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def simulate(v, alpha, dt=0.001):

    v_x = v * np.cos(alpha)  # x velocity m/s

    v_y = v * np.sin(alpha)  # y velocity m/s

    y = 1.1 + 0.3 * random.normal()

    x = 0.0

    while y > 0: # simulate until ball hits floor

        v_y += dt * -G  # acceleration due to gravity

        x += dt * v_x

        y += dt * v_y

    return x + 0.25 * random.normal()
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The computer simulator de�nes the likelihood function  implicitly.p(x∣θ)
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What parameter values  are the most plausible?θ
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p(θ∣x ) =obs
p(x )obs

p(x ∣θ)p(θ)obs
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Neural ratio estimation
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The likelihood-to-evidence  ratio can be learned, even

if neither the likelihood nor the evidence can be evaluated: 

r(x∣θ) = =p(x)
p(x∣θ)

p(x)p(θ)
p(x,θ)

x, θ ∼ p(x, θ)

x, θ ∼ p(x)p(θ)

(x∣θ)r̂

―
Credits: Cranmer et al, 2015; Hermans et al, 2020. 12 / 30

https://arxiv.org/pdf/1506.02169.pdf
http://proceedings.mlr.press/v119/hermans20a/hermans20a.pdf


The solution  found after training approximates the optimal classi�er

Therefore,

d

d(x, θ) ≈ d (x, θ) = .∗

p(x, θ) + p(x)p(θ)
p(x, θ)

r(x∣θ) = = ≈ = (x∣θ).
p(x)
p(x∣θ)

p(x)p(θ)
p(x, θ)

1 − d(x, θ)
d(x, θ)

r̂
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p(θ∣x) ≈ r(x∣θ)p(θ)
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Interaction of Pal 5 with two Interaction of Pal 5 with two ……

Constraining dark matter with stellar streams

.]

―
Image credits: C. Bickel/Science; D. Erkal. 15 / 30

https://www.youtube.com/watch?v=uQVv_Sfxx5E
https://t.co/U6KPgLBdpz?amp=1


 

―
Credits: Hermans et al, 2021. 16 / 30

https://arxiv.org/pdf/2011.14923


Preliminary results for GD-1 suggest a preference for CDM over WDM.
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Neural Posterior Estimation
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E KL(p(θ∣x)∣∣q (θ∣x))
qϕ
min p(x) [ ϕ ]
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Normalizing �ows

A normalizing �ow is a sequence of invertible transformations  that map a

simple distribution  to a more complex distribution :

By the change of variables formula, the log-likelihood of a sample  is given by

fk
p0 pK

x

log p (x) = log p (z) − log det .K 0

k=1

∑
K

∣
∣
∣
∣

∂zk−1

∂fk

∣
∣
∣
∣
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Exoplanet atmosphere characterization

―
Credits: NSA/JPL-Caltech, 2010. 20 / 30

https://www.nasa.gov/topics/universe/features/exoplanet20100203-b.html


 

―
Credits: Vasist et al, 2023. 21 / 30

https://doi.org/10.1051/0004-6361/202245263


Score-based data assimilation
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Diffusion models
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This neural network can be trained by denoising score matching,

where  and  eventually converges to the

score .

arg E ϵ (μ(t)x+ σ(t)ϵ, t) − ϵ ,
θ
min p(x)p(t)p(ϵ) [∣ θ ∣2

2]

ϵ (x , t) = −σ(t)s (x , t)θ t θ t s (x , t)θ t

∇ log q(x )xt t
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New samples can be generated by following the reverse denoising process.
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―
Credits: Saharia et al, 2022. 25 / 30

https://imagen.research.google/


For conditional sampling, we can also use the Bayes rule and notice that

where we leverage the fact that the gradient of  with respect to  is

zero.

∇ log p(x ∣y) = ∇ log p(x ) +∇ log p(y∣x ),xt t xt t xt t

log p(y) xt

26 / 30



Score-based data assimilation

Diffusion models can be turned into data assimilation models over large-scale
dynamical systems:

Train a diffusion model on a large set of state trajectories .

Assimilate observations  by conditional sampling, resulting in the posterior 

.

p(x )1:L

y

p(x ∣y)1:L
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Summary

Advances in deep learning have enabled new approaches to statistical
inference.

This is major evolution in the statistical capabilities for science, as it enables
the analysis of complex models and data without simplifying assumptions.
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The end.
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We must make sure our approximate
simulation-based inference algorithms
can (at least) actually realize faithful
inferences on the (expected)
observations.

How do we know this is good enough?

Computational faithfulness

(θ∣x) = sbi(p(x∣θ), p(θ),x)p̂

30 / 30



Mode convergence:

The maximum a posteriori estimate converges towards the nominal value  for

an increasing number of independent and identically distributed observables 

:

θ∗

x ∼ p(x∣θ )i
∗

=

arg p(θ∣{x } )
N→∞
lim

θ
max i i=1

N

arg p(θ) r(x ∣θ) = θ
N→∞
lim

θ
max

xi

∏ i
∗

―
Credits: Brehmer et al, 2019. 30 / 30

https://iopscience.iop.org/article/10.3847/1538-4357/ab4c41/meta


Coverage diagnostic:

For , compute the 

credible interval based on .

If the fraction of samples for which  is

contained within the interval is larger than the
nominal coverage probability , then the

approximate posterior  has coverage.

A common observation at the root of several other diagnostics is to check for the
self-consistency of the Bayesian joint distribution,

p(θ) = p(θ )p(x∣θ )p(θ∣x)dθ dx.∫ ′ ′ ′

x, θ ∼ p(x, θ) 1 − α

(θ∣x)p̂

θ

1 − α

(θ∣x)p̂

―
Credits: Hermans et al, 2021; Siddharth Mishra-Sharma, 2021. 30 / 30

https://arxiv.org/abs/2110.06581
https://arxiv.org/abs/2110.01620


30 / 30



―
Credits: Hermans et al, 2021. 30 / 30

https://arxiv.org/abs/2110.06581


What if diagnostics fail?
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Balanced NRE
Enforce neural ratio estimation to be conservative by using binary classi�ers 

that are balanced, i.e. such that

d̂

E (θ,x) = E 1 − (θ,x) .p(θ,x) [ d̂ ] p(θ)p(x) [ d̂ ]

―
Credits: Delaunoy et al, 2022. 30 / 30

https://arxiv.org/abs/2208.13624
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Credits: Delaunoy et al, 2022. 30 / 30

https://arxiv.org/abs/2208.13624

