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Abstract
In a wall-confined environment, the plasma behaviour can be identified by dividing the domain in two
main regions: the bulk, where the quasi-neutrality prevails (the charge density is close to zero) and the
sheath region near the walls, where positive space charge is built. Simulating this phenomenon poses
great numerical challenges. In this work we compare results from three different approaches to numerical
simulations of the plasma-sheath formation: the widely used multifluid model is presented as a referenced
solution for two variations of multicomponent modeling. We present the challenges that are characteristic
of each approach and propose numerical strategies to overcome them. Simulations of an isothermal binary
mixture of a two-temperature argon plasma are presented at various pressure regimes.

1. Introduction

Accurate simulation of low temperature plasmas (i.e. plasmas with heavy temperature lower than the one of electrons)
is crucial to a wide range of aerospace fields, including electronics applications (such as arcing of components used
in platforms newly brought to space11), as well as hypersonics (electron transpiration cooling of innovative heat shield
for cruise vehicles27). These applications vary greatly in terms of conditions (thermal non-equilibrium, pressure and so
collisionality degree) and for the nature of the species involved (electrons, neutral and ionized atoms and molecules).
Huge effort has been made in the community of plasma physics in order to develop reliable simulation tools in order to
join the effort of experimental science in understand the behaviour of phenomena that involves non-neutrals fluids: we
are going to give here a brief review of the most relevant of these approaches (focusing on those that aim at simulating
the plasma-sheath formation) but we refer the interested reader to more extensive reviews.4, 8

Strategies for the numerical simulation of the plasma sheath vary depending on the collisionality of the mixture: most of
the works for rarefied flows relies on kinetic approaches, like the Particle-In-Cell-Monte Carlo Collision (PIC-MCC)16 ;
these methods provide great level of accuracy in the description of the physical phenomena but with high computational
cost (with a strong direct dependency on the number of particles involved, i.e. the pressure condition). Fluid modeling
represent an alternative to kinetic approaches: while describing the behaviour using macroscopic quantities reduces the
accuracy and detail of the description of the gas, its computational cost is significantly reduced. Nevertheless coupling
the fluid dynamics to the Maxwell’s equations results in a strongly multi-scale problem that poses great challenges
in the numerical development.1 Some of these challenges become predominant in the development of a fluid solver
that is able to simulate the interaction of plasmas with solid boundaries: a solver that describes a smooth transition
from the quasi-neutral to the wall area has to respect strict constraints due to inertia disparities between electrons and
heavies and has to resolve adequately the Debye length in the space charge region. Recent works have been focused on
the development of asymptotic preserving schemes3, 13 , i.e. strategies that are able to tackle those limits in the plasma
equations that introduce numerical stiffness in the simulation.
In this paper we focus on a mixture of argon, allowing to neglect for the moment complex chemical processes and to
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reduce the number of species involved.
The paper is divided as such: Section 2 introduces the governing equations for both the multifluid and the multicom-
ponent models, detailing the scaling procedure and the main differences; Section 3 explains the numerical strategies
adopted in order to retrieve the profiles shown in Sec. 4. Conclusions and possible future developments are drawn in
Sec.5.

Figure 1: One dimensional discharge from Chabert & Braithwaite12 .

2. Fluid Models

Fluid models describe the behaviour of a gas by conservation equations of macroscopic quantities derived as velocity
moments of the k-th particle velocity distribution function (VDF) fk (x, ck, t). The evolution of this quantity is accounted
by means of the famous Boltzmann equation;15 here we show two different scalings of it (that result in the two different
models described in the next subsections):

∂ fk
∂t
+ ck ·

∂ fk
∂x
+

Fext

mk

∂ fk
∂ck
−

∑
k, j

Jk j =
1

Kn
Jkk, Multifluid (1)

∂ fk
∂t
+ ck ·

∂ fk
∂x
+

Fext

mk

∂ fk
∂ck
=

1
Kn

Jkk +
∑
j,k

Jk j

 , Multicomponent (2)

where ck is the k-th particle velocity, x the space coordinate, Fext = qi (E + ci × B) are the external forces (here in
the form of the Lorentz force with qk the particle charge, E the external electric field and B the external magnetic
field, neglected in the present tractation) and Jk j = Jk j

(
fk, f j

)
is the collision operator that describes the changes of

the distribution function due to the impacts (elastic and inelastic) in the mixture. Detailed analysis of the modeling of
this term is complex and beyond the scope of this document; we refer the interested reader to well-known exhaustive
works.9, 15 As anticipated the two different treatment of the collision operator result in different macroscopic models
(with Kn is the Knudsen number1): the multifluid approach distinguish the scaling of collisions between same species
and between different particles, assuming that the former ones are more frequent;6 the multicomponent approach on
the other hand does not make this distinction (a more accurate procedure would include a sound scaling too; for such
derivation we refer to Graille et al.18).
In the following subsections we detail the two main family of fluid models that result from kinetic derivation of eqs.1-2:
we restrict ourselves to the case of isothermal non-equilibrium mixtures, hence the temperatures will stay constant in
time and space but will be different between heavy species and electrons (Th , Te). Such a choice has two reasons:
the resulting system of equations presents already the numerical challenges that we want to tackle and, not solving the
energy equation(s) allows to neglect, for the present time, the problem of closure of high order terms.28

Although these hypotheses preclude the simulation of the complete physics of many interesting phenomena, the re-
sulting governing laws are well-suited to describe the formation of the sheath a binary mixture of argon plasma (only
electrons and single-chargedly argon ions immersed in a neutral background gas composed by argon atoms) in a low-
pressure discharge, as the one in Fig.1: the low pressure conditions make the energy exchange between the light
electrons and heavies very inefficient (due to the low number of collisions) and so impossible to reach the thermal
equilibrium.

1A more accurate definition of this parameter will be provided later in this document; here it is used to have a coherent notation with literature.

2

DOI: 10.13009/EUCASS2022-6157



MULTICOMPONENT FLUID SOLVER FOR ARGON PLASMA

2.1 Multifluid models

Multifluid models represent species inside the mixture as single fluids, each one with his own dynamics: interactions
between particles are accounted through source terms for collisions and external sources. We refer the interested reader
to Benilov6 for a complete kinetic derivation of the governing equations. From Alvarez Laguna et al.2 the dimensional
multifluid equations are:

∂tne + ∂x (neue) = neν
iz, (3)

∂tni + ∂x (niui) = neν
iz, (4)

∂t (neue) + ∂x

[
neu2

e +
pe

me

]
= −

neqe

me
∂xϕ − neueνen, (5)

∂t (niui) + ∂x

[
niu2

i +
pi

mi

]
= −

niqi

mi
∂xϕ − niuiνin, (6)

∂2
xxϕ = −

(qene + qini)
ϵ0

, (7)

where nk is the k − th species number density, uk the k − th species velocity, mk its mass and qk its charge. The
species partial pressure follows the perfect gas law pk = nkkBTk, with kB the Boltzmann constant and Tk the species
temperature (Te for electrons and Th for all the other species involved). Equation 7 is the well-known Poisson equation
with ϵ0 the vacuum permittivity and ϕ the electric potential. The collision frequencies νen and νin account only for
elastic collisions between charges and neutrals (assuming a weakly ionized plasma, i.e. a plasma where the number of
charges is much lower than the neutrals):

νen =
16
3

nQ(1,1)
en

√
kBTe

2meπ
, νin =

8
3

nQ(1,1)
in

√
kBTh

miπ
, (8)

with Q(1,1)
en and Q(1,1)

in collision integrals22 dependent on temperature and obtained from the thermodynamic library
Mutation++26 . The dynamics of neutral background gas is not simulated and assumed at rest (the collisional terms in
eqs.5-6 simplify to nk (uk − un) νkn = nkukνkn).
Equations 3-7 can be rescaled introducing appropriate reference quantities:

x = x/L0, uk = uk/u0, t = t/t0, n = n/n0, ϕ = ϕ/ϕ0, ν
iz
= νizt0, (9)

where L0 = L is the domain length, u0 = uB =
√

kBTe/mi is the Bohm velocity and the reference timescale is obtained
as to = L0/u0; n0 = ne0 is the initial electron number density and the reference potential is defined as ϕ0 = kBTe/e
(the electron temperature in eV). Elastic collision frequencies requires a special treatment: we start by scaling with the
reference velocity
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√
ε
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8
√
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3
√
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Few passages allow to obtain expressions that are dependent on the Knudsen number Knkn = λkn/L0 (with λkn =

(nQ(1,1)
kn )−1 the mean free path for the collision between particle k and a neutral atom):
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. (11)

The final scaled form for the multifluid model is then obtained:

∂tne + ∂x (neue) = neν
iz, (12)

∂tni + ∂x (niui) = neν
iz, (13)
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(
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)
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√
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∂2
xxϕ = χ

−1 (ne − ni) , (16)
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Equations2 12-16 present different adimensional parameters: these, together with relevant quantities for the
testcase in object, are shown in Tab.1 .

Table 1: Argon discharge conditions

Initial electron number density ne0 1016 m−3 Heavy temperature Th 0.05 eV

Electron Temperature Te 2 eV Ion-neutral collision integral Q(1,1)
in 1.41 × 10−18 m2

Electron-neutral collision integral Q(1,1)
en 7 × 10−20 m2 Electron-to-ion mass ratio ε = me/mi 1.36 × 10−5

Ion-to-electron temperature ratio κ = Th/Te 0.025 Initial Debye length λD 10−4 m

Electron plasma period ω−1
pe 1.77 × 10−10 s Discharge width L 100 λD

Equations 12-15 represent the fluid dynamic subset, with density conservation equations for each species (eqs.12,13)
and their momentum conservation equations (eqs.14,15) We consider only ionization processes (νiz) as source term for
the density conservation equations; the ionization frequency νiz is an eigenvalue of the problem25 so we implement
here the iterative formula already detailed in previous works2, 3 :

νiz =

∣∣∣(niui)L + (niui)R
∣∣∣∫

L ne(X)dx
, (17)

where subscripts L,R indicate, respectively, left and right wall. The ionization frequency is calculated in order to
replenish the domain with the same number of particles that leaves the domain and in order to keep the number of
electrons inside the discharge constant.

2.1.1 Boundary conditions

The multifluid equations present an hyperbolic scaling so the quantities to be (or not to be) imposed at the interface
have to be chosen accordingly: following Alvarez Laguna et al.3 we impose the electron flux to both boundaries to be
equal to the number of particles crossing the plane with positive velocity component (assuming a maxwellian VDF).
In normalized quantities:

ΓL,R
e = (neue)L,R = ∓

ne
√

2πε
. (18)

Electron density has Neumann boundary on both sides; ion quantities (density and momentum) have the same Neumann
condition, as the flux of positive charges arriving at the wall is assumed supersonic. The electric potential is imposed
on both sides ϕ (x = {0, L}, t) = 0 but can be easily be biased to different values.

2.2 Multicomponent models

We show in this section the governing equations under the multicomponent modeling17 assumption. In this case the
plasma is considered a single fluid with the different species diffusing inside it:

∂tne + ∂x (neu) + ∂x (neVe) = neν
iz, (19)

∂tni + ∂x (niu) + ∂x (niVi) = neν
iz, (20)

∂t (ρu) + ∂x

(
ρu2 + p

)
= ∂xΠ − nq∂xϕ, (21)

∂2
xxϕ = χ

−1 (ne − ni) , (22)

where u is the velocity of the entire fluid, Vk is the diffusion velocity of the k-th species, p =
∑

j∈S p j the total pressure
and Π the stress tensor. The one dimensional discharge chosen as testcase of this work can be modeled as a pure
diffusion problem; therefore assuming u = 0 we can get rid of eq.21 and of the convective terms in eqs.19, 20:

∂tne + ∂x (neVe) = neν
iz, (23)

∂tni + ∂x (niVi) = neν
iz, (24)

∂2
xxϕ = χ

−1 (ne − ni) , (25)

2The notation (.) will be abandoned in the rest of the document for the sake of clarity, but quantities will be considered scaled (unless differently
specified).
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The source term for eqs.23-24 is calculated using eq.17, using in this case only the ion diffusive flux (niVi)L,R to the
wall instead of (niui)L,R.
Different approaches exist for the modeling of the diffusion velocity; in this document we present the binary diffusion
(here referred to with “BD" ) model and the multicomponent diffusion (referred here later as “MC" or “MC Diffusion")
model. The former is simpler and is modeled on the classic drift-diffusion equations7 :

Vk =

(
−

Dk

nk
∂xnk − µk∂xϕ

)
(26)

with species diffusion coefficient Dk and the species mobility µk (adapted for charges-neutral collisions):

Dk =
kBTk

mkνkn
, µk =

qk

mkνkn
. (27)

As the name suggests the model takes into account only binary interactions, losing its accuracy when the mixture
contains more than one species. Such inconvenient is overcome by the slightly more complex multicomponent diffusion
approach21 (adapted under the isothermal assumption):

Vk = −
∑
j∈S

Dk j

T j

Th

∂xn j

n
− y j

∑
m∈S

Tm

Th

∂xnm

n
+

(
x jq j − y jQ

)
kBTh

∂xϕ

 , k ∈ S (28)

where D =
[
Dk j

]
is the multicomponent diffusion matrix, here computed using Ramshaw approach,24 x j and y j are,

respectively, the molar and mass fraction and Q =
∑

m∈S xmqm is the mixture charge. Coefficients in the multicomponent
diffusion matrix are obtained using the thermodynamic library Mutation++. The multicomponent diffusion model
allows to couple the diffusion of all the particles at the same time: in order to retrieve a similar behaviour to the one
produced by the multifluid equations, we set the neutral properties at the starting condition and we keep them constant
in time, obtaining accordingly the transport properties for the entire mixture; the dynamics of the neutrals atoms is then
considered negligible, due to the assumed low ionization degree. As already mentioned, a rigorous kinetic derivation
of the multicomponent equations can be found in Graille et al.18

In the case of a binary mixture (like the one treated here) the multicomponent diffusion should degenerate in the binary
diffusion: we will see the comparison of the two assumptions in the dedicated section.
We will not repeat here all the passages detailed in the previous section to obtain scaled equations and we will limit
ourselves to present the final version of the diffusion velocities here:

VBD
e =

3
√

2π
16

Knen
√
ε

(
−
∂xne

ne
+ ∂xϕ

)
, VBD

i =
3
√
π

8
Knin
√
κ

(
−
κ∂xni

ni
− ∂xϕ

)
(29)

VMC
k = −

∑
j∈S

Dk j

T j

Th

∂xn j

n
− y j

∑
m∈S

Tm

Th

∂xnm

n
+

(
x jq j − y jQ

)
∂xϕ

Te

Th

 . (30)

Coefficients inDk j depend on the Knudsen number in a similar way to the adimensional collisional frequencies:

D = Dk j =


Dee Dei Den

Die Dii Din

Dne Dni Dnn

 , Dk j =
(δk j − y j)

x j

(1 − y j)
(1 − x j)

D̃ j (31)

where δi j is Kronecker’s delta and D̃ j is the effective binary diffusivity for species j:

D̃k = (1 − xk)

∑
j,i

x j

Dk j

−1

Dk j =



Dk j =
3
8
√
πκKnk jL0 k, j ∈ H

Die =
3

16

√
2π
ε

KnkeL0 k ∈ H

Dee =
3
8

√
π

ε
KneeL0

(32)

with H = S − {e} the heavy subset. In the previous equations we assumed mn ∼ mi, choice justified if we consider a
mixture where the neutral species is the parent atom of the ion (mn = mi + me); the case of more complex mixtures is
left for future developments.
The multicomponent diffusion naturally takes into account the interactions between all the particles in the mixtures
(some of which we neglected in the binary diffusion or multifluid approach): those that do not involve neutrals have
reduced impact on the solution due to the low ionization degree of the mixtures investigated (xe ∼ xi ≪ xn and
ye ≪ yi ≪ yn).
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2.2.1 Boundary conditions

Setting the boundary conditions to the multicomponent modeling presents substantial differences with respect to the
multifluid counterpart. Equations 23, 24 present a typical elliptic scaling: following the approach in Hagelaar19 (but
common in literature, see for example Artola et al.5) we impose Neumann boundary conditions both on electrons and
ions. The diffusion flux to the wall of these species is defined as:

ΓL,R
e = (neVe)L,R = ∓

ne
√

2πε
, (33)

Γ
L,R
i = (niVi)L,R = ∓ni

√
κ

2π
+ Γ

ϕ
i , (34)

where the additional flux to the wall

Γ
ϕ,BD
i = −

ni

νin
∂xϕ (35)

Γ
ϕ,MC
i = ni

−∑
j∈S

Dk j

(
x jq j − y jQ

)
∂xϕ

Te

Th

 (36)

is imposed in order to prevent numerical accumulation of ions at the wall. The boundary condition of the electric
potential remains unchanged and has been detailed in Section 2.1.1.

3. Numerical strategies

In order to detail the numerical methods employed here, we are going to rewrite eqs.12-16 and eqs.23-25 as:

∂tU + ∂xF (U) = S (U) , (37)

with:

UMF =


ne

ni

neue

niui

ϕ

 UBD =

[
ne

ni

]
UMC =

ne

ni

ϕ

 (38)

and:

FMF =



neue

niui

ne

(
u2

e + ε
−1

)
ni

(
u2

i + κ
)

∂xϕ


FBD =

[
neVe

niVi

]
FMC =

neVe

niVi

∂xϕ

 (39)

SMF =


neν

iz

neν
iz

ε−1ne∂xϕ − neueνen

−ni∂xϕ − niuiνin
χ−1 (ne − ni)

 SBD =

[
neν

iz

neν
iz

]
SMC =

 neν
iz

neν
iz

χ−1 (ne − ni)

 (40)

The use of indices MF, BD and MC will be omitted (when not needed) in the rest of the document for the seek of clarity.
We do not describe the details of the space discretization for all the schemes proposed when their use is wide known
and not different from the applications in classic fluid dynamics; on the other hand, next section contains the description
of the time integration schemes used, as their choice is fundamental in the development of the solvers.

3.1 Multifluid

The multifluid model is the most common in the plasma physics community and it has been used extensively to simulate
the plasma-sheath formation. For this reason we choose as reference solutions the one obtained using Finite Volumes,
with explicit third order Runge-Kutta and Roe numerical flux with third order reconstruction of the solution10 ; the
electric potential is obtained by solving the Poisson equation at any timestep using centered finite differences. The

6

DOI: 10.13009/EUCASS2022-6157



MULTICOMPONENT FLUID SOLVER FOR ARGON PLASMA

0 20 40 60 80 100
x/ D

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

x(.
)

n + 1

n

(a)

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
x/ D

0.00025

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

x(.
)

n + 1

n

(b)

Figure 2: Gradient of the electric potential ϕ evaluated at timestep {n, n + 1} and the predicted value obtained with
eq.43. Values obtained at the first steps of the simulation.

electron plasma frequency imposes strict constraints for explicit schemes but this does not impact too heavily the
computational cost of the simulation. This consideration is not valid for multicomponent schemes where the presence
of diffusive terms is well-known source of numerical stiffness: for this reason the next two section will show semi-
implicit and implicit time integration schemes.

3.2 Binary diffusion

A first order backward Euler has been implemented in order to solve for eqs.23-25: the simplicity of this solution re-
flects the simplicity of the modeling. As already mentioned the binary diffusion model coincides with multicomponent
diffusion approach when the mixture accounts only for binary interactions: we choose here to present it as a further
test for the implementation of the more complete approach.
We focus here on the electron diffusion flux, rewriting it in non-conservative form3 (but the same reasoning can be
applied on the other species):

∂x

(
−∂xnn+1

e + nn+1
e ∂xϕ̃

)
= −

(
∂2

xxne

)n+1
+ (∂xne)n+1

(
∂xϕ̃

)
+ (ne)n+1

(
∂2

xxϕ̃
)
, (41)

In this way the expression is linear with the number density and so the system of equations:(
I
∆t
+ ABD,n

j

)
UBD,n+1 =

I
∆t

UBD,n + SBD,n. (42)

is tridiagonal ( ABD,n
j is the matrix resulting from discretizing eq.41 using centered finite differences) and can be solved

using the fast Thomas algorithm. In eq.41 the derivatives of the potential ϕ are not evaluated at t = n + 1, which will
require to solve the Poisson equation coupled to the system, but instead a prediction of the value ϕ̃ is used; this allows
to obtain greater stability without increasing excessively the computational cost. The predicted value of the electric
potential is obtained solving:

−∂x


χ − ∆t

∑
j∈S

∣∣∣q j

∣∣∣ nn
j

ν jn

 ∂xϕ̃

 =∑
j∈S

q j

(
2nn

j − nn−1
j

)
+ ∆t∂x

∣∣∣q j

∣∣∣ nk
j

ν jn
∂xϕ

n

 . (43)

The steps to obtain the previous equation are detailed in Hagelaar19 and have been adapted to our governing laws. The
electric potential ϕ̃ can be obtained using centered finite differences and solving the resulting tridiagonal system using
the Thomas algorithm. Figure 2 shows the quality of this method: the procedure is able to give a satisfying prediction
of the value, improving the stability of the scheme (for a more detailed description of the properties of the scheme see
Bessemoulin-Chatard et al.7).

3Indices {n + 1, n, n − 1} indicate the timestep at which the considered quantity is evaluated.
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3.3 Multicomponent diffusion

For the multicomponent diffusion approach we follow Munafó23 and Hirsch20 in order to obtain a second order implicit
formula (Backward Differentiation Formula - BDF2). We rewrite eqs.37 as:

α∂tU + ∂xF
(
Un+1

)
− S

(
Un+1

)
= 0, α =

1 Fluid Equations
0 Poisson

(44)

and discretized according to the classical Finite Volumes method:

α
∂Ui

∂t
∆xi + Fn+1

i+ 1
2
− Fn+1

i− 1
2
− Sn+1

i ∆xi = 0. (45)

We define the pseudo-steady residual array:

H (U) = α
∂U
∂t
∆xi + R (U) = 0, R (U) = Fi+ 1

2
− Fi− 1

2
− S∆xi (46)

and employ a three-point Backward Euler schemes:

H (U) = α
3Uk+1 − 4Uk + Uk−1

2∆t
∆xi + R = 0 (47)

The jacobian matrix:
∂H
∂U
= α

3
2∆t
∆xi +

∂R
∂U

is calculated analytically through linearization of terms in eq.45. The diffusion term is given by:

Fn
i+ 1

2
= An

i+ 1
2

(
∂U
∂x

)n

i+ 1
2

(48)

where the matrix is:

Ai+ 1
2
=


A f , f

NS×NS
A f ,ϕ

NS×1

01×NS 1

 (49)

The block A f , f
NS×NS

accounts for the dependency of the flux in eq.23-24 with respect to the f (luid) variables while

the block A f ,ϕ
NS×1 accounts for the dependency with respect to the electric potential ϕ. The bottom part results from

the simple consideration ∂2
xxϕ = ∂x (∂xϕ) and acknowledging that there is no dependency on the gradient of the fluid

variables.
The block matrices are defined as (in their scaled form):

A f , f
NS×NS

=
[
Ai j

]
, Ai j = −

ni

n

∑
m∈S

(
δ jm − ym

)
Dim

 T j

Th
i, j ∈ S (50)

A f ,ϕ
NS×1 = [Ai] , Ai = −

ni

n

∑
j∈S

Di j

(
n jq j − y jQ

) Te

Th
, Q =

∑
m∈S

nmqm (51)

The expressions obtained are then linearized around the time-level n as follows:

Fn+1
i+ 1

2
≃ Fn

i+ 1
2
+ 2An

i+ 1
2

( Un
i+1 − Un

i

∆xi+1 + ∆xi

)
, (52)

with ∆xi+1,∆xi being the dimension of, respectively, cell i + 1 and i. The source term Sn+1 is taken as

Sn+1
i =

[
neν

iz
]n+1

i
≃ [ne]n+1

i

(
νiz

)n
(53)

assuming the ionization frequency as constant in time: this results in a simplified jacobian ∂S/∂U that does not break
the sparseness of the matrix.
The complete system (47) is approximated then by solving the linear system:(

∂H
∂U

)
Un+1 =Mn

LiU
n+1
i−1 +Mn

CiU
n+1
i +Mn

RiU
n+1
i+1 = −Ri (54)

8

DOI: 10.13009/EUCASS2022-6157



MULTICOMPONENT FLUID SOLVER FOR ARGON PLASMA

10 3 10 2 10 1 100 101 102 103

P [Pa]

10 4

10 2

100

102

104

ln
10

 K
n 

[-]

1

Electrons
Ions
Simulations

Figure 3: Knudsen number at different pressures (L0 = L) with the results conditions highlighted.

with each term calculated as follows:

MLi =
2Ai−1/2

(∆xi + ∆xi−1)
(55a)

MCi =

[
α

3
2∆t
−
∂S
∂U

]
∆xi −

2Ai−1/2

(∆xi + ∆xi−1)
−

2Ai+1/2

(∆xi+1 + ∆xi)
(55b)

MRi =
2Ai+1/2

(∆xi+1 + ∆xi)
(55c)

Ri = α

(
−4Un + Un−1

)
2∆t

∆xi + Fn
i+ 1

2
− Fn

i− 1
2
− Sn

i (55d)

Iterations are performed using a Newton solver until ||Un+1 − Un|| < 10−8.

Table 2: Simulation conditions

pn nn η =
ne0
nn

Knen Knin

Low Pressure 10 Pa 1.25 × 1021 m−3 ∼ 10−5 1.088 0.054

High Pressure 1000 Pa 1.25 × 1023 m−3 ∼ 10−7 0.0108 5.4 × 10−4

4. Results

We proceed here to show the results of the simulations for different levels of pressure in order to investigate various
collisional regimes. In Fig.3 we show how the Knudsen number:

Knkn =
λkn

L0
=

1

nQ(1,1)
kn L0

(56)

varies with pressure. The number density n of the mixture is chose as n ∼ nn = pn/ (kBTh) given the low ionization
degree that we want to maintain. In this sense the reference number density is kept constant (n0 = ne0 = 1016 m−3) and
only the background gas pressure is modified: Table 2 details the condition of the two regimes we are showing here,
one for the low pressure and one for the high pressure.
We compare solutions from the multifluid, binary diffusion and multicomponent diffusion models in terms of number
density, (diffusion) velocity and electric potential profiles. The velocity values have been scaled first with a common
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Figure 4: Low pressure (10 Pa) solution for the multifluid, binary diffusion and multicomponent diffusion models.

value (the classical Bohm speed), in order to emphasize the different magnitude between the two species, and with a
species-specific value (its thermal velocity):

vth,k =

√
8kBTk

πmk
. (57)

This last choice allows to clearly show how the ions reach highly supersonic regimes in contrast with electrons: the
sheath dimension is too small to allow the potential drop to accelerate the particles to their high speed of sound.
All the computations are advanced until a steady state solution is reached.

4.1 Low Pressure

For the low pressure case we choose to perform simulation at 10 Pa and the results are shown in Fig.4-5. As we see all
the approaches are able to capture both the quasineutral and charged region but we clearly see how the overall general
agreement is poor throughout the entire domain: in particular the multifluid and both multicomponent model reach
different value of number density in the center of the bulk region as well as in the regions close to the walls. As from
eq.17, the steady state value of the ionization is directly linked to the boundary condition imposed at the wall: the
boundary conditions differ greatly between the two models and at this level of pressure they may not give the same
wall flux (Fig.5a). Accordingly fig.4b-4c show great mismatch comparing particle velocities and particle diffusion
velocities: approaching the wall (Fig.5b-5c) the multicomponent models greatly overestimate the speed with which the
species leave the domain influencing both the solution in the sheath and, as already highlighted, the value in the bulk.
It is worth to mention that in the collisionless limit fluid models, even though numerically possible, loses their funda-
mental assumption (the continuum regime or Kn ≪ 1): However, previous works2 demonstrated that fluid governing
laws can compare well with particle methods even in the rarefied regime, hence the interest of this work in the investi-
gation of the limits of the novel proposed multicomponent approach.
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Figure 5: Low pressure (10 Pa) solution for the multifluid, binary diffusion and multicomponent diffusion models
(Particular of the sheath region).

4.2 High Pressure

The high pressure regime has been investigated by setting pn = 1000 Pa: the higher collisional regime directly reflects
into a greater agreement in all the quantities shown (Fig.6-7).
The number densities computed with the different approaches show the same profile both in the center of the domain
and in the sheath (Fig.7a): we see that imposing different boundary conditions do not impact significantly the result. In
the proximity of the wall (Fig.7a), the multicomponent models are able to capture correctly the value produced by the
reference solution.
The increased number of collisions can be seen in the reduced velocity of particles entering the sheath (compare in
this sense Fig.5b-5c with Fig.7b-7c); at higher pressure the effect of collisions reduces the importance of inertial terms
leading the multifluid model towards a diffusive limit that well agrees with the multicomponent approach. In addition,
this might suggest that the purely diffusive hypothesis made in Sec.2.2 might not be valid when the number of collisions
is not high enough. We reserve these investigations for future developments.
Figure 7b show profile that might seem to contradict the theory: indeed all models predict ion speed lower than the
Bohm speed throughout the entire domain (u/u0 < 1) but, in presence of collisions, the Bohm criterion has to be
revised. We refer to other works for a more detailed discussion.2

Even though the overall agreement is satisfying we believe this distance between the models can be reduced increasing
furthermore the pressure in the discharge; unfortunately the computational cost of all the approaches presented here
increases dramatically as we approach the limit Knkn −→ 0: such phenomena is a well-known problem of this type of
equations.14

A general remark on the different multicomponent approaches: both the binary diffusion and the multicomponent
diffusion simulations show similar behaviour (even though the mismatch is much more evident at lower pressure) even
though the numerical discretization is different between the two. This was an aspect predicted in the modeling section
(Sec.2.2) and proves the quality of the implementation of the methods.
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Figure 6: High pressure (1000 Pa) solution for the multifluid, binary diffusion and multicomponent diffusion models.

5. Conclusions

We presented here the development of a multicomponent fluid solver for a two-temperatures argon plasma: we applied
the developed tool to the problem of plasma-sheath formation comparing the proposed multicomponent diffusion ap-
proach, based on a rigorous kinetic derivation from the Boltzmann equation, to the multifluid model, widely used in
the plasma physics, for a wide range of pressures.
The three presented approaches agree well in highly collisional regimes, with this agreement decreasing when the
number of collisions decreases: lowering the pressure, the models become progressively more distant from the purely
diffusive limit, which was at the base of the multicomponent philosophy used in this work; such behaviour suggests
that this assumption must be revised and will be the object of upcoming new developments.
A detailed analysis of the computational cost of the models presented is left for future works: nevertheless it is clear
that the implicit (or semi-implicit) treatment of the diffusive terms in the proposed multicomponent approaches allowed
to obtain satisfying results in a very stiff problem; however, as already discussed, our formulation suffers of the typi-
cal increase in computational cost that other works discussed in slightly different frameworks; asymptotic preserving
strategies are under investigation and will be the object of future works.
Despite the numerical challenges that the problem presented, results obtained are satisfying allowing to focus in the
future both on treating more complex mixture (like air plasmas), removing the isothermal assumption and adding accu-
rate description of the chemistry, and to the development of valid numerical schemes suited to overcome the numerical
challenges that have been widely discussed in the present document.
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Figure 7: High pressure (1000 Pa) solution for the multifluid, binary diffusion and multicomponent diffusion models
(Particular of the sheath region).
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