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ABSTRACT 
 

Multi-state electronic dynamics at higher excitation energies is needed for the understanding of a 

variety of energy rich situations including chemistry under extreme conditions, VUV induced 

astrochemistry and attochemistry. It calls for an understanding of three stages, energy acquisition, 

dynamical propagation, and disposal. It is typically not possible to identify a basis of uncoupled 

quantum states that is sufficient for the three stages. The handicap is the large number of coupled 

quantum states that is needed to describe the system. Progress in quantum chemistry provides the 

necessary background to the energetics and the coupling. Progress in quantum dynamics takes this 

as input for the propagation in time. Right now, it seems that we have come of age with potential 

detailed applications. We here report a demonstration to a coupled electron-nuclear quantum 

dynamics through a maze of 47 electronic states and with attention to the order that is possible to 

impose using propensity rules for the couplings. A close agreement with experimental results for 

the VUV photodissociation of 14N2 and its isotopomer 14N15N is achieved. We pay special attention 

to the coupling between two dissociative continua and an optically accessible bound domain. The 

computations reproduce and interpret the non-monotonic branching between the two exit channels 

producing N(2D) and N(2P) atoms, as a function of the excitation energy and its variation with the 

mass. 
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I. INTRODUCTION 

The Born-Oppenheimer approximation gives rise to the concept of the electronic energy as the 

potential for the nuclear motion. This notion of a potential energy that governs the dynamics of 

the nuclei has served us well in the historical progress of chemical kinetics and dynamics. Foremost 

perhaps is the idea of the transition state that determines the rate of an activated chemical reaction.1 

It was early on recognized2 that there can be transitions to other electronic states, particularly so 

in photochemistry. Nonadiabatic couplings induced by the motion of the nuclei transfer population 

from one energy state to another when the potentials of these states are close in energy.3-8 These 

couplings are taken to be localized and effective in the region of the low potential energy gap.  A 

very direct experimental demonstration of the confinement of the nonadiabatic transitions to the 

region of (avoided) crossing was provided for NaI.9 The inspired and physically clear Landau-

Zener approach10, 11 works well for alkali halides.12 Wave packet simulations13 offer a truly 

quantitative description of the curve crossings in NaI with special reference to the role of the total 

energy of the translational motion.9  

As we go up in excitation energy molecules unfold a forest of electronic states and these are 

coupled firstly by the nonadiabatic correction terms of the Born-Oppenheimer approximation and 

then by a host of other couplings, e.g., spin-orbit, mass polarization etc., that are not included in 

the usual approximation.14 Symmetry plays a key role in making a hierarchy of the strength of the 

couplings. The nonadiabatic terms couple states of the same multiplicity. The weaker spin-orbit 

terms allow changes in the multiplicity. Mass polarization breaks the g-u separation, etc. There is 

nowadays increasing interest in the dynamics of systems at higher energies of excitations.15 This 

is not only because of new methods of pumping energy to molecules such as attosecond lasers16-

18 but also for a variety of practical reasons. These include initial propagation of the shock wave 

in explosive materials or photochemistry with VUV photons as is common in the higher 

atmosphere where shielding of the UV radiation is much reduced. These circumstances challenge 

the conventional theory of reaction dynamics in two essential ways with a third way just around 

the corner. Currently, we have the problem that at the higher energy we need high-level quantum 

chemistry to determine not only the electronic energy and, in particular, its barriers and local 

minima as a function of molecular configuration. We further need the coupling terms that induce 

dynamics on a forest of coupled energy states. Once the quantum chemistry input is available, we 

need to solve for the dynamics of the nuclei in the forest of electronic excited state that are 
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accessible in the energy range of interest, see Fig. 1 for the case of detailed interest here that is the 

VUV photodissociation of N2.  

 
FIG. 1. Potential energy curves of N2 vs. the internuclear distance, R, computed ab-initio at the 

CASSCF/MRCI level. Three dissociation channels in the energy range 90,000-120,000 cm-1 are 

formed by the singlet (solid lines), triplet (dashed lines), and quintet (dotted lines) electronic states. 

Shown are all the states of u-symmetry which are coupled by spin-orbit coupling directly to the 

optically accessible  (shown in red) or to the  electronic states. Highlighted in blue and 

orange color are the two exit channels whose branching is computed in this paper. The energy 

scale is set at a zero at the ground vibrational state of 14N2. See also Fig 2 and Fig. S1-S2 in the 

supplementary material for more detailed view on the potentials.  

 

The subject imminently around the corner are the computational challenges in the problem of 

larger molecules and of processes in the condensed phases where the number of nuclear vibrational 

modes becomes rate determining in solving for the dynamics. At higher energies the potentials for 

the nuclear motions are not harmonic so the vibrational modes are strongly coupled which leads 

to even more complex dynamics. It is also possible to envisage important situations where one 

should discuss together the coupled electrons and nuclei.19 

There is considerable current experimental progress in both pumping and probing of energy 

rich molecules and this acts as a challenge for the theory. Often, if not always, the challenge is 

1
u
+S 3

uP



 4 

addressed and it also has been that the theory stimulated experimental developments.20, 21 There 

are mitigating circumstances that make the demands from the theory easier. The degree of 

experimentally available resolution is typically lower for larger systems. Also, the plurality of 

degrees of freedom that can act effectively as a heat bath allows statistical ideas to play an 

increasing role for larger systems.22  

In this paper we illustrate the progress that can be made in the regime of strong coupling in a 

small molecule. We consider a forest of electronic states that the nuclei wander through. There is 

only one nuclear degree of freedom. Even so, as we shall see, the nuclear dynamics is not simple 

due to the sharp dependence of the nonadiabatic couplings on the bond distance, see Fig. 2. There 

are also many examples where the dynamics is sensitive to the phase of the nonadiabatic coupling. 

As we shall show in detail, this dependence of the phase is rather dramatic, and it puts a need for 

special care in the accuracy of the quantum chemistry computations. In conclusion it is not only 

the potentials but also their coupling which needs high accuracy. 

 

FIG. 2. Potential energy curves of the three optically accessible singlet   states (a) and the 

four lowest (b)  triplet electronic states and their nonadiabatic couplings (c, d) computed in 

the present work. 

 

Our thinking is indirectly influenced by the familiar results for the complementary case of 

unimolecular reactions of energy rich polyatomic molecules in their ground electronic states. 
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Mainly it is that the vibrational modes exchange energy very effectively.23, 24 So that primarily it 

is the total energy and not a selective preparation that matters and statistical ideas work so very 

well to account for the overall rate of dissociation and also for the branching between distinct 

chemical products and even for the distribution of kinetic energy in the exit channels. The critical 

experiment is comparing the dynamics following excitation to different initial states of very 

comparable energies.24 In the present case of photodissociation at a well-defined total energy it is 

not obvious how to do this starting from a molecule in its ground electronic state. Following a 

VUV photo-selective excitation to a singlet ro-vibrational state, the N2 molecule can dissociate 

into several different exit channels that differ in the electronic state of the Nitrogen atoms products, 

see Fig. 1. The extensive experimental results for the branching between the main exit channels25-

27 are that the branching varies in a non-monotonic fashion as a function of the total energy of the 

initial state.  The energy resolution of Jackson et al.25 is better than the spacing of adjacent 

rotational states. They could therefore compare branching following excitation of adjacent lower 

rotational states (J = 0, 1, 2) with the result that the dependence on the rotational quantum number 

J is quite limited. The non-monotonic variation of the branching fraction with increasing 

vibrational energy of the optically excited state is also observed for the other isotopomer, 14N15N.27 

For a tightly defined initial state it is to be expected that the dynamics, particularly so at early 

times, will not be fully statistical. In this paper we compute population of different exit states at 

the same total energy by looking at the distribution of product states from a given well defined 

initial state.  

The initial one photon excitation from the  ground state reaches a range of bound singlet 

states. These can be of either  or of  symmetry. In this paper we discuss the subsequent 

dynamics following excitation of the three bound  states. Two of these are often referred to as 

Rydberg states and one state is a valence bound state. However, these are suitable labels in a 

diabatic-like basis, see e.g., Refs. 28-30. These three states are coupled by strong diabatic terms 

that operate already in the Franck-Condon region. The character of an excited vibrational state is 

to a substantial but not to an exclusive extent mainly a valence type or Rydberg. Hence the labeling 

as either valence or Rydberg is, at best, qualitatively indicative. Consequently we follow, for 

example Ref. 28 and label the different singlet vibrational states by their energy. We employ in 

the present work the adiabatic representation of the electronic states, stationary states of electronic 
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Hamiltonian. The three adiabatic states are themselves coupled by strong nonadiabatic terms, so it 

is an equivalent representation of the electronic potentials and couplings.  

The optically accessible singlet states are bound. Dissociation is enabled by a weak spin-orbit 

coupling to triplet states.25, 31, 32 These terms have very definite selection rules as is discussed 

below. So, we have a preliminary stage where the bound singlets are mixed by the nonadiabatic 

terms followed by a selective transfer to triplet states, and these are strongly coupled among 

themselves by nonadiabatic terms and/or dissociate. Such triplet states that do not promptly 

dissociate can be coupled to quintet states by weak and selective spin-orbit terms.33-36 The quintet 

states can dissociate or be coupled to septet states but there is not enough time for a significant 

transfer beyond the quintets. 

This sequential exploration of phase space37 is reminiscent of the bound and dissociative 

vibrational states assumed in the Lindemann mechanism of unimolecular reactions38 of highly 

excited vibrational states in polyatomic molecules. In the Lindemann mechanism the delay in the 

dissociation is due to there being many more bound than dissociative states. When all the 

isoenergetic states are equiprobable the likelihood of dissociation is therefore small. Unlike this 

mechanism, in electronically excited N2 there are far fewer bound singlet states than dissociative 

states. The delayed dissociation is due more to the weak and selective spin-orbit coupling of the 

manifold of states of different multiplicities. 

The paper is organized as follows. In Sec. II we discuss various aspects of the electronic 

structure of the nitrogen molecule at the energy range of interest. The details of the quantum 

dynamical simulations are given in Sec. III. Sec. IV presents the results of the quantum dynamics 

with a possible interpretation of the non-monotonic features in the dissociation branching to 

different channels.      

 

II. PREAMBLE ON ELECTRONIC STRUCTURE AND COUPLINGS 

Photoexcitation from the ground to the optically allowed  and  electronic states in the 

nitrogen molecule requires high energy VUV photons, above 12.5 eV. At these energies there is a 

large number of molecular electronic states that may contribute to the photodissociation, see Table 

1. The potential energy curves for these states are given in Fig. 1 and Fig. S1-S2 in the 

supplementary material.   
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TABLE 1. Molecular electronic states that lead to four lowest dissociation channels in N2 

Threshold 
in energy, 

eV 
Product atomic states Molecular states 

9.75  ,  

12.13  , , , , ,  

13.33  , , ,  

14.53  
, , , , 

, ,  

 

In the present work we examine dynamics during the energy-resolved optical excitation of the 

ground state nitrogen molecule in the energy range 13.4-14.4 eV that is above the threshold energy 

for the three lowest dissociation channels. For this narrow energy range, experimental 

measurements of the photodissociation branching to different exit channels show very non-

monotonic energy dependence.25-27 As the photodissociation involves many electronic states it 

requires dynamical computations for a clear interpretation of the observed switching in the 

predissociation pathways with increase in the excitation energy. Table 1 lists those electronic states 

that can be coupled directly to the optically active singlet  states and states that are interacting 

with them. 

Below 14.5 eV the optically active singlet states are all bound, so the photodissociation is 

determined fully by nonadiabatic and spin-orbit couplings in the singlet, triplet and quintet 

manifold of electronic states.33-36 On the way to dissociation the nonadiabatic coupling enables 

effective transfer between the states of the same symmetry and multiplicity, while spin-orbit 

coupling governs population transfer between the states of different multiplicities. The strong 

interstate electronic correlation in N2 causes variation in the character of the electronic states as 

the interatomic separation is increased, see Figs. S3-S5 in the supplementary material. This makes 

the coupling terms vary rapidly with the changes in the bond length, see examples in Figs. S2 and 

Figs. S6-S15 in the supplementary material. 
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Spectroscopic signatures of the nonadiabatic and spin-orbit coupling for singlet and triplet 

electronic states in N2 attracted a lot of attention both from experimental29, 39-44 and theoretical 

groups.28, 31, 34-36, 45-47 Irregular vibronic progressions in the absorption bands were attributed to the 

strong nonadiabatic interaction between the optically active singlet states.28-30, 48 Increase in the 

width of the absorption lineshapes indicates shorter lifetime of the particular vibronic levels due 

to predissociation through the spin-orbit coupling to the triplet states.40, 49, 50 Advanced 

spectroscopic techniques allowed experimental characterization of the lowest vibrational levels of 

the valence and Rydberg triplet states.29, 51-54 These experimental and theoretical works suggested 

not only strong nonadiabatic interaction between the C and Cʹ lowest triplet  states at about 

12.2 eV, but also spin-orbit interaction between the C triplet state with the lowest  quintet 

state around 11.6 eV.29, 35, 55-57 Recent high-level ab initio computations 35, 36, 45 provided more 

complete data on the potentials and spin-orbit couplings for the singlet, triplet and quintet states 

of different symmetry. 

The aim of the present work is to employ a fully ab initio quantum dynamical approach to 

study predissociation dynamics followed upon the one-photon energy resolved optical excitation 

of the optically active  singlet states in the 13.4-14.4 eV energy range. This is the range for 

which detailed experiments are available for the branching between the different exit channels.25-

27 A full set of accurate electronic structure data (potentials, dipoles, couplings) are essential 

information to perform the quantum dynamics. Unfortunately, there are no previous studies which 

report all needed ingredients for the dynamics in the energy region of 13.5-14.5 eV computed at 

the same level of theory and this fact motivated us to carry out a massive electronic structure 

investigation. Our computations include all the possible electronic states that can be involved in 

the dynamics. Accounting only for those states that can be populated, the basis comprises in total 

47 electronic states including the ground state.  

Due to spatial symmetry selection rules, we do not consider the family of ‘gerade’ states as 

they cannot be coupled by nonadiabatic or spin-orbit interaction to the ‘ungerade’ states that are 

optically excited. High symmetry of N2 imposes selection rules on the spin-orbit coupling 

integrals, which are summarized in Fig. 3, and discussed in more details in Sec. S1.2 in the 

supplementary material. There are three Cartesian components of the spin-orbit coupling integrals, 

along X, Y and Z axes in the molecular frame (the molecule is aligned along the Z axis). In terms 
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of D2h symmetry, LSZ components correspond to B1g spatial symmetry of the product between the 

two coupled states, while LSX/LSY correspond to B2g/B3g symmetry of the product. For LSZ 

coupling the two interacting states should have the same magnetic quantum number, , 

while for LSX/LSY coupling . 

During the dynamics, the symmetry selection rules induce a lifting of the degeneracy between 

different magnetic quantum numbers.58 For example,  singlet states are coupled by LSX/LSY 

spin-orbit interaction to the  states. For this type of coupling the selection rule is , 

hence only  of the triplet states can be populated. Analogous results are shown for other 

examples in Fig. 4. In addition, the spin-orbit coupling integrals that involve the quintet states have 

different absolute value for the  and  states of the quintet, see detailed discussion and 

examples in Sec. S1.2 in the supplementary material.  

We use high level ab initio quantum chemistry to compute potentials, nonadiabatic and spin-

orbit coupling terms and electronic transition dipoles between all the states considered. In all the 

computations complete active space self-consistent field approach (CAS SCF)59-61 followed by 

internally contracted multi-reference configuration interaction (MRCI) method62, 63 is applied 

within  symmetry as implemented in MOLPRO program package.64 An active space of 17 

orbitals (4σu, 3σg, 4πu, 4πg, and 2δg) for 10 valence electrons is optimized following the step-wise 

procedure suggested by Spelsberg and Meyer28 to achieve good accuracy for the optically active 

states. In particular, at the final step of the MRCI computations the higher-lying Rydberg orbitals 

are restricted to be only singly-occupied. We employ d-aug-cc-pVQZ basis set65, 66 for nitrogen 

atoms with additional bond-centered (s, p) diffuse functions67 to describe accurately singlet and 

triplet Rydberg electronic states. Electronic states of B2u/B3u symmetry are equivalently treated. 
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FIG. 3. Components of the spin-orbit coupling in the basis states, taking account of the role of 

magnetic, , quantum number. LSX/Y and LSZ are the Cartesian components of the spin-orbit 

coupling in the molecular frame. Spin and spatial symmetry selection rules for the spin-orbit 

coupling integrals are summarized in the top right corner. More details are given in Sec. S1.2 in 

the supplementary material. 

 

To achieve convergence at a reasonable computational cost, potentials, transition dipoles, and 

nonadiabatic couplings are computed separately for the states of different symmetry and 

multiplicity. The nonadiabatic couplings are calculated using the finite difference approach for 

MRCI wave functions as implemented in the DDR program of MOLPRO.68 The step for the finite 

difference computation was optimized to get a convergence in the values of NAC, see Table S1 in 

the supplementary material. The state-averaging procedure in CASSCF is used within each 

symmetry group, accounting for different number of electronic states, see Table S2 in the 

supplementary material.  In the calculations of the spin-orbit coupling terms the averaging over 

the coupled states is employed. Spin-orbit coupling integrals are evaluated for the MRCI wave 

functions with the Breit-Pauli spin-orbit operator as implemented in MOLPRO.69  

The comparison for the singlet  and triplet  electronic states composition with 

available data from Refs. 28, 34 is given in Figs. S3-S5 in the supplementary material. Accuracy 
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of the resulted potentials and couplings of the optically accessible singlet  states is discussed 

in details in Sec. S2 in the supplementary material. We compare calculated potentials, nonadiabatic 

couplings and transition dipole moments to the recommended diabatic set from Ref. 28, see Fig. 

S16. As the position of the vibrational bands is crucial in the present study, we shift all the 

potentials up by 850 cm-1 to achieve good agreement for the distribution of the vibronic transition 

dipoles, Fig. S17, and vibronic eigenstates, see Figs. S18-S33 in Sec. S2 in the supplementary 

material. 

Diabatic basis of electronic states was previously used at lower excitation energies.70,71 In the 

present work the nonadiabatic quantum dynamics is used throughout because we deal with a higher 

energy region. It is technically challenging to define the diabatic potentials when more than two 

electronic states are coupled in the same region of internuclear distances. This is true especially 

for Rydberg  electronic states of N2 at the short distances, see Fig. 2. In order to avoid any 

possible modification of the results of ab initio quantum chemical computations, we do not 

diabatize but we follow the quantum electron-nuclear dynamics in the adiabatic representation for 

the electronic basis. 

 

III. DETAILS ON THE QUANTUM DYNAMICAL COMPUTATIONS 
 
The multi-electronic state wave function defined on the grid of internuclear coordinate, R, is 

propagated according to the time-dependent Schrodinger equation of motion in the basis of 47 

adiabatic electronic states in the D2h representation. Degenerate electronic states with different 

magnetic quantum number are treated separately. The equation of motion for the amplitudes 

 at a given electronic state n and grid point  is given as follows: 
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Here  and  are diagonal and off-diagonal kinetic energy terms, respectively, evaluated 

within the five-point finite difference approximation, see more details in Sec. S2 in the 

supplementary material and in Ref. 72.  denotes potential energy of an electronic state n. At 

large internuclear distances,  a.u., a complex absorbing potential, 

, is applied for all the dissociative states. The nonadiabatic couplings 

 between electronic states n and k are scaled by the momentum terms, .3, 6, 73, 74 We use 

five-point finite difference method75 to compute the first- and second-order derivatives for the 

functions defined on the grid. Spin-orbit coupling terms  are detailed in Secs. 1.2-1.3 in the 

supplementary material. The propagation of the equation (1) is solved via the Runge-Kutta 

method76 with a time step of Dt =10-4 fs and DR= 0.005 a.u. for the grid spacing. This small grid 

spacing is needed to account for the fast changing nonadiabatic coupling, see Fig. S34 in the 

supplementary material. The norm of the time-dependent wave function is conserved up to 10-11 

for all the computations during 10 ps of the dynamics, see Fig. S35 in the supplementary material. 

The amount of population absorbed at long distances accumulated during 10 ps is used to define 

the relative branching ratio into the two channels.  

The interaction with the light field is governed by the transition dipole moment  

between the ground and excited singlet electronic states. Explicit time-profile for the VUV light 

field is used: 

  (2) 

Here  is the polarization direction of the light field, set along the internuclear axis so as to access 

the  states;  is the maximum amplitude of the field;  and  are the time at which 

the pulse is centered and the width of the Gaussian envelope of the field. The duration of the pulse 

is set to be long enough to selectively excite specific vibrational levels of the singlet states,  

160 fs and =1200 fs. The carrier frequency  is variable. It is tuned to match the energy of 

the vibrational level of interest amongst the singlet states, see Table S5 in the supplementary 
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material. Table S5 also provides comparison of these energies to available experimental data for 

both isotopomers. 

The lifetimes of the excited vibrational singlet states are estimated by a linear fit for the 

logarithm of their time-dependent population, , assuming a unimolecular exponential 

decay. 

 

IV. RESULTS AND DISCUSSION 

We report on the branching into the  and  exit channels at a 

range of total energies where the experimentally observed branching fractions do not vary in a 

monotonic fashion. To compare with the experimental results, we prepare a well-defined in energy 

initial state built by a long-time pulse applied to the ground state. The pulse has a narrow enough 

width that it accesses practically a single vibrational state of the singlet  manifold.  

Despite the forest of coupled states on the route out to dissociation there is a very marked 

dependence on the detailed features of the coupling terms. We illustrate this by the considerable 

sensitivity of the dissociation pathway to the sign of the nonadiabatic coupling. The sign is not 

easily defined because, in the Born-Oppenheimer approximation, the electronic wave function at 

 and at  are computed independently. This is easy to correct in a diagonal overlap, but 

the nonadiabatic coupling overlaps a wave function of one state by the derivative of a wave 

function of a different state. Fig. 4 shows the noticeable variation in the branching ratios with the 

signs of the last coupling terms before the final exit. The different couplings are seen to change 

the results in different ranges of the total energies. The sign of the coupling of the lowest triplet 

 to the , coupling region 1 in Fig. 4(a), clearly controls the opening/closing of the exit 

to the  channel, compare Test I and II in Fig. 4(c) at an energy of about 111,500 

cm-1. The sign of  coupling region 3 also controls the exit to the  

channel but at the higher energy of about 116,000 cm-1, compare Test I-II to Test III. Not shown 

is the role of the change in sign in region 2 that governs the exit to the higher energy, 

 channel. 
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FIG. 4. Computational experiment with various combinations for the sign of the nonadiabatic 

couplings between the triplets on the exits: (a) potential energy curves of the 3Πu states and (b) the 

nonadiabatic couplings between them. (c) Branching fractions in N(4S3/2)+N(2DJ) channel 

experimentally observed (dashed line ) and computed (solid line). The selected couplings are 

indicated in panel (a) with numbers 1 (  coupling, blue shading around R = 2.6 a.u.), 

2 ( coupling, orange shading around R = 3.5 a.u.), and 3 ( coupling, 

green shading around R = 3.8 a.u.). The corresponding signs are shown as inserts in (c) for tests I-

III. The fast variation of the coupling terms in R is shown in panel (b). 

 

A role of the shorter range couplings is shown in Fig. 5 and Figs. S36-S37 in the supplementary 

material. These are due to two Rydberg states avoiding each other and a valence state. In particular, 

the nonadiabatic couplings at short range modify the major shortcoming of the coupling signs 

chosen for test III, Fig. 4. The set shown as test IV account better for the energy range at about 

110,144 cm-1 and is the final set adopted in all subsequent computations. 

 

3 31 2u uP P-

3 33 4u uP P- 3 32 3u uP P-
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FIG. 5. Computational experiment with various combinations for the sign of the nonadiabatic 

couplings between the triplets in the region of short internuclear distance, R < 3 a.u. The signs of 

the nonadiabatic couplings on the exits, shaded regions 1-3 in Fig. 4, are here fixed to those from 

the test III. (a) Potential energy curves of the 3Πu states and (b) the nonadiabatic couplings between 

them. (c) Branching fractions in N(4S3/2)+N(2DJ) channel experimentally observed (dashed line) 

and computed (solid line). The selected couplings are indicated in panel (a) with numbers 4 and 6 

(  coupling, orange shadings), 5 and 7 ( coupling, green shading). The 

corresponding signs are shown as inserts in panel (c) for tests III and IV. The final results are those 

obtained for test IV. 

 

There is a useful way to think about the role of the sign of the nonadiabatic coupling coefficient 

. We follow the pioneering paper of Felix Smith3 to conclude that the ‘momentum’ term that 

appears in the kinetic energy of the Hamiltonian of a multi-electronic state is . So, a change 

in the sign of  while keeping the sign of the ordinary momentum the same has an equivalent 

dynamical effect as changing the sign of the ordinary momentum while  keeping the sign of 

unchanged. 

There are 128 possible variations of the sign of the coupling. Not all of them are important. 

Additional details are given in Figs. S36-S37 in the supplementary material. In particular Fig. S37 

of the supplementary material shows the major changes in the dissociation lifetimes. For the 
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realistic choice of signs, we will discuss the lifetimes after the discussion of the primary 

experimental observables – the branching ratios. 

The representation of the experimental branching ratios and our computed ones, their 

sensitivity to the variation of excitation energy and of mass is given in Fig. 6. Fig. 1 shows that 

each channel is fed by several potential energy curves. Our computations reproduce the 

experimental results that the branching between the two major channels is not uniform. 

Furthermore, our computations allow assigning the contribution of the exit quantum states to the 

dissociation in each channel. In detail these exit quantum states are individually degenerate at large 

interatomic distance and our results determine the contribution of each individual degenerate state 

to the total. The results of the quantum dynamics for the two isotopomers are given in Figs. S38-

S53 in the supplementary material. 

The different exit states of a given channel are degenerate at long distances, but their 

asymptotic contribution is not equal. In general, the triplet  states are the major outlets for 

dissociation. An exception is around the excitation energy 110,144 cm-1 where there are significant 

contributions of  and  states. On the other hand, due to the symmetry of the spin-orbit 

coupling, see the discussion in Sec. S1.2 of the supplementary material, for example the 

  and X/Y space degenerate components of each triplet  exit state have the same 

computed probability. 

The non-monotonic dependence of the branching between the two main channels on the 

excitation energy is remarkably different for the two isotopomers.  The computational results for 

the isotopomer 14N15N reproduce the trend but are deviant from the experiment at few points. A 

possible reason as suggested by Fig. 5 is the branching is very sensitive to the  

coupling at the region 5.  

3
uP

3
u
-S 5

uP

/ 1sm = + - 3
uP

3 33 4u uP P-
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FIG. 6. Isotope effect in branching fractions into N(4S3/2)+N(2DJ) (blue) and N(4S3/2)+N(2PJ) 

(orange) channels: calculated, bars, and experimental fractions, dots, for 14N2 (a, c) and 14N15N (b, 

d) isotopomers. Detailed results for each excitation energy are given in Figs. S38-S53 in the 

supplementary material. 

 

To interpret the non-monotonic energy disposal Fig. 7 shows the correlation between regions 

of the potential energy curves and the branching fraction into the lower channel. While the energy 

scale is above the threshold of both channels one sees an effective opening and closing of this 

channel. The first dominant feature is the closing of the N(4S3/2)+N(2DJ) channel at around 

110,144 cm-1, marked (c) in Fig. 7(b). The respective singlet and triplet state populations computed 

at 10 ps are given in Fig. 7(c). It is attributed to the trapping of the singlet state because of a lack 

of resonance with the Rydberg triplet, see Fig. S54 in the supplementary material. It is also 

reflected in the long dissociation lifetime of the singlet state, see Fig. S55 in the supplementary 

material. The slow dissociation is supported by the weak photofragment signal observed43, 77, 78 for 

low excited rotational states at this energy. The unusually low dissociation exit through the triplet 

allows the not negligible contribution from the quintet state due to the overlap of the quintet with 

the outer turning point of the triplet at 3.5 a.u., see Fig. 7(c). The error in the computed branching 

fraction at this energy, Fig. 6, is high because it is a ratio of two small numbers. The corresponding 

dissociation lifetime is long as given in Fig. S55 of the supplementary material.  
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The next region of not monotonic behavior, showing a major opening of the 

, lower, channel is due to the barrier in the exit to the  channel. Above the barrier 

the exit to the  channel decreases due to the effective exit along the repulsive 

potential with a peak at point (d) of Fig. 7(b) at an energy of 113,551 cm-1. This is clearly seen in 

the population distribution in the triplet manifold, Fig. 7(d) and also Figs. S46-48 in the 

supplementary material. This repulsion also results in a fast dissociation.  

Within about a 1,000 cm-1, a second opening of the  channel is indicated as 

point (e) in Fig. 7(b). The population distribution as a function of internuclear distance is given in 

Fig. 7(e). It is actually a blocking of the  channel due to trapping in the shallow 

well of the potential of the  state. Beyond point (e) the channel closes again as the wave 

packet can cross the inner barrier in the  potential. Through the mediation of the  state, 

Fig. 5(a), there is crossing to the third and then second state and prompt exit to the 

 channel.  

The blocking and opening of the exit channels are energy dependent in a clear manner for 14N2 

and less so for 14N15N as seen in Fig. 6. Fig. S56 of the supplementary material seeks to correlate 

the mass dependence with the location of the trapping well in the  and other features of the 

potentials as due to the shift in vibrational frequencies with the mass. 

4 2
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FIG. 7. (a) Potential energy curves of the singlet and triplet electronic states in the energy range 

of the considered branching ratio into N(4S3/2)+N(2DJ) channel shown in panel (b) for 14N2 

isotopomer computational (solid blue line) and experimental (dashed blue line). The two orange 

arrows (c) and (d) indicate the energy where the molecule primarily dissociate in higher exit 

channel and the blue arrow (e) points out the dissociation to the lower channel at a high excitation 

energy. The bottom panels demonstrate the population redistribution for the singlet and triplet 

states at the pointed energies (c) - (e) corresponding to the arrows in panel (b). Panel (c) exhibits 

an example of a trapped singlet state which slowly dissociates in the higher channel. Panel (d) 

shows the dissociation in the higher channel when the repulsive triplet state is reached. Panel (e) 

illustrates a trapped triplet state which dissociates into the lower channel. 

 

V. CONCLUSIONS 

A basis of 47 electronic states of singlet, triplet and quintet multiplicities is employed to provide 

an ab initio quantal dynamical picture of the VUV dissociation of N2. The first states to be excited 

are the singlets  that are optically accessed from the ground state. These three excited states 

are bound in the energy region of interest. These adiabatic states are coupled amongst themselves 

by strong nonadiabatic coupling. Spin-orbit interaction to the triplet manifold  opens the bound 

1
u
+S
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phase space to dissociation via two exit channels in the energy range of interest. A key dynamical 

observation is the branching between these two channels. It is sensitive to both the energy and the 

mass and varies in a non-monotonic fashion. We report good agreement between the experimental 

results for both isotopomers, 14N2 and 14N15N and our computations. The close agreement requires 

attention to the sign of the nonadiabatic coupling  in the triplet manifold. Our results provide the 

branching into particular electronic states that make each exit channel and also between the spatial 

and the magnetic sublevels of each electronic state. Of the 47 it is mostly 20 states, 16  triplets, 

that extensively contribute to the dynamics.  At one energy, 110,144 cm-1, a quintet  and a 

different, , triplet make a dominant contribution because at this energy the singlet to triplet 

transfer is very slow. We compute the dissociation lifetimes for each state of each isotopomer and 

the long dissociation lifetime at 110,144 cm-1 is consistent with experiments. Throughout we relate 

the non-monotonic features in the dynamics to the topography of the many coupled potential 

energy curves, particularly of the triplet states. 

 

SUPPLEMENTARY MATERIAL 

Detailed results of the quantum chemical calculations together with the discussion regarding the 

spin-orbit coupling terms for degenerate states are provided in Sec. S1 of the supplementary 

material. Benchmarking for the computed singlet state potentials and couplings is given in 

Sec. S2. The results of the quantum dynamical computations, population distribution as a function 

of internuclear distances for both isotopomers, lifetimes, etc. are shown in Sec. S3 of the 

supplementary material. 
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