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ABSTRACT

Multi-state electronic dynamics at higher excitation energies is needed for the understanding of a
variety of energy rich situations including chemistry under extreme conditions, VUV induced
astrochemistry and attochemistry. It calls for an understanding of three stages, energy acquisition,
dynamical propagation, and disposal. It is typically not possible to identify a basis of uncoupled
quantum states that is sufficient for the three stages. The handicap is the large number of coupled
quantum states that is needed to describe the system. Progress in quantum chemistry provides the
necessary background to the energetics and the coupling. Progress in quantum dynamics takes this
as input for the propagation in time. Right now, it seems that we have come of age with potential
detailed applications. We here report a demonstration to a coupled electron-nuclear quantum
dynamics through a maze of 47 electronic states and with attention to the order that is possible to
impose using propensity rules for the couplings. A close agreement with experimental results for
the VUV photodissociation of 14N, and its isotopomer '“N'°N is achieved. We pay special attention
to the coupling between two dissociative continua and an optically accessible bound domain. The
computations reproduce and interpret the non-monotonic branching between the two exit channels
producing N(?D) and N(?P) atoms, as a function of the excitation energy and its variation with the

mass.



I. INTRODUCTION

The Born-Oppenheimer approximation gives rise to the concept of the electronic energy as the
potential for the nuclear motion. This notion of a potential energy that governs the dynamics of
the nuclei has served us well in the historical progress of chemical kinetics and dynamics. Foremost
perhaps is the idea of the transition state that determines the rate of an activated chemical reaction.!
It was early on recognized? that there can be transitions to other electronic states, particularly so
in photochemistry. Nonadiabatic couplings induced by the motion of the nuclei transfer population
from one energy state to another when the potentials of these states are close in energy.>® These
couplings are taken to be localized and effective in the region of the low potential energy gap. A
very direct experimental demonstration of the confinement of the nonadiabatic transitions to the
region of (avoided) crossing was provided for Nal.” The inspired and physically clear Landau-
Zener approach!® ! works well for alkali halides.'> Wave packet simulations!® offer a truly
quantitative description of the curve crossings in Nal with special reference to the role of the total
energy of the translational motion.’

As we go up in excitation energy molecules unfold a forest of electronic states and these are
coupled firstly by the nonadiabatic correction terms of the Born-Oppenheimer approximation and
then by a host of other couplings, e.g., spin-orbit, mass polarization etc., that are not included in
the usual approximation.'* Symmetry plays a key role in making a hierarchy of the strength of the
couplings. The nonadiabatic terms couple states of the same multiplicity. The weaker spin-orbit
terms allow changes in the multiplicity. Mass polarization breaks the g-u separation, etc. There is
nowadays increasing interest in the dynamics of systems at higher energies of excitations.'> This
is not only because of new methods of pumping energy to molecules such as attosecond lasers'¢-
'8 but also for a variety of practical reasons. These include initial propagation of the shock wave
in explosive materials or photochemistry with VUV photons as is common in the higher
atmosphere where shielding of the UV radiation is much reduced. These circumstances challenge
the conventional theory of reaction dynamics in two essential ways with a third way just around
the corner. Currently, we have the problem that at the higher energy we need high-level quantum
chemistry to determine not only the electronic energy and, in particular, its barriers and local
minima as a function of molecular configuration. We further need the coupling terms that induce
dynamics on a forest of coupled energy states. Once the quantum chemistry input is available, we

need to solve for the dynamics of the nuclei in the forest of electronic excited state that are



accessible in the energy range of interest, see Fig. 1 for the case of detailed interest here that is the

VUV photodissociation of N».
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FIG. 1. Potential energy curves of N> vs. the internuclear distance, R, computed ab-initio at the
CASSCF/MRCI level. Three dissociation channels in the energy range 90,000-120,000 cm™ are
formed by the singlet (solid lines), triplet (dashed lines), and quintet (dotted lines) electronic states.

Shown are all the states of u-symmetry which are coupled by spin-orbit coupling directly to the
optically accessible 12; (shown in red) or to the 3Hu electronic states. Highlighted in blue and

orange color are the two exit channels whose branching is computed in this paper. The energy
scale is set at a zero at the ground vibrational state of '“N». See also Fig 2 and Fig. S1-S2 in the

supplementary material for more detailed view on the potentials.

The subject imminently around the corner are the computational challenges in the problem of
larger molecules and of processes in the condensed phases where the number of nuclear vibrational
modes becomes rate determining in solving for the dynamics. At higher energies the potentials for
the nuclear motions are not harmonic so the vibrational modes are strongly coupled which leads
to even more complex dynamics. It is also possible to envisage important situations where one
should discuss together the coupled electrons and nuclei.!”

There is considerable current experimental progress in both pumping and probing of energy

rich molecules and this acts as a challenge for the theory. Often, if not always, the challenge is



addressed and it also has been that the theory stimulated experimental developments.?® 2! There
are mitigating circumstances that make the demands from the theory easier. The degree of
experimentally available resolution is typically lower for larger systems. Also, the plurality of
degrees of freedom that can act effectively as a heat bath allows statistical ideas to play an
increasing role for larger systems.??

In this paper we illustrate the progress that can be made in the regime of strong coupling in a
small molecule. We consider a forest of electronic states that the nuclei wander through. There is
only one nuclear degree of freedom. Even so, as we shall see, the nuclear dynamics is not simple
due to the sharp dependence of the nonadiabatic couplings on the bond distance, see Fig. 2. There
are also many examples where the dynamics is sensitive to the phase of the nonadiabatic coupling.
As we shall show in detail, this dependence of the phase is rather dramatic, and it puts a need for
special care in the accuracy of the quantum chemistry computations. In conclusion it is not only

the potentials but also their coupling which needs high accuracy.

o

) 120 - \372+
mé 110 2'z]
=
e 139+
113
:i;” 100 u
8
90
T T T T T T 1 T I T T T T 1
20 25 30 35 40 45 50 20 25 30 35 40 45 50
9 20~ D g -
0 4 1153215 10 4 [ 1311, - 2310,
™ 0 11x}- 31z = 0 | |
< \ 48 213t 315% < ' ' 3311, - 4311,
o -10 o -40
-20 = T T T T T ] -80 = T T T T T 1
20 25 30 35 40 45 50 20 25 30 35 40 45 50
R, a.u. R,au.

FIG. 2. Potential energy curves of the three optically accessible singlet 12; states (a) and the

four lowest > IT,, (b) triplet electronic states and their nonadiabatic couplings (¢, d) computed in

the present work.

Our thinking is indirectly influenced by the familiar results for the complementary case of

unimolecular reactions of energy rich polyatomic molecules in their ground electronic states.



Mainly it is that the vibrational modes exchange energy very effectively.?>?* So that primarily it
is the total energy and not a selective preparation that matters and statistical ideas work so very
well to account for the overall rate of dissociation and also for the branching between distinct
chemical products and even for the distribution of kinetic energy in the exit channels. The critical
experiment is comparing the dynamics following excitation to different initial states of very
comparable energies.?* In the present case of photodissociation at a well-defined total energy it is
not obvious how to do this starting from a molecule in its ground electronic state. Following a
VUV photo-selective excitation to a singlet ro-vibrational state, the N> molecule can dissociate
into several different exit channels that differ in the electronic state of the Nitrogen atoms products,
see Fig. 1. The extensive experimental results for the branching between the main exit channels?>
27 are that the branching varies in a non-monotonic fashion as a function of the total energy of the
initial state. The energy resolution of Jackson et al.> is better than the spacing of adjacent
rotational states. They could therefore compare branching following excitation of adjacent lower
rotational states (J =0, 1, 2) with the result that the dependence on the rotational quantum number
J 1s quite limited. The non-monotonic variation of the branching fraction with increasing
vibrational energy of the optically excited state is also observed for the other isotopomer, '“N!°N.27
For a tightly defined initial state it is to be expected that the dynamics, particularly so at early
times, will not be fully statistical. In this paper we compute population of different exit states at
the same total energy by looking at the distribution of product states from a given well defined

initial state.

The initial one photon excitation from the 12; ground state reaches a range of bound singlet

states. These can be of either 1Hu or of 12; symmetry. In this paper we discuss the subsequent

dynamics following excitation of the three bound 12; states. Two of these are often referred to as

Rydberg states and one state is a valence bound state. However, these are suitable labels in a
diabatic-like basis, see e.g., Refs. 28-30. These three states are coupled by strong diabatic terms
that operate already in the Franck-Condon region. The character of an excited vibrational state is
to a substantial but not to an exclusive extent mainly a valence type or Rydberg. Hence the labeling
as either valence or Rydberg is, at best, qualitatively indicative. Consequently we follow, for
example Ref. 28 and label the different singlet vibrational states by their energy. We employ in

the present work the adiabatic representation of the electronic states, stationary states of electronic



Hamiltonian. The three adiabatic states are themselves coupled by strong nonadiabatic terms, so it
is an equivalent representation of the electronic potentials and couplings.

The optically accessible singlet states are bound. Dissociation is enabled by a weak spin-orbit
coupling to triplet states.?> 3! 32 These terms have very definite selection rules as is discussed
below. So, we have a preliminary stage where the bound singlets are mixed by the nonadiabatic
terms followed by a selective transfer to triplet states, and these are strongly coupled among
themselves by nonadiabatic terms and/or dissociate. Such triplet states that do not promptly
dissociate can be coupled to quintet states by weak and selective spin-orbit terms.?3-3¢ The quintet
states can dissociate or be coupled to septet states but there is not enough time for a significant
transfer beyond the quintets.

This sequential exploration of phase space®’ is reminiscent of the bound and dissociative
vibrational states assumed in the Lindemann mechanism of unimolecular reactions®® of highly
excited vibrational states in polyatomic molecules. In the Lindemann mechanism the delay in the
dissociation is due to there being many more bound than dissociative states. When all the
1soenergetic states are equiprobable the likelihood of dissociation is therefore small. Unlike this
mechanism, in electronically excited N> there are far fewer bound singlet states than dissociative
states. The delayed dissociation is due more to the weak and selective spin-orbit coupling of the
manifold of states of different multiplicities.

The paper is organized as follows. In Sec. II we discuss various aspects of the electronic
structure of the nitrogen molecule at the energy range of interest. The details of the quantum
dynamical simulations are given in Sec. I1I. Sec. IV presents the results of the quantum dynamics
with a possible interpretation of the non-monotonic features in the dissociation branching to

different channels.

II. PREAMBLE ON ELECTRONIC STRUCTURE AND COUPLINGS

Photoexcitation from the ground to the optically allowed 12; and 1Hu electronic states in the

nitrogen molecule requires high energy VUV photons, above 12.5 eV. At these energies there is a
large number of molecular electronic states that may contribute to the photodissociation, see Table
1. The potential energy curves for these states are given in Fig. 1 and Fig. S1-S2 in the

supplementary material.



TABLE 1. Molecular electronic states that lead to four lowest dissociation channels in N;

Threshold
in energy, Product atomic states Molecular states
eV
9.75 N(*32)N(*8312) VRO oo
12.13 N30 NCDynsn) | 2258, Ay, WA, 15, €11, %A,
13.33 N(*S32) NGB 3) B'3%,C 3, 108, 271,
2 : a' 'z, o', w'a, 110,
14.53 N("D3/2,52)tN("D3/25/2) ; ; ;
31,431, o,

In the present work we examine dynamics during the energy-resolved optical excitation of the
ground state nitrogen molecule in the energy range 13.4-14.4 eV that is above the threshold energy
for the three lowest dissociation channels. For this narrow energy range, experimental
measurements of the photodissociation branching to different exit channels show very non-
monotonic energy dependence.?>?” As the photodissociation involves many electronic states it
requires dynamical computations for a clear interpretation of the observed switching in the

predissociation pathways with increase in the excitation energy. Table 1 lists those electronic states

that can be coupled directly to the optically active singlet 12; states and states that are interacting

with them.

Below 14.5 eV the optically active singlet states are all bound, so the photodissociation is
determined fully by nonadiabatic and spin-orbit couplings in the singlet, triplet and quintet
manifold of electronic states.>3-3¢ On the way to dissociation the nonadiabatic coupling enables
effective transfer between the states of the same symmetry and multiplicity, while spin-orbit
coupling governs population transfer between the states of different multiplicities. The strong
interstate electronic correlation in N> causes variation in the character of the electronic states as
the interatomic separation is increased, see Figs. S3-S5 in the supplementary material. This makes
the coupling terms vary rapidly with the changes in the bond length, see examples in Figs. S2 and
Figs. S6-S15 in the supplementary material.



Spectroscopic signatures of the nonadiabatic and spin-orbit coupling for singlet and triplet
electronic states in N attracted a lot of attention both from experimental?® 34 and theoretical
groups.?® 31, 34-36.45-47 Trreoylar vibronic progressions in the absorption bands were attributed to the

28-30, 48 Increase in the

strong nonadiabatic interaction between the optically active singlet states.
width of the absorption lineshapes indicates shorter lifetime of the particular vibronic levels due
to predissociation through the spin-orbit coupling to the triplet states.*” 4% 3 Advanced
spectroscopic techniques allowed experimental characterization of the lowest vibrational levels of

the valence and Rydberg triplet states.?® 3!->* These experimental and theoretical works suggested

not only strong nonadiabatic interaction between the C and C' lowest triplet 3Hu states at about

12.2 eV, but also spin-orbit interaction between the C triplet state with the lowest 15 I1,, quintet

state around 11.6 V.2 35 33-57 Recent high-level ab initio computations 33 36 43

provided more
complete data on the potentials and spin-orbit couplings for the singlet, triplet and quintet states
of different symmetry.

The aim of the present work is to employ a fully ab initio quantum dynamical approach to

study predissociation dynamics followed upon the one-photon energy resolved optical excitation

of the optically active 12;‘ singlet states in the 13.4-14.4 eV energy range. This is the range for

which detailed experiments are available for the branching between the different exit channels.?>-
27 A full set of accurate electronic structure data (potentials, dipoles, couplings) are essential
information to perform the quantum dynamics. Unfortunately, there are no previous studies which
report all needed ingredients for the dynamics in the energy region of 13.5-14.5 eV computed at
the same level of theory and this fact motivated us to carry out a massive electronic structure
investigation. Our computations include all the possible electronic states that can be involved in
the dynamics. Accounting only for those states that can be populated, the basis comprises in total
47 electronic states including the ground state.

Due to spatial symmetry selection rules, we do not consider the family of ‘gerade’ states as
they cannot be coupled by nonadiabatic or spin-orbit interaction to the ‘ungerade’ states that are
optically excited. High symmetry of N> imposes selection rules on the spin-orbit coupling
integrals, which are summarized in Fig. 3, and discussed in more details in Sec. S1.2 in the
supplementary material. There are three Cartesian components of the spin-orbit coupling integrals,

along X, Y and Z axes in the molecular frame (the molecule is aligned along the Z axis). In terms



of D2, symmetry, LSZ components correspond to Bje spatial symmetry of the product between the

two coupled states, while LSX/LSY correspond to B2./B3; symmetry of the product. For LSZ

coupling the two interacting states should have the same magnetic quantum number, Am =0,

while for LSX/LSY coupling Amg ==+1.

During the dynamics, the symmetry selection rules induce a lifting of the degeneracy between

different magnetic quantum numbers.>® For example, IZZ singlet states are coupled by LSX/LSY

spin-orbit interaction to the 3 IT,, states. For this type of coupling the selection rule is Am = £1,

hence only m_ =+1 of the triplet states can be populated. Analogous results are shown for other
y myg p

examples in Fig. 4. In addition, the spin-orbit coupling integrals that involve the quintet states have

different absolute value for the my =0,%1 and +2 states of the quintet, see detailed discussion and

examples in Sec. S1.2 in the supplementary material.

We use high level ab initio quantum chemistry to compute potentials, nonadiabatic and spin-
orbit coupling terms and electronic transition dipoles between all the states considered. In all the
computations complete active space self-consistent field approach (CAS SCF)**-®! followed by

internally contracted multi-reference configuration interaction (MRCI) method®* 3 is applied

within D,, symmetry as implemented in MOLPRO program package.®* An active space of 17

orbitals (46, 36, 4my, 4mg, and 29;) for 10 valence electrons is optimized following the step-wise
procedure suggested by Spelsberg and Meyer?® to achieve good accuracy for the optically active
states. In particular, at the final step of the MRCI computations the higher-lying Rydberg orbitals
are restricted to be only singly-occupied. We employ d-aug-cc-pVQZ basis set®> % for nitrogen
atoms with additional bond-centered (s, p) diffuse functions®’ to describe accurately singlet and

triplet Rydberg electronic states. Electronic states of B»./B3, symmetry are equivalently treated.
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FIG. 3. Components of the spin-orbit coupling in the basis states, taking account of the role of

magnetic, mg, quantum number. LSX/Y and LSZ are the Cartesian components of the spin-orbit

coupling in the molecular frame. Spin and spatial symmetry selection rules for the spin-orbit
coupling integrals are summarized in the top right corner. More details are given in Sec. S1.2 in

the supplementary material.

To achieve convergence at a reasonable computational cost, potentials, transition dipoles, and
nonadiabatic couplings are computed separately for the states of different symmetry and
multiplicity. The nonadiabatic couplings are calculated using the finite difference approach for
MRCI wave functions as implemented in the DDR program of MOLPRO.® The step for the finite
difference computation was optimized to get a convergence in the values of NAC, see Table S1 in
the supplementary material. The state-averaging procedure in CASSCF is used within each
symmetry group, accounting for different number of electronic states, see Table S2 in the
supplementary material. In the calculations of the spin-orbit coupling terms the averaging over
the coupled states is employed. Spin-orbit coupling integrals are evaluated for the MRCI wave

functions with the Breit-Pauli spin-orbit operator as implemented in MOLPRO.®

The comparison for the singlet 1z; and triplet 3Hu electronic states composition with

available data from Refs. 28, 34 is given in Figs. S3-S5 in the supplementary material. Accuracy

10



of the resulted potentials and couplings of the optically accessible singlet 12; states 1s discussed

in details in Sec. S2 in the supplementary material. We compare calculated potentials, nonadiabatic
couplings and transition dipole moments to the recommended diabatic set from Ref. 28, see Fig.
S16. As the position of the vibrational bands is crucial in the present study, we shift all the
potentials up by 850 cm! to achieve good agreement for the distribution of the vibronic transition
dipoles, Fig. S17, and vibronic eigenstates, see Figs. S18-S33 in Sec. S2 in the supplementary
material.

Diabatic basis of electronic states was previously used at lower excitation energies.”®’! In the
present work the nonadiabatic quantum dynamics is used throughout because we deal with a higher
energy region. It is technically challenging to define the diabatic potentials when more than two

electronic states are coupled in the same region of internuclear distances. This is true especially

for Rydberg 3 IT,, electronic states of Ny at the short distances, see Fig. 2. In order to avoid any

possible modification of the results of ab initio quantum chemical computations, we do not
diabatize but we follow the quantum electron-nuclear dynamics in the adiabatic representation for

the electronic basis.

II1. DETAILS ON THE QUANTUM DYNAMICAL COMPUTATIONS

The multi-electronic state wave function defined on the grid of internuclear coordinate, R, is
propagated according to the time-dependent Schrodinger equation of motion in the basis of 47
adiabatic electronic states in the D2, representation. Degenerate electronic states with different
magnetic quantum number are treated separately. The equation of motion for the amplitudes

an =¥, ( Rj) at a given electronic state »n and grid point j: R = Rj is given as follows:

dcC, C. .+ S 7 / +
. d v —iV R

q=1
N, 2
_Z Z Pq ((Tnk(Rj)+Tnk(Rj—q))Ck,j—q _(Tnk(Rj)+T”k(Rj+q))Ck’j+q) M
k=1g=1

e

—Z[E(r)unk<R,-)+ﬁz,m(&-)-rz;c(R,-)—H,fE(R,-)qu
k=1

11



Here 79 and T;ﬁ are diagonal and off-diagonal kinetic energy terms, respectively, evaluated

within the five-point finite difference approximation, see more details in Sec. S2 in the

supplementary material and in Ref. 72. I (R) denotes potential energy of an electronic state n. At

large internuclear distances, R >6.2 au., a complex absorbing potential,

Voyup(R)=0.01-(R —6.2)3, is applied for all the dissociative states. The nonadiabatic couplings
7,k (R) between electronic states n and k are scaled by the momentum terms, p_ 36737 We use

five-point finite difference method’ to compute the first- and second-order derivatives for the

functions defined on the grid. Spin-orbit coupling terms - ’ka are detailed in Secs. 1.2-1.3 in the

supplementary material. The propagation of the equation (1) is solved via the Runge-Kutta
method”® with a time step of Az =10"* fs and AR= 0.005 a.u. for the grid spacing. This small grid
spacing is needed to account for the fast changing nonadiabatic coupling, see Fig. S34 in the
supplementary material. The norm of the time-dependent wave function is conserved up to 10!
for all the computations during 10 ps of the dynamics, see Fig. S35 in the supplementary material.
The amount of population absorbed at long distances accumulated during 10 ps is used to define

the relative branching ratio into the two channels.

The interaction with the light field is governed by the transition dipole moment g, (R)

between the ground and excited singlet electronic states. Explicit time-profile for the VUV light
field is used:

E(t)=¢,-E,,, -exp (—(t —t,)’ /20, )[cos(a)pt) —( £ Jsin(a)pt)] (2)
o

2
p O-P

Here £, is the polarization direction of the light field, set along the internuclear axis so as to access

the 12; states; E

max 18 the maximum amplitude of the field; ¢ » and o, are the time at which

the pulse is centered and the width of the Gaussian envelope of the field. The duration of the pulse

is set to be long enough to selectively excite specific vibrational levels of the singlet states, o, =
160 fs and ¢ » =1200 fs. The carrier frequency @, is variable. It is tuned to match the energy of

the vibrational level of interest amongst the singlet states, see Table S5 in the supplementary

12



material. Table S5 also provides comparison of these energies to available experimental data for
both isotopomers.

The lifetimes of the excited vibrational singlet states are estimated by a linear fit for the

logarithm of their time-dependent population, , assuming a unimolecular exponential

an (t)

decay.

IV. RESULTS AND DISCUSSION
We report on the branching into the N(4S3 P )+N(2D 7) and N(4S3 P )+N(2P 1) exit channels at a

range of total energies where the experimentally observed branching fractions do not vary in a
monotonic fashion. To compare with the experimental results, we prepare a well-defined in energy

initial state built by a long-time pulse applied to the ground state. The pulse has a narrow enough
width that it accesses practically a single vibrational state of the singlet 12; manifold.

Despite the forest of coupled states on the route out to dissociation there is a very marked
dependence on the detailed features of the coupling terms. We illustrate this by the considerable
sensitivity of the dissociation pathway to the sign of the nonadiabatic coupling. The sign is not
easily defined because, in the Born-Oppenheimer approximation, the electronic wave function at
R and at R+ SR are computed independently. This is easy to correct in a diagonal overlap, but
the nonadiabatic coupling overlaps a wave function of one state by the derivative of a wave
function of a different state. Fig. 4 shows the noticeable variation in the branching ratios with the
signs of the last coupling terms before the final exit. The different couplings are seen to change

the results in different ranges of the total energies. The sign of the coupling of the lowest triplet
& I1,, to the 23 I1,,, coupling region 1 in Fig. 4(a), clearly controls the opening/closing of the exit
to the N(4S3 P )+N(2DJ) channel, compare Test [ and II in Fig. 4(c) at an energy of about 111,500

cm’!. The sign of 231‘[u _331‘[u coupling region 3 also controls the exit to the N(‘ls3 P )+N(2DJ)

channel but at the higher energy of about 116,000 cm™!, compare Test I-II to Test III. Not shown

is the role of the change in sign in region 2 that governs the exit to the higher energy,

N(2DJ )+N(2DJ) channel.

13
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FIG. 4. Computational experiment with various combinations for the sign of the nonadiabatic
couplings between the triplets on the exits: (a) potential energy curves of the 31, states and (b) the
nonadiabatic couplings between them. (c) Branching fractions in N(*S3»)+N(?D;) channel

experimentally observed (dashed line) and computed (solid line). The selected couplings are

indicated in panel (a) with numbers 1 (13 I, - 23 I1,, coupling, blue shading around R =2.6 a.u.),

2 (331]” _431‘[“ coupling, orange shading around R = 3.5 a.u.), and 3 (231‘[u _331‘[u coupling,
green shading around R = 3.8 a.u.). The corresponding signs are shown as inserts in (c) for tests I-

III. The fast variation of the coupling terms in R is shown in panel (b).

A role of the shorter range couplings is shown in Fig. 5 and Figs. S36-S37 in the supplementary
material. These are due to two Rydberg states avoiding each other and a valence state. In particular,
the nonadiabatic couplings at short range modify the major shortcoming of the coupling signs
chosen for test III, Fig. 4. The set shown as test IV account better for the energy range at about

110,144 cm™ and is the final set adopted in all subsequent computations.
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FIG. 5. Computational experiment with various combinations for the sign of the nonadiabatic
couplings between the triplets in the region of short internuclear distance, R < 3 a.u. The signs of
the nonadiabatic couplings on the exits, shaded regions 1-3 in Fig. 4, are here fixed to those from
the test I11. (a) Potential energy curves of the *I1, states and (b) the nonadiabatic couplings between
them. (c) Branching fractions in N(*S32)+N(°D;) channel experimentally observed (dashed line)

and computed (solid line). The selected couplings are indicated in panel (a) with numbers 4 and 6
(231‘[u _33 I1,, coupling, orange shadings), 5 and 7 (3311” _431‘[u coupling, green shading). The

corresponding signs are shown as inserts in panel (c) for tests Il and IV. The final results are those

obtained for test IV.

There is a useful way to think about the role of the sign of the nonadiabatic coupling coefficient

7. We follow the pioneering paper of Felix Smith? to conclude that the ‘momentum’ term that

appears in the kinetic energy of the Hamiltonian of a multi-electronic state is (p + 7)2 . So, a change

in the sign of 7 while keeping the sign of the ordinary momentum the same has an equivalent
dynamical effect as changing the sign of the ordinary momentum while keeping the sign of 7
unchanged.

There are 128 possible variations of the sign of the coupling. Not all of them are important.
Additional details are given in Figs. S36-S37 in the supplementary material. In particular Fig. S37

of the supplementary material shows the major changes in the dissociation lifetimes. For the
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realistic choice of signs, we will discuss the lifetimes after the discussion of the primary
experimental observables — the branching ratios.

The representation of the experimental branching ratios and our computed ones, their
sensitivity to the variation of excitation energy and of mass is given in Fig. 6. Fig. 1 shows that
each channel is fed by several potential energy curves. Our computations reproduce the
experimental results that the branching between the two major channels is not uniform.
Furthermore, our computations allow assigning the contribution of the exit quantum states to the
dissociation in each channel. In detail these exit quantum states are individually degenerate at large
interatomic distance and our results determine the contribution of each individual degenerate state
to the total. The results of the quantum dynamics for the two isotopomers are given in Figs. S38-
S53 in the supplementary material.

The different exit states of a given channel are degenerate at long distances, but their
asymptotic contribution is not equal. In general, the triplet 3Hu states are the major outlets for
dissociation. An exception is around the excitation energy 110,144 cm™!' where there are significant
contributions of 32; and SHu states. On the other hand, due to the symmetry of the spin-orbit
coupling, see the discussion in Sec. S1.2 of the supplementary material, for example the
mg =+/—1 and X/Y space degenerate components of each triplet 31‘[u exit state have the same

computed probability.
The non-monotonic dependence of the branching between the two main channels on the
excitation energy is remarkably different for the two isotopomers. The computational results for

the isotopomer "“N'>N reproduce the trend but are deviant from the experiment at few points. A
possible reason as suggested by Fig. 5 is the branching is very sensitive to the 331‘[u _431‘[u

coupling at the region 5.
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FIG. 6. Isotope effect in branching fractions into N(*S32)+N(?Dy) (blue) and N(*S3,2)+N(*Py)
(orange) channels: calculated, bars, and experimental fractions, dots, for '*N; (a, ¢) and “N'5N (b,
d) isotopomers. Detailed results for each excitation energy are given in Figs. S38-S53 in the

supplementary material.

To interpret the non-monotonic energy disposal Fig. 7 shows the correlation between regions
of the potential energy curves and the branching fraction into the lower channel. While the energy
scale is above the threshold of both channels one sees an effective opening and closing of this
channel. The first dominant feature is the closing of the N(*S32)+N(’D;) channel at around
110,144 cm™', marked (c) in Fig. 7(b). The respective singlet and triplet state populations computed
at 10 ps are given in Fig. 7(c). It is attributed to the trapping of the singlet state because of a lack
of resonance with the Rydberg triplet, see Fig. S54 in the supplementary material. It is also
reflected in the long dissociation lifetime of the singlet state, see Fig. S55 in the supplementary
material. The slow dissociation is supported by the weak photofragment signal observed** 777 for
low excited rotational states at this energy. The unusually low dissociation exit through the triplet
allows the not negligible contribution from the quintet state due to the overlap of the quintet with
the outer turning point of the triplet at 3.5 a.u., see Fig. 7(c). The error in the computed branching
fraction at this energy, Fig. 6, is high because it is a ratio of two small numbers. The corresponding

dissociation lifetime is long as given in Fig. S55 of the supplementary material.
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The next region of not monotonic behavior, showing a major opening of the N(4S3 N )+N(2D 7)
, lower, channel is due to the barrier in the exit to the N(4S3 N )+N(2P 1) channel. Above the barrier

the exit to the N(4S3 /2)+N(2D ;) channel decreases due to the effective exit along the repulsive

potential with a peak at point (d) of Fig. 7(b) at an energy of 113,551 cm™'. This is clearly seen in
the population distribution in the triplet manifold, Fig. 7(d) and also Figs. S46-48 in the

supplementary material. This repulsion also results in a fast dissociation.
Within about a 1,000 cm’!, a second opening of the N(4S3 P )+N(2D 7) channel is indicated as
point (e) in Fig. 7(b). The population distribution as a function of internuclear distance is given in

Fig. 7(e). It is actually a blocking of the N(4S3 P )+N(2P ) channel due to trapping in the shallow
well of the potential of the 33 I1,, state. Beyond point (e) the channel closes again as the wave
packet can cross the inner barrier in the 33 I1,, potential. Through the mediation of the 43 I1,, state,

Fig. 5(a), there is crossing to the third and then second 31‘[u state and prompt exit to the

N(4S3 ” )+N(2P 1) channel.
The blocking and opening of the exit channels are energy dependent in a clear manner for 4N,

and less so for "“N'N as seen in Fig. 6. Fig. S56 of the supplementary material seeks to correlate
the mass dependence with the location of the trapping well in the 33 I1,, and other features of the

potentials as due to the shift in vibrational frequencies with the mass.
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FIG. 7. (a) Potential energy curves of the singlet and triplet electronic states in the energy range
of the considered branching ratio into N(*S32)+N(*D;) channel shown in panel (b) for N,
1sotopomer computational (solid blue line) and experimental (dashed blue line). The two orange
arrows (c¢) and (d) indicate the energy where the molecule primarily dissociate in higher exit
channel and the blue arrow (e) points out the dissociation to the lower channel at a high excitation
energy. The bottom panels demonstrate the population redistribution for the singlet and triplet
states at the pointed energies (c) - (e) corresponding to the arrows in panel (b). Panel (c) exhibits
an example of a trapped singlet state which slowly dissociates in the higher channel. Panel (d)
shows the dissociation in the higher channel when the repulsive triplet state is reached. Panel (e)

illustrates a trapped triplet state which dissociates into the lower channel.

V. CONCLUSIONS
A basis of 47 electronic states of singlet, triplet and quintet multiplicities is employed to provide

an ab initio quantal dynamical picture of the VUV dissociation of N». The first states to be excited
are the singlets 12; that are optically accessed from the ground state. These three excited states

are bound in the energy region of interest. These adiabatic states are coupled amongst themselves

by strong nonadiabatic coupling. Spin-orbit interaction to the triplet manifold opens the bound
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phase space to dissociation via two exit channels in the energy range of interest. A key dynamical
observation is the branching between these two channels. It is sensitive to both the energy and the
mass and varies in a non-monotonic fashion. We report good agreement between the experimental
results for both isotopomers, N, and '*N'SN and our computations. The close agreement requires
attention to the sign of the nonadiabatic coupling 7 in the triplet manifold. Our results provide the

branching into particular electronic states that make each exit channel and also between the spatial

and the magnetic sublevels of each electronic state. Of the 47 it is mostly 20 states, 16 31‘[“ triplets,
that extensively contribute to the dynamics. At one energy, 110,144 cm™, a quintet SHu and a

different, 32;, triplet make a dominant contribution because at this energy the singlet to triplet

transfer is very slow. We compute the dissociation lifetimes for each state of each isotopomer and
the long dissociation lifetime at 110,144 cm™! is consistent with experiments. Throughout we relate
the non-monotonic features in the dynamics to the topography of the many coupled potential

energy curves, particularly of the triplet states.

SUPPLEMENTARY MATERIAL
Detailed results of the quantum chemical calculations together with the discussion regarding the

spin-orbit coupling terms for degenerate states are provided in Sec. S1 of the supplementary
material. Benchmarking for the computed 12; singlet state potentials and couplings is given in

Sec. S2. The results of the quantum dynamical computations, population distribution as a function
of internuclear distances for both isotopomers, lifetimes, etc. are shown in Sec. S3 of the

supplementary material.
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