It is publicly available and commonly used to compare classifica-
tion performances.
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KNC scenario
We also apply netANOVA to graphs with known node correspon-
dence, i.e. multiplex networks. Previous work [47, 48] has shown
the potential of brain networks to distinguish between various
brain disorders. We selected the COBRE brain networks [47, 49].
It contains 124 individual-specific networks: 70 controls and 54
schizophrenics. The brain networks are constructed from imag-
ing data (resting state fMRI) to represent functional connectivity
between regions of the brain. The graphs are composed of 263
nodes obtained from the Power parcellation [50] and 34 453 edges.
The edge weights are the Fisher-transformed correlation between
the fMRI time series of the nodes. Nuisance covariates like age,
gender, motion and handedness have been regressed out. For a
description of the preprocessing steps to obtain the network edge
weights, see [47].

The brain networks are fully connected. In their functional
brain connectivity analysis (identification of controls versus
autism spectrum disorder), Wills et al. [51] found that only a
subset of edges represents the structural differences between
the two groups of graphs studied. The dissimilarities could not
be identified with all the edges. Also, since the local changes in
connectivity were of the same order of magnitude as the random
local variations, a comparison using all the edges was ineffective.
Similar findings were reported [52, 53]. Therefore, we evaluated
the impact of graphs sparsification using the method developed
by Relión et al. [47] to select edges. This method incorporates the
network nature of the data via penalties to promote sparsity in the
number of nodes, in addition to sparsity penalties that encourage
the selection of edges. Specifically, to capture structural predictive
edges, the authors focus on convex structured sparsity penalties
that favour a small number of active nodes (nodes attached to
at least one edge with a non-zero coefficient). To find a set of
such nodes, they focus on convex formulations that encourage
small active node sets indirectly. They penalize the number of
active nodes by treating all edges connected to one node as a
group. Then, eliminating this group is equivalent to de-activating
a node.

Results
All adopted simulation and real-life application parameters set-
tings and choices are summarized in Supplementary Table 1.

Type I error
We first investigated the influence of the network properties on
the type I error (see Table 1.). Some measures gave rise to a type I
error under control in all experimental settings: edge difference,
Hamming distance, shortest path kernel, k-step random walk ker-
nel, DeltaCon distance and Gaussian kernel. The graph diffusion
distance was more prone to type I error. The network density had a
high impact: a higher density produces more conservative results.
In our simulation setting, we first generate an original random
graph, and we derive 50 graphs by randomly rewiring 40% of the
original graph’s edges while preserving the original graph’s degree
distribution. Hence, increasing the density will provide more infor-
mation but also more heterogeneity. Indeed, including more edges
may induce more noise [54]. We also evaluated the algorithm
on weighted networks. Although some distances became highly
conservative, most of them tended to behave as in the baseline.

Then, we quantified the impact of the algorithm options (see
Table 2.). Overall, the type I error was still under control in almost
all settings. The type I error tended to deflate when decreasing the

minimum group size. Furthermore, the linkage criterium in the
hierarchical clustering significantly impacted the false positive
rate. The average linkage being highly conservative, the complete
linkage was set as the default option. Finally, the higher the
number of perturbations in the distance matrix in the netANOVA
permutation procedure, the more conservative the test.

Power
The baseline scenario has an original network with a random
structure, 100 nodes, a density of 0.05 and binary edges. It contains
10 groups and 10 networks per group obtained via degree preserv-
ing rewiring 40% of the edges. The hierarchical clustering is per-
formed with complete-linkage clustering and the multiple testing
correction is based on the depth of the dendrogram (Section 2.4).
The minimum group size is set to 5. In the other scenarios, we
altered one parameter at a time. The properties of networks and
parameters used to derive results are described in Supplementary
Table 2. Overall, the baseline scenario gave good performance with
a mean Jaccard index of 0.85 across all distances (see Figure 2).
The correction for multiple testing using the depth of the tree (see
Section 2.4) was less conservative than the correction developed
by Meinshausen [41] and was, therefore, more optimal with the
chosen baseline parameters. Indeed, the former detected nine
groups on average across distances versus six groups for the latter.
To validate the trends identified in the Section 3.1, we applied the
average linkage in the hierarchical clustering. Here, it detected
only seven groups on average. It confirmed that this linkage is
more stringent than the complete one and makes the detection
of the correct clusters more complex.

We also compared various graph characteristics. With two
groups only instead of 10, the classification was perfect for almost
all distances. Also, when we simulated larger groups (50 graphs
per cluster), the Jaccard index was comparable with the one
obtained with 10 networks per group since it ranged between 0.79
and 0.89. Then, we tested multiple perturbation types: random
switching, removal of edges and addition of edges. GTOM was less
indicated when the perturbation was the removal of edges (resp.
random switching) since the associated Jaccard index is 0.14 (resp.
0.1) on average. We also modified the original network structure
and tested scale-free graphs using Barabasi-Albert models and
cluster networks. With scale-free networks, across all distances
except GTOM and graph diffusion, the average Jaccard index
was again relatively high (0.83). The average Jaccard index per
distance ranged from 0.79 to 0.86 across all distances with cluster
networks.

Moreover, we investigated the impact of perturbations within
and between groups of networks by increasing this level up to
60%. The average Jaccard indexes were not highly different from
those obtained with the baseline. Then, we increased the density
of networks. With a density of 0.1 instead of 0.05, the average
Jaccard index ranged from 0.85 to 0.88 and hence, groups were still
detectable. We also tested weighted networks (see Section 3.1),
and observed that distances based on random walk kernel did
not perform as good as the other distances. In most settings,
the graph diffusion distance tended to have difficulties clustering
the graphs correctly. On the contrary, DeltaCon and the custom
random walk kernel performed overall better than the other
measures.

Real-life data application
UNC scenario
The UNC application takes as input the list of 188 nitroaromatic
compound networks. The goal is to create groups of networks to
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Table 1. Type I error (%) of the netANOVA workflow depending on network properties, estimated over 1000 random replicates, as
explained in Section 2.6.1. The baseline corresponds to 50 networks, each one 100 nodes, a density of 0.05 and 40% of the edges
switched. The minimum group size is 10, 20% of the distance matrix is shuffled in the netANOVA permutations and the linkage
method in the hierarchical clustering is ‘complete’.

Measure Baseline Networks Nodes Density Perturbation Weighted
100 500 0.1 60%

Edge difference distance [34] 4.0 4.4 1.1 1.4 4 4.7
Hamming distance [39] 4.0 4.2 1.1 1.5 4 NA
Shortest path kernel [40] 4.0 4.4 1.1 1.4 4 0
k-step random walk kernel [35] 4.0 4.4 1.1 1.4 4 0
k-step random walk kernel KNC [35] 2.6 4.3 1.3 1.6 4 5.2
DeltaCon [36] 2.3 3.4 1.1 1.8 3.6 3.0
Graph Diffusion Distance [34] 7.2 12.7 0.6 2.2 7.6 9.8
Gaussian kernel [38] 4.0 4.4 1.1 1.2 4.1 4.7
GTOM [37] 4.7 4.2 NA 1.4 3.9 5.1

Table 2. Type I error (%) of the netANOVA workflow depending on netANOVA parameters, estimated over 1000 random replicates, as
explained in Section 2.6.1 I error. The baseline corresponds to 50 networks, each one having 100 nodes, a density 0.05 and 40% of the
edges switched. The minimum group size is 10, 20% of the distance matrix is shuffled in the netANOVA permutations and the linkage
method in the hierarchical clustering is ‘complete’.

Measure Min group size Linkage Perturbation of Perturbation of
5 average distance matrix 10% distance matrix 50%

Edge difference distance [34] 3.5 0 4.2 3.2
Hamming distance [39] 3.5 0.2 4.4 3.4
Shortest path kernel [40] 3.5 0 4.2 3.2
k-step random walk kernel [35] 3.5 0 4.2 3.2
k-step random walk kernel KNC [35] 2.1 0.1 2.5 1.6
DeltaCon [36] 2 0.2 2.2 1
Graph Diffusion Distance [34] 6.2 0.9 4.7 7.5
Gaussian kernel [38] 3.4 0 4.4 3
GTOM [37] 4.2 0.7 4.8 4

Figure 2. Average Jaccard index across multiple simulation scenarios for 800 replicates. The properties of networks and parameters used to derive results
are described in Supplementary Table 2. The baseline scenario has an original network with a random structure, 100 nodes, a density of 0.05 and binary
edges. It contains 10 groups and 10 networks per group obtained via degree preserving rewiring 40% of the edges. The hierarchical clustering is performed
with complete-linkage clustering and the multiple testing correction is based on the depth of the dendrogram (Section 2.4). In the other scenarios, we
altered one parameter at a time. Density corresponds to an original network with a density 0.1. Cluster corresponds to an original network with a cluster
structure and Scale-free to a scale-free original network (from Barabasi-Albert models). Weighted is for weighted networks (see Section 2.6.2). Perturbation
60% means that group networks and individual networks are obtained with degree preserving rewiring 60% of the edges. Then, Add, Remove and switch
correspond to addition, removal and random switching of edges instead of degree preserving rewiring. Linkage stands for average linkage in hierarchical
clustering. The 50 networks scenario has 10 groups of 50 networks, and the 2 groups scenario has two groups of 10 networks. Finally, MT corresponds to
the multiple testing correction developed by Meinshausen [41] (Section 2.4), which controls the FWER at level α ∈ (0, 1), using the significance threshold

αadj = α × Nj−1
N−1 with Nj the number of networks clustered at node j and N the total number of networks.

verify if we can identify the mutagenicity of the compounds on
Salmonella typhimurium (2 groups). These group labels are not
used to derive the clusterings, they are only used a posteriori to
obtain the accuracy by comparison between the inferred groups
and the ground truth. We compared the results of netANOVA with

the methodologies DGI [55], InfoGraph [12], GraPHmax [13] and its
variants, and graph2vec. We also applied graph2vec embedding
to convert variable-size graphs into a fixed-size representation
of graphs and combined it with an autoencoder. The k-means
algorithm was used on the vector representations of the graphs
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Figure 3. (A) netANOVA clustering on the MUTAG dataset. The pairwise distance between the 188 nitroaromatic compound networks is based on the
random walk kernel. The minimum group size is t = 40. We set the other parameters to the default options. Two groups are identified by netANOVA:
the red and the blue groups (P-value= 0.01). (B) netANOVA clustering on the pre-filtered COBRE dataset. The edge selection was performed according to
Relión et al. [47], with ρ = 1. The pairwise edge difference distance between the 124 individual-specific brain networks is computed. The minimum group
size is t = 10. We set the other parameters to the default options. Two groups are identified by netANOVA: the red and the blue groups (P-value= 0.01).

obtained from the different algorithms with k =# unique labels=
2. Moreover, we computed the pairwise distance between net-
works using the random walk kernel, and we used the inferred
similarity matrix as input to a spectral clustering (with k = 2)
algorithm. We have included details on graph2vec and autoen-
coder parameters in the Supplementary.

The default options are selected in netANOVA. We compute
the pairwise distance between the 188 nitroaromatic compound
networks based on the random walk kernel. We set the minimum
group size to t = 40. Then, hierarchical clustering is applied to the
distance matrix to derive a dendrogram and identify preliminary
groups. We illustrate the procedure in Figure 3(A). The first two
groups are significantly different (Algorithm 2), so we go to the
next level of the dendrogram and re-apply Algorithm 2 to assess
whether the corresponding subgroups are significantly different.
We progress down the dendrogram tree, and stop when the groups
are too small, or when the groups are not significantly different.
Since subgroup a1 (Figure 3(A)) contains fewer networks than the
minimum group size, we progress in the associated branch. Since
the size of groups a21 and a22 are both smaller than t, no significant
subgroup is detected. We observe the same in group b: Since
subgroup b1 contains fewer networks than the minimum group
size, we progress in the associated branch. The sizes of groups
b21 and b22 are both smaller than t, so no significant subgroup is
detected. Thus, we identify two significant groups in the MUTAG
dataset (a and b) with netANOVA.
The netANOVA algorithm detected the correct number of groups
(2) and the associated accuracy is 79.8% (see Table 3). Among the
10 comparative analyses, only two yielded improved performance
(graPHmax and GraPHmax+NF) compared with netANOVA.
Importantly, with all the methodologies except netANOVA, the
correct number of groups was forced. Overall, results show that
netANOVA was able to achieve competitive and in many cases
superior performance while being able to determine the number
of groups and assess statistical significance.

KNC scenario
The KNC application takes as input the list of 124 individual-
specific brain networks. The goal is to see if we can differentiate

Algorithm 2. netANOVA significance assessment

Input: Distance matrix (Dist), group1, group2, multiple testing cor-
rection technique, number of permutations, percentage of pertur-
bation (percperturbation), method of clustering (mtclust)
Output: F-statistic and p-value

Compute the observed statistic F by Equation 4
for k ∈ 1, .., number of permutations do

Distπ = permute(Dist, percperturbation)

groupπ
1 , groupπ

2 = mtclust(Distπ , groups = 2)

Compute the null statistic Fπ by Equation 4
end for
Compute the p-value by Equation 5
Apply the multiple testing correction according to Section 2.4

Table 3. UNC scenario: clustering accuracy of unsupervised
graph-based algorithms applied to the MUTAG dataset. The
different unsupervised algorithms take as input the list of 188
nitroaromatic compound networks. The mutagenicity (two
groups) of the compounds on Salmonella typhimurium is
considered as the ground truth. These group labels are not used
to derive the clusterings, but only a posteriori to obtain the
accuracy by comparison between the inferred groups and the
ground truth.

Method Accuracy (%)

DGI [55] 72.34
InfoGraph [12] 77.65
GraPHmax+NF [13] 84.10
GraPHmax+EF [13] 68.08
GraPHmax-P[13] 77.12
GraPHmax-H [13] 76.59
GraPHmax [13] 85.04
graph2vec [14] 78.2
graph2vec + autoencoder [14, 56] 77.01
random walk kernel [57] 67.02
netANOVA 79.8

the group of controls and the group of people with schizophre-
nia (two groups). We compared netANOVA performance with six
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Table 4. KNC scenario: accuracy for different classification and clustering methods with variable selection on the COBRE dataset. The
list of 124 individual-specific brain networks is used as input. The status cases (schizophrenia) and controls are considered as the
ground truth. Supervised results are reported from Relión et al. [47]. The group labels are not used within the netANOVA clustering.
They are used a priori to identify relevant graph substructures using the method developed by Relión et al. [47] (Section 2.6.3). The
group labels are also used a posteriori to obtain the accuracy by comparison between the inferred groups and the ground truth.

Method Accuracy (%)

Supervised graphclass [47] 92.7(2.6)
Cross-validated accuracy (average Elastic net [58] 89.5 (1.8)
and standard errors over 10 folds) SVM-L1 [59] 87.9 (2.2)

Signal-subgraph [60] 86.1 (3.3)
DLDA 84.6 (3.3)
LASSO 80.1 (5.6)

Unsupervised
netANOVA ρ = 1 (3,766 edges) 91.6
netANOVA ρ = 0.8 (4,817 edges) 100
netANOVA ρ = 0.6 (6,283 edges) 100
netANOVA ρ = 0.4 (9,606 edges) no group

detected
netANOVA ρ = 0.2 (33,796 edges) no group

detected
netANOVA ρ = 0 (34,453 edges) no group

detected

approaches previously used on this dataset: graphclass [47], Elas-
tic net [58], SVM-L1 [59], Signal-subgraph [60], DLDA and LASSO
(see Table 4).

In netANOVA, we compute the pairwise distance between the
124 brain networks using the edge difference distance because
nodes are labelled and weighted. The minimum group size is s10
and the default options were used. Since networks are originally
fully connected, we evaluated the impact of graph sparsification
using the method developed by Relión et al. [47] (Section 2.6.3).
Hierarchical clustering is applied to the distance matrix, and the
Algorithm 1 is recursively used to identify the final groups. We
illustrate the procedure in Figure 3(B). The first two groups are
significantly different. Then, a1, a21 and a221 are too small to
be tested. Groups a2221 and a2222 are not significantly different.
Also, b1 is too small to be tested, and groups b21 and b22 are not
significantly different. Thus, we identify two significant groups in
the COBRE dataset (a and b).

When focusing on 6000 edges or less, a minimum accuracy of
91.9% was obtained with netANOVA. However, when too many
edges were considered, we could not distinguish between cases
and controls. In the context of brain networks, it was already
reported that feature selection is required to detect differences
between groups (see Supplementary). When focusing on relevant
edges, netANOVA was again among the top performers compared
with supervised methods which usually lead to an inflated accu-
racy since the phenotype is used in the model. Hence, netANOVA
was able to identify groups from a set of networks where nodes
are labelled when proper edge selection was performed a priori.

Discussion
In this article, we propose a novel workflow for statistical cluster-
ing of entire graphs, evaluate its properties (Sections 3.1 and 3.2)
and validate it via biological networks use cases (Section 3.3 ).
The extensive simulations show that netANOVA can reach high
performance, both regarding type I error control and power,
and show which option to prioritize depending on the context.
The applications on real data reveal that the method achieves
competitive results since netANOVA is often among the top

approaches. This highlights the method’s potential in real-life
situations.

Most of the components in the procedure do not require a high
computing time (Supplementary). The most influential aspects
are the number of networks, their density and the distance cho-
sen to compare the graphs. Distances for graphs with no node
correspondence often require a longer processing time. Also, the
computations of the first permutation-based significance assess-
ments are the most intense due to the number of graphs com-
pared.

Novelty of the netANOVA strategy
The workflow differs from generic non-parametric multivariate
ANOVA [25] and standard clustering methods in several respects.
NetANOVA is a comprehensive graph-specific clustering work-
flow developed on strong statistics. It takes as input a set of
networks, derives potential groups, determines the optimal num-
ber of groups without the need to set externally the number
and assesses statistical significance while being completely unsu-
pervised. Although this can be a great advantage for a user, it
makes our workflow difficult to compare with baselines. Indeed,
common methods often perform only one part of the analysis
and there is a lack and a need for such complete approaches. For
instance, a common strategy in the absence of graph labels and
graph comparative analysis is to generate graph embedding, such
as Graph2Vec [14], and AWE [61]. These are fed into downstream
models, such as a k-means clustering. However, deriving the opti-
mal number of clusters is often decoupled from the mainstream
analysis [13], which is not the case in our proposed workflow.
GCNs [62] have also become a growing topic for supervised and
unsupervised network clustering. We showed that netANOVA is
able to compete and sometimes outperform GNNs approaches
while bringing additional interpretability properties and being
applicable to small datasets. Fraiman et al. [63] outline another
strategy. These authors examine network differences between
groups with an ANOVA test explicitly developed for networks.
They test whether the mean networks for predetermined groups
are the same versus the alternative that at least one group has a
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deviating average network. Significance is derived by randomly
distributing observations across groups in which no subgroup
differences are to be expected. In contrast, we do not use the
notion of an average network. The reason is that such a notion
is not always meaningful. Also, our proposed workflow does not
assume knowledge about group formation but identifies relevant
partitions on the fly. The permutation procedure is also cus-
tomized to handle the hierarchical structure of the workflow. In
addition, the approach includes components to control for type I
error, which improves the confidence in the detected groups.

Significance assessment
Several choices were made in the significance assessment proce-
dure. The permutation-based significance assessment cannot be
performed as in classical non-parametric distance-wise ANOVA
[25] because the clusters are derived via hierarchical clustering.
Even if there are no actual groups, the clustering will create it
by grouping the most similar networks, decreasing the within-
group variance and increasing the across-group variance. Thus,
a permutation of the graph labels to compute a P-value will
bias towards false positives. Since the significance assessment
is conditional on the two groups because of the hierarchical
clustering, the same data must not be used to perform cluster-
ing and assess significant differences between groups. Multiple
suggestions have been suggested to tackle this issue. In Gao et al.
[43], the authors propose a selective inference approach to test
for a difference in means between two clusters. Kimes et al. [64]
developed a Monte Carlo based approach for statistical testing
significance in hierarchical clustering. Suzuki and Shimodaira [65]
developed the R package pvclust where the hypothesis tests are
based on bootstrapping procedures. Our approach also relies on
randomization of the observed data, using permutations of the
distances between the investigated graphs instead of the graph
label. We re-apply the hierarchical clustering on these permuted
sets to identify two groups and compare the obtained labels with
the observed ones. Since the permutation of the distance has
the additional impact that it no longer satisfies the triangular
inequality, the linkage method in the hierarchical clustering is
restricted.

Userfriendliness of netANOVA
There are multiple options in the workflow, such as the distance,
the multiple testing correction method, the hierarchical linkage
criteria, the minimum size of a group to be tested, the significance
threshold, the number of permutations and the percentage of
distances permuted in the distance matrix. It can therefore adapt
to multiple scenarios and network types. Practical considerations
on the minimum group size are presented in Supplementary.
The customizable properties of netANOVA make it relevant to a
larger range of users. For example, even though netANOVA has
been developed for network analyses, it is generic in that it can
accommodate any type of object. The only prerequisite is that a
meaningful pairwise distances matrix can be computed.

Future enhancements
Our netANOVA workflow in the context of high-density networks
can be improved. For now, edge selections may be required to
select the most informative subnetworks and must be performed
a priori. In our KNC application, the edge selection in COBRE
networks is supervised and applied to the same dataset as the
clustering (Section 2.6.3). Even if the clustering is then performed
unsupervised, this could lead to overoptimistic performance esti-
mates. This KNC application shows the importance of focusing

on relevant interactions to improve interpretability and accuracy.
Thresholding is typically adopted to cancel a percentage of the
weakest connection, to turn fully connected and weighted brain
networks into a useful sparse network. De Vico Fallani et al. [66]
indicate that the way to fix this threshold is still an open issue,
and they introduce a criterion, the efficiency cost optimization
(ECO), to select a threshold based on the optimization of the
trade-off between the efficiency of a network and its wiring cost.
‘Informative’ parts can be also extracted in non-supervised ways
[67] for instance by looking for areas in the networks that exhibit
a lot of variation between individuals, assuming that the more
variation we have in ‘the input’, the more we will be able to
explain with it. On the other hand, for weighted networks, even
when we have a selection of nodes under consideration, the
network will still be dense. Hence, some approaches based on
multiple thresholds, such as filtration curves can be considered to
capture a balance between hard thresholding and fully connected
networks. The different thresholds reveal different structures in
the graphs, and how these structures change from one threshold
to another may be quite different from one network to another.

Key Points

• The identification of homogeneous groups of networks
is a common problem in system medicine. Often, the
group labels are unknown, and there is no knowledge
about the partitioning or the number of classes. Also,
there is a need to know if the groups are significantly
statistically different or not to enhance the belief in
the discovered groups. We addressed these hurdles by
developing an unsupervised approach based on reliable
statistics that considers graphs’ specificities and derives
groups of similar networks.

• Personalized screening before therapy enables improv-
ing diagnostic precision and treatment results. In net-
work medicine, there is a trend to describe patients
via individual-level biological networks, where edges
are individual-specific. The tool developed in this paper
paves the way towards exploiting individual networks to
identify relevant disease subtypes and enhance strati-
fied medicine.

• The method is flexible and user-friendly, making it rele-
vant to a larger range of users. There are multiple options
in the workflow, such as the distance between networks,
the multiple testing correction method, the hierarchical
linkage criteria, the minimum size of a group to be
tested, the significance threshold or the number of per-
mutations. It can therefore adapt to multiple scenarios
and network types. In addition, even though netANOVA
has been developed for network analyses, it can accom-
modate any type of object. The only prerequisite is that a
meaningful pairwise distances matrix can be computed.

Data availability
The code necessary to reproduce this article’s results and anal-
yses is available on GitHub at https://github.com/DianeDuroux/
netANOVA. The MUTAG dataset is available at https://networkrepository.
com/Mutag.php [68]. The COBRE data was obtained from http://
fcon_1000.projects.nitrc.org/indi/retro/cobre.html. It is available
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at https://rdrr.io/github/jesusdaniel/graphclass/man/COBRE.
data.html [47, 49].
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