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Abstract: Yield prediction is of great significance in agricultural production. Remote sensing tech-
nology based on unmanned aerial vehicles (UAVs) offers the capacity of non-intrusive crop yield
prediction with low cost and high throughput. In this study, a winter wheat field experiment with
three levels of irrigation (T1 = 240 mm, T2 = 190 mm, T3 = 145 mm) was conducted in Henan province.
Multispectral vegetation indices (VIs) and canopy water stress indices (CWSI) were obtained using
an UAV equipped with multispectral and thermal infrared cameras. A framework combining a
long short-term memory neural network and random forest (LSTM-RF) was proposed for predicting
wheat yield using VIs and CWSI from multi-growth stages as predictors. Validation results showed
that the R2 of 0.61 and the RMSE value of 878.98 kg/ha was achieved in predicting grain yield using
LSTM. LSTM-RF model obtained better prediction results compared to the LSTM with R2 of 0.78
and RMSE of 684.1 kg/ha, which is equivalent to a 22% reduction in RMSE. The results showed that
LSTM-RF considered both the time-series characteristics of the winter wheat growth process and the
non-linear characteristics between remote sensing data and crop yield data, providing an alternative
for accurate yield prediction in modern agricultural management.

Keywords: UAV; wheat yield; multispectral; thermal infrared; long short-term memory network

1. Introduction

Wheat is one of the major food crops worldwide. In the context of global food crisis and
climate change, accurate wheat yield prediction is of great importance for the development
of precision agriculture. The traditional method for obtaining yield is performed after
maturity. Alternatively, other important traits such as biomass, leaf area index and plant
height can be used to make a preliminary assessment of yield before maturity. These
pre-harvest methods for obtaining yield are time consuming, costly, and inefficient.

Remote sensing enables non-intrusive prediction of crop yields before maturity, as
traditional remote sensing methods rely on satellite platforms. Data from satellite-based
sensors have been successfully used for yield estimation at farm, national and global
levels [1,2]. Unmanned aerial vehicle (UAV) remote sensing technology can provide a
fast and non-intrusive view of crop growth status, water stress, and thus yield prediction.
Various types of sensors are mounted on UAVs to collect crop canopy information, including
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multispectral, thermal infrared, RGB and hyperspectral cameras [3]. Data from these
sensors have been successfully applied in the assessment of yield, biomass, leaf area index
and chlorophyll content in maize, wheat, and rice [4–9]. However, most studies have only
used data from individual sensors to infer crop parameters, neglecting the advantages of
combining multiple sensors. For example, the fusion of features from multispectral, RGB
and thermal imagery resulted in a significant improvement in yield prediction accuracy for
soybeans [10]. Yang et al. [11]. obtained better performance by using RGB and multispectral
images from a UAV than a VI-based regression model for rice grain yield estimation at
the ripening stage. A similar situation also occurred for maize leaf area index (LAI)
assessment [12]. The high accuracy of multi-sensor data fusion is due to the fact that
multiple pieces of information, such as canopy reflectance, structure and temperature, all
contribute in a unique and complementary way to plant trait prediction [10].

With the rapid development of sensors, the volume of data acquired has become
larger, requiring powerful tools to establish relationships between remote sensing data and
actual plant parameters. Machine learning algorithms have developed rapidly in recent
years and are widely used in precision agriculture for the evaluation of crop parameters
with desirable model performance [13–16]. Random forest (RF) is an integrated tree-
based algorithm that achieves high prediction accuracy in the evaluation of parameters
such as crop chlorophyll and biomass [17,18]. RF is an ideal tool for assessing ground
parameters in precision agriculture and it obtained higher predictive accuracy exceeding
that of support vector machine (SVM) and artificial neural network (ANN) in assessing crop
biomass [19]. As a deep learning algorithm, LSTM is also widely used for crop parameter
evaluation [20–22]. The long short-term memory (LSTM) model represents a deep network
structure to incorporating crop growth processes, which has been proven to accommodate
different types and representations of data, recognize sequential patterns over long time
spans, and capture complex nonlinear relationships [23]. Haider et al. [23] focused on
developing an accurate wheat production forecasting model using the Long Short-Term
Memory (LSTM) neural networks. It achieved better performance in terms of forecasting,
and revealed that while the wheat production will gradually increase in the next ten years,
the production-to-consumption ratio will continue to fall, posing threats to the overall
economy. Huiren et al. [24] developed an LSTM model to estimate wheat yield in the
Guanzhong Plain by integrating meteorological data and two remotely sensed indices,
vegetation temperature condition index (VTCI), and leaf area index (LAI) at the main
growth stages. It was proved that the LSTM model outperformed BPNN and SVM, since
its recurrent neural network structure that can incorporate nonlinear relationships between
multi-features inputs and yield.

At present, most grain crop yield prediction has strong correlations with critical
growing seasons. It produces various prediction errors by using data acquired from
different growth stages. However, the yield of wheat is not only related to a certain growth
stage. For example, water shortage at the heading stage will affect the ear length, and
water shortage at the grain-filling stage will affect the plumpness of kernels. Linchao
et al. [25] considered four main growth periods: T1: planting–tillering (Sep–Nov); T2:
tillering–jointing (Oct–Mar); T3: jointing–heading (Mar–Apr); T4: heading–maturity (May–
Jun). It was found that NIRv from jointing to heading was the most important predictor
in determining yield. If we know the growth status of wheat in the early stage, it will
help predict the yield of wheat with higher accuracy. To achieve this, this paper uses the
long short-term memory network (LSTM) to extract the characteristics of wheat vegetation
indices at different growth stages with sequential information. The specific objectives of our
study were (1) to evaluate the potential of UAV-based multispectral and thermal infrared
data fusion for wheat yield prediction, and (2) to develop an LSTM-RF model to enhance
yield prediction accuracy.
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2. Materials and Methods
2.1. Research Location and Experimental Design

The research area is located in Xinxiang (35.20◦ N, 113.80◦ E), Henan province, China.
The research area has a warm temperate continental monsoon climate, with an average
annual temperature of about 14 ◦C and an average annual rainfall of about 573.4 mm,
which is suitable for winter wheat growing. In this experiment, a trial field was sown on
10 October with winter wheat (Triticum aestivum L.) and divided into 180 test plots, each
measuring 8 m long and 1.4 m wide. The winter wheat was subjected to three irrigation
levels: conventional irrigation (240 mm), moderate irrigation (190 mm) and mild irrigation
(145 mm). For each irrigation treatment, 30 varieties were considered with two replications
in a randomized block. Irrigation was performed by a large movable sprinkler. The
irrigation period and detailed irrigation volumes for each treatment are shown in Table 1.
Wheat was harvested after maturity on 2 June. The grains were dried until the moisture
content was below 12.5% and then weighed.

Table 1. An overview of the water treatment for the 2019–2020 growing season.

Crop Growth Stages T1 T2 T3

Tillering 35 mm 35 mm 35 mm
Wintering 35 mm 35 mm 35 mm
Reviving 35 mm 25 mm 20 mm

Elongation 50 mm 35 mm 20 mm
Heading 50 mm 35 mm 20 mm

Flowering 35 mm 25 mm 15 mm
Total 240 mm 190 mm 145 mm

2.2. UAV-Based Data Acquisition and Processing

UAV flights were carried out at heading, flowering, and grain-filling stages in clear
and cloudless days between 10:00 and 14:00. Two remote sensing datasets were acquired
using multispectral and thermal sensors installed on a M210 quadrotor UAV (DJI, Shenzhen,
China) (Figure 1). Multispectral images were collected using a Rededge MX multispectral
camera (Micasense, Inc., Seattle, DC, USA), capturing blue (centered at 475 nm), green
(560 nm), red (668 nm), red-edge (717 nm) and near-infrared (842 nm) spectral channels
with bandwidths of 20, 20, 10, 10, and 40 nm, respectively. Thermal images were obtained
using a Zenmuse XT2 thermal infrared camera (DJI, Shenzhen, China) with wavelength
range of 7.5–13.5 µm. In the experimental field, 18 ground control points (GCPs) were set
up with black and white boards evenly distributed in the 180 plots. Orthographic images
from the DJI’s ground station are used to plan the route. The side and front overlap of the
route are 80% and 85%, respectively.

Figure 1. M210 quadrotor with multispectral and thermal cameras.
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The methodological flowchart for data process was presented in Figure 2. The pho-
togrammetric processing of the acquired UAV images was conducted in Pix4Dmapper
photogrammetric software (Pix4D S.A., Lausanne, Switzerland). After the aerial triangula-
tion of the UAV images, the geometric processing was optimized in Pix4Dmapper using
the coordinates of the GCPs. After correction, the digital number (DN) values of the multi-
spectral and thermal images were converted to reflectance and temperature, respectively.
To extract the reflectance and temperature for each plot, the orthomosaic images were
segmented into 180 polygon shapes with assigned IDs defining the plots. Polygon shape
generation and information extraction are completed in QGIS 3.1.0.

Figure 2. Methodological flowchart for crop yield prediction from the unmanned aerial vehicle (UAV)
imageries in combination with ground-based data.

2.3. Selection of Spectral Indices

Spectral indices have been proven to be closely related to the physiological and bio-
chemical parameters of crops in previous literature. In this study, we selected 7 vegetation
indices to estimate wheat yield (Table 2).

Table 2. List of 7 vegetation indices we have examined in this study.

Index Name Index Acronym Formula

Normalized difference vegetation index NDVI (RNIR − RRED)/(RNIR + RRED)

Modified chlorophyll absorption in reflectance index MCARI [((RRED−EDGE − RRED)− 0.2)(RRED−EDGE − RGREEN)]
9(RRED−EDGE − RRED)

Modified triangular vegetation index 2 MTVI2
1.5[1.2(RNIR − RGREEN)− 2.5(RRED − RGREEN)]/

[(2RNIR + 1)2 −
(

6RNIR − 5
RRED

)
− 0.5]

ratio vegetation index 1 RVI1 RNIR/RRED
Optimized soil adjusted vegetation index OSAVI 1.16(RNIR − RRED)/(RNIR + RRED + 0.16)

Normalized difference 550/450 plant pigment ratio PPR (RGREEN − RBLUE)/(RGREEN + RBLUE)
Crop water stress index CWSI [TC − (Tmin − 2)]/[(Tmax + 5)− (Tmin − 2)]

2.4. Regression Technology

In this paper, the LSTM-RF estimation model was constructed to predict winter wheat
yield. The model used a two-layer long short-term memory network to extract primary
features and secondary features from the input vegetation indices information, then these
features were fed into a random forest regressor to predict the crop yield.
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2.4.1. Long Short-Term Memory Network

For one long short-term memory cell (Figure 3), at a given time t, there are three
inputs: the input value of the network at the current time xt, the output value of the long
short-term memory cell of the last time ht−1, and the last unit state ct−1. It has two outputs:
the output value ht and the state information ct at the current time.

Figure 3. Long short-term memory cell.

LSTM is implemented in three steps [26]. The first step of LSTM is to determine what
information can be passed through the cell state. This decision is controlled by the “Forget
Gate” layer through the sigmoid function, which passes or partially passes based on the
previous moment’s output, as shown by Equation (1).

ft = σ
(

W f ·[ht−1, xt] + b f

)
(1)

The second step is to generate new information that we need to update. This step
consists of two parts, with Equation (2) representing an “input gate” layer that uses sigmoid
to determine which values to update, and Equation (3) representing a hyperbolic tangent
layer that generates new candidate values and adds them up to get the updated values.

it = σ(Wi·[ht−1, xt] + bi) (2)

C̃t = tanh(Wc·[ht−1, xt] + bc) (3)

The two steps above are the process of discarding unwanted information and adding
new information as shown in Equation (4):

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

The final step is to determine the output of the model, firstly through the sigmoid
layer to get an initial output, as shown in Equation (5), and then using a hyperbolic tangent
layer to scale the values to between −1 and 1, and then multiplied pair by pair with the
sigmoid output to obtain the output of the model, as shown in Equation (6).

ot = σ(Wo·[ht−1, xt] + bo) (5)

ht = ot ∗ tan h(Ct) (6)

2.4.2. Random Forest Regressor

Random forest regressor is insensitive to multiple collinearities, and its results are
relatively robust to incomplete or unbalanced data. It can predict well the effects of up to
several thousand explanatory variables, and is regarded one of the best algorithms.

In this paper, the Classification and Regression Tree (CART) decision tree was used as
the base learner in the random forest, as shown in Figure 4. Next, T rounds of training were
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carried out on the model through random sampling and random selection of features, and
then T weak learners were summed up to obtain the final learner. Self-sampling method
was adopted, in other words, sampling with return, and the number of samples taken
in each round of training was equal to the total number of samples. Because of return
sampling, some samples may be repeatedly chosen, while others may not be chosen. The
selection of features was also by random selection of a fixed number of features to train the
model. In this way, the weak learners were not completely independent of each other, yet
the correlation was small, which can increase the overall generalization ability of the model.

Figure 4. How the random forest regressor works.

Here is a summary of the flow of the random forest algorithm:

(a) Draw a random bootstrap sample of size n (randomly choose n samples from the
training set with replacement).

(1) Grow a decision tree from the bootstrap sample. At each node:
(2) At each node, randomly select d features without replacement.

(b) Split the node using the feature that provides the best split according to the objective
function, for instance, using the MSE criterion.

(c) Repeat the steps (a) and (b) k times
(d) The predicted target variable is calculated as the average prediction over all decision trees.

2.4.3. LSTM-RF

In this study, we tried to predict wheat yield with more reliable results through two
processes: extracting the feature of vegetation indices using a two-layer LSTM and predict-
ing wheat yield using the random forest algorithm. Figure 5 presents a brief description
of LSTM-RF used in this paper. A three-layered LSTM-RF neural network model was
developed. Its first two layers have three LSTM cells, respectively. A dense layer was
added to train the LSTM network; once trained, the first two LSTM layers is used to extract
features from input variables (Figure 4), and these features are sent to the random forest
regressor to carry out the prediction.

One of the critical issues is to select appropriate input variables. The idea is to choose
the combination of multispectral variables that are highly correlated with winter wheat
yield. Previous studies have shown that it is better to predict wheat yield by considering
the data of multiple growth stages [1]. This paper selected the multispectral data of
heading, flowering, and grain-filling stages as input variables. In this section, to prove
the effectiveness of the proposed method, we measure the objective performance through
LSTM algorithm in a comparative experiment. To this end, we compare the performance of
wheat yield prediction with LSTM and LSTM-RF.
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Figure 5. Structure of LSTM-RF.

2.5. Model Validation

Considering the small number of samples, a stratified K-fold cross-validation was
used as the model validation technique to generalize an independent and balanced dataset.
In general, in the stratified K-fold cross-validation, the original dataset was divided into
three parts according to the different irrigation treatments as shown in Figure 6, then each
part was partitioned into K sub-datasets. Each time, a single sub-dataset was retained for
validation and the remaining (K − 1) sub-datasets were used for training. This process
repeats K times, and the errors for each time are estimated.

Figure 6. Stratified 5-fold cross-validation at different irrigation.

To avoid over-fitting, a stratified 5-fold cross-validation technique was applied to the
original dataset and the mean squared error (MSE) was the calculated evaluation criterion.
The stratified 5-fold cross-validation was performed repeatedly, and during the training
phase, different values for the training technique’s parameters were used in concert with
different network architectures. Furthermore, the training ended with the best values for the
number of hidden nodes and training parameters. With these done, the network was finally
trained using all the data, with the best number of hidden nodes and training parameters.

2.6. Statistical Analysis

To check the goodness of yield prediction, coefficient of determination (R2), root
mean square error (RMSE) and mean absolute error (MAE) were calculated to evaluate the
performance of prediction models in this study. The formulas for calculating these accuracy
parameters are shown in Equations (7)–(9):

R2 = 1− ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − y)2 (7)

RMSE =

√
1
n ∑n

i=1 (yi − ŷi)
2 (8)

MAE =
1
n∑n

i=1|yi − ŷi| (9)
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where n denotes the number of samples, yi and ŷi denote the actual and the predicted grain
yields of sample i, respectively, and y is the mean of the measured grain yield.

3. Results
3.1. Statistical Description of Grain Yield

The yield was normally distributed for all treatments and the mean value of yield
increased with increasing amount of irrigation (Figure 7).

Figure 7. Yield distribution with different amounts of irrigation.

3.2. Correlations between Vegetative Indices and Yield

Figure 8 shows the correlation analysis of vegetation indices and yield at three growth
stages. At the flowering stage and the grain-filling stage, RVI1 had the highest correlation
with yield, ranging from r = 0.61 to r = 0.67, whereas CWSI showed a very strong negative
correlation with yield (r = 0.67–0.69) at the flowering stage and the grain-filling stage.
Strong correlations were estimated between yield and MTVI2, r = 0.60, 0.57, 0.65 at the
heading stage, flowering stage and grain-filling stages, respectively. There were similar
relationships between yield and OSAVI (r = 0.58, 0.56 and 0.64), NDVI (r = 0.60, 0.56 and
0.63). PPR was strongly correlated with yield at the heading stage, while MCARI and yield
had a strong correlation at the grain-filling stage.

Figure 8. Correlation analysis heat map in the heading stage, flowering stage, and grain-filling
stage, respectively.

Figure 9 shows the correlation between the extracted features of LSTM and yield,
when vegetation indices in heading, flowering and grain-filling stages were sent into LSTM
together (Figure 4), four features were obtained. Feature_11 was extracted from the VIs of
heading stage (Figure 4), and had the minimum correlation with yield (r = 0.49). Feature_12
was extracted from the VIs of flowering stage and feature_11 (Figure 4), and had a higher
correlation with yield than feature_11 (r = 0.66). Feature_13 was extracted from the VIs of
the grain-filling stage and feature_12, and the correlation between it and yield was higher
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than that of feature_12 (r = 0.70). Feature_2 was extracted from feature_11, feature_12 and
feature_13, and had the highest correlation with yield (r = 0.78).

Figure 9. Correlation analysis heat map between the extracted features of LSTM and yield.

3.3. Model Performance Evaluation

Yield prediction was performed based on vegetation indices at the heading, flowering
and grain-filling stages (Table 3). The model was first trained using LSTM neural network
and vegetation indices of three stages, the R2 of the LSTM model in the training phase
and validation phase are 0.60 (RMSE = 901.16 kg/ha, MAE = 738.58 kg/ha) and 0.61
(RMSE = 878.98 kg/ha, MAE = 718.99 kg/ha), respectively. By training the above LSTM
neural network, three primary features and one advance feature were extracted and used
as input features to random forest for yield prediction. Compared with LSTM, the model
performance of LSTM-RF has been significantly improved. In the training phase, the R2,
RMSE and MAE of LSTM-RF model were 0.78, 654.56 kg/ha and 515.94 kg/ha, respectively.
The R2, RMSE and MAE of LSTM-RF model in the model validation phase were 0.78,
684.08 kg/ha and 506.13 kg/ha. Figure 10 shows the relationships between the measured
and predicted yield of the LSTM and LSTM-RF models.

Table 3. Results of the estimation of the yield of winter wheat based on features extracted from
three stages.

Heading + Flowering + Grain Filling

Algorithm
Training Validation

R2 RMSE (kg/ha) MAE (kg/ha) R2 RMSE (kg/ha) MAE (kg/ha)

LSTM 0.60 901.16 738.58 0.61 878.98 718.99

LSTM-RF 0.78 654.56 515.94 0.78 684.08 506.13
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Figure 10. The relationships between the measured and predicted values of wheat yield based on the
LSTM and LSTM-RF models.

4. Discussion

In view of the winter wheat grows for several months, with its yield being affected by
various stages of growth, in this study the LSTM has been used for feature extraction. The
contributions of this study are as follows:

(1) It provides a novel idea for studying crop growth and change. This study makes
it possible to comprehensively consider the effects of different growth stages on
crop yield.

(2) Compared with other data fusion methods, feature extraction of LSTM is more expli-
cable for time-dependent data such as crop growth.

4.1. Correlation between Features and Yield

Multispectral vegetation indices are frequently used to assess crop growth parameters
such as leaf area index, biomass, canopy cover [27–29], and have also shown a strong asso-
ciation with crop yield [30]. In this study, most of the VIs extracted from the multispectral
images had the highest correlation with yield at the grain-filling stage. The grain-filling
period is a critical period for wheat grain formation [31,32], during which dry matter is
transferred from plant organs to the seeds and is closely related to the thousand grain
weight, so the VIs in this stage exhibit a high correlation with yield. The CWSI derived from
canopy temperature information showed desirable yield correlations at both the flowering
and grain-filling stages. Temperature is closely linked to crop transpiration. Temperature
information has also been used to evaluate crop yield.

The VIs of an individual developmental stage responds to limited information on
crop growth. Multispectral indices of multiple growing periods were considered com-
prehensively is of great significance for the management of agricultural production and
can help improve the efficiency of agricultural management. Thus, multi-temporal VIs
were proposed to improve the accuracy of grain yield (GY) prediction, for example, the
accumulated SRIs ∑PRVI (Nir, Red) and ∑(RNir/(RRed + RGreen)) derived from satellite
data from joining grain fill sta-ges predicted GY with high accuracy compared to VIs at
individual growth stages [33]. In this study, we proposed a novel idea for coupling VI
information across multiple growth stages using the deep learning method. A shallow
LSTM was used to extract the features of seven VIs obtained during the three main growth
stages of winter wheat. The extracted features by LSTM (Figure 8) had stronger correlation
with yield than the single-stage VIs. The more the growth stages involved in extracting
the features using LSTM, the higher the correlation between the features and the yield. In
addition, the correlation between advanced features and yield was higher than that of the
primary features, which was decided by the characteristics of the LSTM, which shows that
the feature extraction method is feasible.
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4.2. Yield Estimation Using LSTM-RF

With the increasing use of multiple types of sensors for high-throughput phenotyping
of plant traits, robust statistical techniques are required to provide optimal predictive power.
Machine learning and deep learning algorithms are constantly being used in precision
agriculture and achieving desired yield prediction accuracy [27–29]. This study creatively
combines the respective advantages of LSTM and RF algorithms. Comparing the results
of LSTM and LSTM-RF, it was found that LSTM-RF was better in terms of prediction
accuracy than LSTM. There may be two reasons for this: firstly, due to the presence of
“forget gates”, the earlier the acquisition of vegetation indices, the lower the impact on the
yield. For winter wheat, in addition to the grain-filling stage being closely related to yield,
the heading stage is the key period to determine the seed setting rate, and the irrigation of
flowering stage has a great effect on yield. Therefore, LSTM-RF using both the advanced
feature and all primary features is more advantageous than LSTM alone. Second, the part
of LSTM that performs yield prediction is the dense layer, which is a linear prediction in
effect. Compared with the dense layer, random forest is good at learning complex and
nonlinear relationships, and usually has a higher performance [34,35].

4.3. Deficiencies and Improvements

There is a potential for the method of LSTM-RF to be further improved. VIs for
some of the earlier growth stages can be encompassed by this framework, providing
additional supplementary information, and potentially capturing greater accuracy in yield
prediction. Only two sensors, multispectral and thermal infrared, were used in this study,
and only canopy information was obtained. Future research could consider sensors that
can capture structural characteristics of the crop such as LiDAR to non-intrusively measure
plant height, volume, and biomass information. Coupled with multispectral and thermal
infrared data, this would overcome the disadvantage of saturating the spectra to obtain
higher yield prediction accuracy. It needs to be emphasized that this study only validated
the LSTM-RF framework using remote sensing data from a single environment, and more
comprehensive studies should be performed to validate the performance of this framework
in different environments.

5. Conclusions

In this study, a shallow LSTM-RF neural network was proposed to extract time-series
features from vegetation indices of heading, flowering, and grain-filling stages to predict
the yield of the winter wheat. The proposed two-layer LSTM framework was able to extract
the time-series features of vegetation indices in three different periods, consisting of three
primary features obtained from the first layer and an advanced feature from the second layer.
All extracted features were proved to have better relevance for wheat yield than the original
vegetation indices. An LSTM-RF wheat yield prediction framework was constructed by
feeding the time-series features into a random forest to perform yield prediction, which
was shown to perform better than LSTM in terms of data fitting, prediction accuracy and
robustness. The current system was only validated under water stress conditions in a single
environment. Future studies should be conducted in different environments to verify its
adaptability and stability.

Agriculture is vital to everyone on our planet, since when you eat, farming is involved.
Nowadays, agriculture is undergoing a transformation from traditional agriculture to pre-
cision agriculture, and an increasing number of information technologies, such as big data,
Internet of Things, cloud computing, robotics, and block-chains, are entering the field of
agriculture. In addition, AI technologies have the potential to contribute more in the future.
To achieve practical success in agriculture, Andreas et al. [36] proposed three important AI
frontier research areas: (1) intelligent sensor information fusion, (2) robotics and embodied
intelligence, and (3) augmentation, explanation, and verification technologies for trusted
decision support. Among the three areas, intelligent sensor information fusion is the most
important. In this study, thermal infrared and multispectral imageries were used as the
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sensor information to the AI algorithm-based wheat yield prediction. To obtain better
results with greater accuracy that are more practical, the integration of data from different
sources and the fusion of multimodal information are necessary.
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