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vy =vcos(a), vy =wvsin(a),

de _dy _odv,
dt dt N
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def simulate (v, alpha, dt=0.001):

V_X = VvV * np.cos(alpha) # x velocity m/s
V.y = VvV * np.sin(alpha) # vy velocity m/s
y =1.1 + 0.3 * random.normal ()

x = 0.0

while v > 0: # simulate until ball hits floor
v_y += dt * -G # acceleration due to gravity
X += dt * v_x

y += dt * v_y

return x + 0.25 * random.normal ()
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The computer simulator defines the likelihood function p(x|@) implicitly.
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What parameter values 6 are plausible given the observation z?
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Bayesian inference

Start with
e asimulator that can generate N samples z; ~ p(x;|6;),
e apriormodel p(0),

e observed data Zons ~ P(Tobs |Oirue )-

Then, estimate the posterior

p(mobs |0)p(0)
p(wobs)

p(9|w0bs) —

0, t

A J
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, 306

The likelihood-to-evidence r(z|0) = % —= ]% ratio can be learned, even

if neither the likelihood nor the evidence can be evaluated:

A

Q
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Neural ratio estimation (NRE
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Credits: Cranmer et al,2015; Hermans et al, 2020.


https://arxiv.org/pdf/1506.02169.pdf
http://proceedings.mlr.press/v119/hermans20a/hermans20a.pdf

‘%

The solution d found after training approximates the optimal classifier

p(z,0)
(z,0) +p(z)p(8)

d(z,0) ~d*(x,0) =
p

Therefore,

aloy_ PO _ p@0)

p(z)  p(z)p(f) 1-d(z,0)
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Palomar 5
* (Pal5) stream
Pal5 was discovered in 2001 as
the first thin stream formed from
- # a globular cluster. Its current orbit
) takes it far over the galactic center.
Globular clusters
These hives typically hold
100,000 stars or fewer and give

rise to long, thin streams.
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GD1 stream
Discovered in 2006, GD1 is Milky Way
the longest known thin stream, 2 .

stretching across more than half the
northern sky. It contains a gap that could

Image B8 theseaiaf agarkmatter collision
500 million years ago.
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https://www.youtube.com/watch?v=uQVv_Sfxx5E
https://www.youtube.com/channel/UCnGt3T--gflcoOttV3kqTYg?feature=emb_ch_name_ex
https://t.co/U6KPgLBdpz?amp=1
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https://arxiv.org/pdf/2011.14923

Preliminary results for GD-1 suggest a preference for CDM over WDM.
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Neural Posterior Estimation (NPE)

Use variational inference to directly estimate Amortized posterior
the posterior, by solving [ A N [ S—— |
. ' 8
min ) [KL(p(6]2)[|4(6]2))] ——
\[,}E,./‘
. . . B upervised
where dy is aneu ral density estimator, such as =”"3mm“g

a normalizing flow.
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Exoplanet atmosphere characterization

star + planet star + planet

light

star

time

Credits: NSA/JPL-Caltech, 2010.
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https://www.nasa.gov/topics/universe/features/exoplanet20100203-b.html
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Computational faithfulness

p(0lz) = sbi(p(z|6),p(0), z)

We must make sure our approximate
simulation-based inference algorithms
can (at least) actually realize faithful
inferences on the (expected)
observations.

&

S o
(1] L='
A i
F
)1
=
T
§LF§§~'; ?
_: “F—-:?C-f—--w R\ o
== P s | = |
i DI
LRI T s
|08 J
Wil i
RN .
L (3 B
=i 4 d ==
Rj==EY) | ———|
iSlS=s= ==
[Fe/H] log Py ’\\(.;\ \:.» 1 \\In-:"' i ;; logd

How do we know this is good enough?
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3GCT

The maximum a posteriori estimate converges towards the nominal value 8* for
anincreasing number of independent and identically distributed observables

i NP($|9*)3

Mode convergence:
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Credits: Brehmer et al, 2019.


https://iopscience.iop.org/article/10.3847/1538-4357/ab4c41/meta

oS

A common observation at the root of several other diagnostics is to check for the

self-consistency of the Bayesian joint distribution,

p(8) = / p(6')p(2|6')p(6]z)d¢’ da.

Coverage diagnostic:

e Forz,0 ~ p(x,0),computethel —
credible interval based on p (0|x).

e |f the fraction of samples for which € is
contained within the interval is larger than the
nominal coverage probability 1 — o, then the
approximate posterior p (6|x) has coverage.

Credits: Hermanset al, 2021; Siddharth Mishra-Sharma, 2021.
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https://arxiv.org/abs/2110.06581
https://arxiv.org/abs/2110.01620
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NRE NRE ensemble NPE NPE ensemble SNPE SNL SNRE Rej-ABC SMC-ABC
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https://arxiv.org/abs/2110.06581

What if diagnostics fail?
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Balanced NRE oL E6

Neural ratio estimation can be forced to be more conservative, hence increasing
the reliability of the approximate posteriors and reducing the risk of false
inferences.

Weinberg Spatial SIR MG/ Lotka Volterra  Gravitational Waves
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Definition

A binary classifier ci is balanced if
Ep(@,a:) [d (9, ZL‘)] = Ep(@)p(m) [1 —d (9, CE)} .

Theorems 1and 2

Any balanced classifier d satisfies

d(0,x) 1—4d(0,z)
Ep(9,0) [J(e x)] > 1 and By () L —d(6,2) > 1.
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o5

Algorithm 1 Training algorithm for Balanced Neural Ratio Estimation (BNRE).

Inputs: Implicit generative model p(x | 9) (simulator) and prior p()
Outputs: Approximate classifier d, (¥, ) parameterized by 1/
hyper-parameters: ~ Balancing condition strength A (default = 100) and batch-size n

repeat
Sample data from the joint {¢;, x; ~ p(¥. x), y; = l}nf2

Sample data from the marginals {9;, @; ~ p(9)p(x), yi =0}, n 4
Lldy) = iy yilog dy(9s, @) + (1= i) log(1 — dy (8, @)
[d ] — 2 Zﬂfz dﬂ" '19“2131) 2 Z:"‘ n/241 (11‘{,(19“:131)

1 = minimizer_step(params=¢, loss=L[dy] + A(B[dy] —1)?)

until convergence
return cftp(*ﬁ, x).
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Wait a minute... What if you are model is wrong?
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The observational model p(x|60)

p(z|6) should capture the pertinent structure of the true data generating
process for the inference results to be useful.

A model that does not capture every precise detail of the true data generating
process can still be useful if it captures the details relevant to the particular
analysis goals.

Credits: Michael Betancourt, 2020. 29/44


https://betanalpha.github.io/assets/case_studies/principled_bayesian_workflow.html#14_Model_Adequacy

The observational model can often be made richer by including in it additional
nuisance parameters v that capture known unknowns.

In this case, the likelihood becomes

p(z|6) = / p(2]6,)p(v|6)dv.

Although nuisance parameters can reduce model misspecification, their presence
and marginalization will result in increased uncertainties for the parameters 0 of
interest.
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p 0:00/0:26

Nuisance parameters are used to model known unknowns in a robotic setup (e.g.,
camera position, table position, etc).

Credits: Marlier et al, 2021. 31/44


https://arxiv.org/abs/2109.14275

The prior model p(6)

The prior model p(6’) specifies one's beliefs about the model parameters. It
should reflect domain expertise.
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The consequences of the prior model in the context of the observational model
can be diagnosed with prior predictive checks to evaluate what data sets would
be consistent with the prior.

A prior predictive check generates data S according to the prior predictive
distribution p(x) as

esim - p(@)

msim -~ p(x‘esim)7

or summary statistics 7" (5™ ) thereof.
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Fig. 4: Visualizing the prior predictive distribution. Panels (a) and (b) show realizations
from the prior predictive distribution using priors for the 3°s and 7'’s that are vague and
weakly informative, respectively. The same N1 (0,1) prior is used for o in both cases.
Simulated data are plotted on the y-axis and observed data on the x-azis. Because the
simulations under the vague and weakly informative priors are so different, the y-axis
scales used in panels (a) and (b) also differ dramatically. Panel (¢) emphasizes the
difference in the simulations by showing the red points from (a) and the black points

from (b) plotted using the same y-axis.

Credits: Gabryet al,2017. 34 /44


https://arxiv.org/abs/1709.01449

In the absence of a good prior, neural empirical Bayes can be used to estimate a
prior distribution pg (6) by maximizing the (log) evidence of a set of observations

log py ({zi }iv Zlog/ (x:]0)py(0)do.

Credits: Vandegar et al, 2021. 35/44


https://arxiv.org/abs/2011.05836

Credits: Vandegar et al, 2021.
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Figure 4: Posterior distribution obtained from MCMC
with the exact source distribution and the exact like-
lihood function on SLCP in blue against the posterior
distribution obtained with ¢,(y|x) and gg(x) learned
from L1924 in black (the 68-95-99.7% contours are
shown). Generating source sample x are indicated in

red. The approzimated posterior distribution closely
matches the ground truth.
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https://arxiv.org/abs/2011.05836

Posterior predictive checks

If a modelis a good fit, then we should be able to use it to generate data that
resemble the data we observe.

Formally, this can be diagnosed with posterior predictive checks that generates
data '™ according to the posterior predictive distribution

p(a*™|z) = / p(2™8)p(6])do,

Sim) thereof.

or summary statistics 7'(x
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Fig. 7: Histograms of statistics skew(yrep) computed from 4000 draws from the posterior
predictive distribution. The dark vertical line is computed from the observed data. These
plots can be produced using ppc_stat in the bayesplot package.

Credits: Gabry et al, 2017.
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https://arxiv.org/abs/1709.01449

Box's loop: build, compute, critique, repeat

DATA
Y
Build model Infer hidden quantities Criticize model
Mixtures and mixed-membership; > Markov chain Monte Carlo; > Performance on o task;
Time series; Generalized linear models; Variotional inference; Prediction on unseen data;
Factor models; Bayesian nonparametrics Laplace approximation Posterior predictive checks

A

Y

Apply model

Predictive systems;
Data exploration;
Data summarization

Revise Model

Science does not end at the inference results. Instead, they should inform the
next revision of the model.

Credits: Blei, 2014. 39/44


https://www.annualreviews.org/doi/full/10.1146/annurev-statistics-022513-115657

Wait a minute... Can't | machine learn the model discrepancy?
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Expert model

Credits: Wehenkel et al, 2022.


https://arxiv.org/abs/2202.03881

(a) Param PDE (a, b), diffusion-(b) APHYNITY Param PDE (a, (c¢) Ground truth simulation
only b)

Credits: Yin et al, 2021. 42/ 44


https://arxiv.org/abs/2010.04456

Summary

Simulation-based inference is a major evolution in the statistical capabilities
for science, enabled by advances in machine learning.

Need to reliably and efficiently evaluate the quality of the posterior
approximations.

Further advances will eventually augment incomplete physical models with
Al.
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SBl beyond Science?

Jascha Sohl-Dickstein

@jaschasd
| think we will increasingly build systems out of many
large models interacting with each other. | think the
cascades perspective -- write down a probabilistic

graphical model, but with every node a language model
-- is the right formalism for describing these systems.

(@ David Dohan @dmdohan - Jul 23

Happy to release our work on Language Model Cascades. Read on to learn how
we can unify existing methods for interacting models (scratchpad/chain of
thought, verifiers, tool-use, ...) in the language of probabilistic programming.

paper: arxiv.org/abs/2207.10342

Verifiers Selection-Inference
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SBl beyond Science?

Jascha Sohl-Dickstein
@jaschasd

| think we will increasingly build systems out of many
large models interacting with each other. | think the
cascades perspective -- write down a probabilistic
graphical model, but with every node a language model
-- is the right formalism for describing these systems.

tor, directly into the program. Then techniques from sim-
ulation based inference, for example, can be applied to do
inference in such situations (Cranmer et al., 2020).

paper: arxiv.org/abs/2207.10342

ONORONONO

Verifiers Selection-Inference
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The end.
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