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ABSTRACT

In this study, we aimed to detect the physicochemical
properties of distilled products (residue and distillate)
obtained from anhydrous milk fat (AMF) and its dry
fractionation products (liquid and solid fractions at 25°C
[25 L and 25 S]). The results showed that the saturated
fatty acids and low- and medium molecular—weight tri-
glycerides were easily accumulated in the distillate, and
the percentage of unsaturated fatty acid and high mo-
lecular—weight triglycerides in the residue were higher,
and these components in 25 S and 25 L were influenced
more significantly than those in the AMF. In addition,
the distillate had larger melting ranges in comparison
with the distilled substrate, while the melting ranges of
residue was smaller. The triglycerides were presented
as the mixture crystal forms (o, 8, and 8 crystal) in
25 S, AMF, and their distilling products, and it was
transformed gradually to a single form as the increasing
of distilling temperature. Moreover, the accumulated
pattern of triglycerides was double chain length in 25
S, AMF, and their distilling products. These results
provide a new approach to obtain the milk fat fractions
with different properties, and the findings of this study
enrich the theoretical basis of milk fat separation in
practical production.

Key words: dry fractionation, short-path molecular
distillation, milk fat, physicochemical property

INTRODUCTION

Milk fat (MF) is an important component of dairy
products, accounting for 3 to 5% of total milk, and it is
widely used in the baking and catering industry because
of its natural smell, good sensory characteristics, and
nutritive value (Mohan et al., 2021). Milk fat is com-
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posed mainly of triglycerides (TAG, 98%), phospho-
lipids (1-2%), and free fatty acids (<1%; Verma et al.,
2020). Moreover, the melting point of MF varies from
—30°C to 40°C, which results in certain TAG molecular
species being crystallized at a relatively lower tempera-
ture than their own melting point. (Boudreau and Arul,
1993). Depending on the melting properties, MF can
be classified into high-, medium-, and low-melting frac-
tions, and many researchers have focused recently on
how to obtain different MF fractions through various
processing techniques, including solvent fractionation,
dry fractionation (DF), short-path molecular distil-
lation (SPMD), emulsification fractionation, and so
on (Deffense, 1993; Jensen, 2002; Lopez et al., 2006;
Anankanbil et al., 2018).

The DF technique is widely used in practical produc-
tion because of its simple steps and clean products,
among other advantages. Dry fractionation involves,
first, bringing the MF to a preset temperature, then it
is cooled to crystallization and separated successfully
into liquid and solid fractions through the solid-liquid
separation technique (Bonomi et al., 2012). Stud-
ies have reported that, following DF, the short-chain
SFA (SC-SFA), UFA, and low molecular—weight TAG
(LMW-TAG) have accumulated in the liquid fraction,
whereas the percentage of long-chain SFA (LC-SFA)
has increased significantly in the solid fraction (Bou-
dreau and Arul, 1993; O’Shea et al., 2000). Wang et
al. (2019) found that the percentage of LC-SFA and
TAG with 3 SFA in the high-melting point fraction
were higher than that in the low-melting point frac-
tion. Moreover, they found that no crystallization had
occurred in the low-melting point fraction, while the
change from B crystal to 3’ crystal was observed in the
high-melting point fraction and anhydrous MF (AMF;
Wang et al., 2019). The same phenomenon was reported
by Si et al. (2023) which showed that the high-melting
point fractions were mixed mainly with 3’ crystal at
room temperature (Si et al., 2023).

Short-path molecular distillation is an effective
liquid-liquid separation technology based on the dif-
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ference existing in the molecular average free path of
distilling substrate, and its operating temperature is
lower compared with other separation methods. There-
fore, it is suitable for separating MF or other heat-sen-
sitive bioactive substances, and MF is separated into
a light phase (distillate) and a heavy phase (residue)
after SPMD (Campos et al., 2003; Berti et al., 2018).
Berti et al. (2018) reported that the distillate yield was
30.48%, and the sensory characteristics of distillate
were similar to those of AMF (Berti et al., 2018). Other
literatures have shown that the percentages of SC-SFA
and medium-chain SFA (MC-SFA) in the distillate
were higher than those in the residue, while the easier
accumulation of LC-SFA and UFA were observed in the
residue. Furthermore, the solid fat content decreased in
the distillate, and it was reverse variation in the residue
(Arul et al., 1988; Campos et al., 2003).

Much of the research on MF separation thus far has
focused only on the single separation method, and the
development of more efficient separating methods and
special MF fractions is, therefore, necessary. In this
study, the fatty acids (FA), TAG, thermodynamic
properties, and crystal structure of distilled fractions
were detected after the combination of DF and SPMD,
and these results would provide additional basic infor-
mation for MF industrialization as well as a new MF
separation approach.

MATERIALS AND METHODS

Because no human or animal subjects were used, this
analysis did not require approval by an Institutional
Animal Care and Use Committee or Institutional Re-
view Board.

Materials

The AMF was purchased from Anchor (Fonterra
Co-operative Group Limited, New Zealand). 1,3
(d  5)-diheptadecanoyl-2-heptadecenoyl-glycerol  (d
5-(17:0/17:1/17:0) TAG) was selected as the internal
standard and was purchased from Avanti Polar Lipids
(Birmingham, AL, USA). Methanol, hydrochloric acid
(HCL), ethyl alcohol, n-Hexane, acetonitrile, isopropa-
nol, chloroform (CHCI;), formic acid, and ammonium
formate were bought from Fisher Scientific (Pitts-
burgh, PA, USA). The standard mixture, comprised
of 37 FAME, was bought from ANPEL Laboratory
Technologies Inc. (Shanghai, China).

MF Separation

As shown in Figure 1, the AMF was heated at 80°C,
70°C, 60°C, 50°C, 40°C, and 30°C in a water bath for
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30 min at a time. After heating, the AMF was left to
stand in a constant temperature condition (30°C) for
24 h, and then it was separated into solid (30 S) and
liquid (30 L) fractions (1,500 rpm, 10 min). The 30 L
fraction was subsequently selected to obtain the solid
(25 S) and 25 liquid (25 L) fractions at 25°C. For the
SPMD process, the AMF, 25 L, and 25 S fractions were
distillated at 180°C, 200°C, and 220°C, respectively,
with the rate and temperature of the feed port (oil
bath) set to 2.0 mL/min and 60°C respectively. The
working pressure was 0.1 pa and the speed of the film
blade was 150 r/min. When the SPMD temperature
was changed, the machine was cleaned with absolute
ethyl alcohol. Finally, the AMF was divided into light
and heavy phases (distillate and residue), which were
collected and stored at 4°C for further analysis.

FA Analysis

The FA were detected using a gas chromatography
flame ion detector (GC-FID, Agilent 8390B, Agilent
Technologies Inc., CA, USA) equipped with a capillary
column (DB-23 60 m x 0.25 mm x 0.25 pm; Sigma-
Aldrich, MO, USA; Zhu et al., 2022). Specifically, the
MF samples (30 mg) were dissolved in the solution
(n-Hexane/methanol/HCL,), 2/7/1, vol/vol/v), and
the mixture was shocked for 2 min and then heated
in a water bath at 100°C for 1 h. The solution was
then cooled to room temperature and 2 mlL distilled
water was added when the heating process was finished.
Subsequently, the solution was vortexed (1 min) and
centrifuged (1,500 X g, 5 min), and the supernatant
liquid was obtained finally for GC analysis. The setting
conditions of GC-FID were as follows: the temperatures
of the injection port and FID were all 250°C; the carrier
gas was high purity nitrogen (99.99999%), and its rate
was 0.8 mL/min. For the temperature program, the
initial temperature was 50°C, where after it was heated
to 175°C at a speed of 20°C/min. Thereafter, the col-
umn temperature was increased to 230°C at the rate of
1.3°C/min and stabilized at 230°C for 5 min.

TAG Profile

The TAG detection method was described by previ-
ous studies (Wang et al., 2022; Si et al., 2023). First,
the samples (5 mg) were dissolved in a solution (metha-
nol/chloroform, 1/2) to a specific concentration (5 mg/
mL), and then the sample solution (20 pL), internal
standard (5pL), and methanol (975 pl) were pipetted
into a liquid vial for analysis. For the setting condi-
tion of the ultra-high liquid chromatography system
(I-class Acquity UPLC, Waters Corporation, Milford,
USA), the BEH C18 column (1.7 pm, 2.1 mm id. x
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Figure 1. Schematic diagram of the separation process integrated with dry fractionation and short-path molecular distillation. AMF =
anhydrous milk fat; 30 L = liquid fraction at 30°C; 30 S = solid fraction at 30°C; 25 L = liquid fraction at 25°C; 25 S = solid fraction at 25°C.

100 mm, Waters Corporation) was chosen to transfer
the sample solution. Solvents A (acetonitrile/water,
1/1, vol/vol) and B (isopropanol/acetonitrile, 9:1, vol/
vol) both contained 10 mM ammonium formate and
0.1% formic acid; and the flow rate and column tem-
perature was 0.3 mL/min and 60°C respectively. For
the MS parameters (API 4500 Q-Trap, AB SCIEX,
Framingham, MA, USA), the process started with the
acquisition of the parent ion scanning mode; and its
bunching potential, mass range, and scanning rate were
100 V, 400-1,200 m/z, and 1,000 Da/s, respectively.
The multiple response monitoring (MRM; Q1 = Q3),
information dependent acquisition, and enhancement
product ion (EPI) were set and used to detect specific
FA, and the TAG with different structures were then
identified via the MRM. For EPI mode, the inputting
range of mass was 50 to 1,200 m/z, and the collision
energy was 45 V. The parent ions and characteristic
fragment ions were fed into monitoring modes, and the
percentage of TAG was calculated by the normalization
method of the peak areas.

Thermodynamic Properties and Crystal Form

A differential scanning calorimeter (DSC; DSC 8000,
PerkinElmer, Inc., MA, USA) was used to analyze the
crystallization and melt process of the sample. The
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samples (6-9 mg) were weighed and placed in an empty
alumina crucible for detection via the DSC machine.
The initial DSC temperature was set to 25°C, and it
was then heated to 80°C at the rate of 20°C/min and
kept stable for 10 min. In the cooling process, the DSC
temperature decreased to —30°C at the rate of 10°C/
min, then stabilized for 10 min to obtain the crystal-
lization curve. In the final stage, the temperature in-
creased again to 80°C to acquire the melting curve. The
carrier gas was high purity nitrogen (99.9999%) with a
flow rate of 20 mL/min. The TAG polymorphism was
detected at 25°C for 48 h using the X-ray diffraction
(XRD, BTX III, Olympus Corporation, Japan). The
power of the optical tube was 2.2 kW, the voltage was
40 kV, and the current was 40 mA; the widths of the
emitting slit, antireflection slit, and receiving slit were
fixed at 1.0 mm, 1.0 mm, and 0.1 mm, respectively; the
scanning rate was 2.0°/min and the 2 6 angle ranged
from 10.0° to 40.0°.

Statistical Analysis

The results of samples were expressed as mean values
+ standard deviation. One-way ANOVA (ANOVA) was
performed to analyze the data, and the significant dif-
ferences among groups were determined by the Duncan
multiple-range tests (SPSS 24.0 software, Chicago, 1L,
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USA). GraphPad Prism 8 (San Diego, CA, USA) was
used for figures processing.

RESULTS AND DISCUSSION
Distillate Yield

Although we detected some efficient ways to separate
MF, such as supercritical fluid extraction, SPMD, DF,
and other chemical or enzyme extraction methods, the
combination of different separation methods has not
yet been reported. In this current research, the SPMD
was integrated with DF for MF separation, and the
AMF, 25 L, and 25 S were distilled at 180°C, 200°C,
and 220°C, respectively. The distillate yield MF was
obtained using the ratio of the mass of distillate to the
mass of total MF. As shown in Figure 2, the distillate
yield was positively correlated with the distilling tem-
perature. When the distilling temperature was 180°C,
the distillate yield was 6.5% of 25 L, followed by AMF
(3.9%) and 25 S (2.4%). The distillate yield of distill-
ing substrates all showed an increasing trend with the
increase of temperature, which was in accordance with
the previous results (Campos et al., 2003). However,
the distillate yield of 25 L was the highest at each dis-
tilling temperature, while the distillate yield of AMF
and 25 S was in the middle and the lowest, respectively.

FA Variations

FA is the basic component of MF and have a strong
correlation with the absorption, metabolism, and
processing properties of MF (Malkowska et al., 2021).
Based on its saturation, FA can be classified into SFA
and UFA; MF is composed mainly of SFA, comprising
approximately 2-thirds of its total FA (Gdémez-Cortés
et al., 2018). In this study, it was evident that the FA
proportion of AMF, 25 S, 25 L, and their distilling
products was significantly influenced by the DF and
SPMD (Tables 1 and 2, graphs A-G in Figures 3 and
4). Specifically, the proportion of SC-SFA and MC-SFA
increased comparatively more in 25 L than that in AMF
and 25 S (P < 0.05), and the LC-SFA remained stable
in 25 S and 25 L. For the UFA, the percentage of poly-
unsaturated FA (PUFA) increased in 25 S and 25 L,
while monounsaturated FA (MUFA) showed the reverse
variation. However, a previous study demonstrated that
the proportion of SFA decreased in all liquid fractions,
at both low and high fractionating temperatures (Wang
et al., 2019). This contrasting phenomenon might be
caused by the difference of DF process among these
studies.

For the distilling products, the percentages of SC-
SFA and MC-SFA increased at first and then decreased
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Figure 2. Distillate yield (wt/wt) obtained from AMF, 25 L, and
25 S at various distillation temperatures. The plotted point is the aver-
age value, and the error bars represent the standard deviation. AMF
= anhydrous milk fat; 25 L = liquid fraction at 25°C; 25 S = solid
fraction at 25°C.

in the distillate of all distilling substrates. However,
these FA saw a decrease in residue (P < 0.05), con-
curring with the phenomenon reported by Arul et al.
(1988). For the LC-SFA, the percentage of myristic acid
(C14:0) showed the same variation with SC-SFA and
MC-SFA, and the proportions of pentadecanoic acid
(C15:0) and palmitic acid (C16:0) remained stable,
while the stearic acid (C18:0) was different in that its
percentage decreased and rose in the distillate and resi-
due, respectively. However, the UFA demonstrated op-
posite variations compared with SFA. The percentages
of oleic acid (C18:1n9c¢), linoleic acid (C18:2n6¢), trans
linoleic acid (C18:2n6t), and linolenic acid (C18:3n6)
all decreased in the distillate, but showed an increasing
trend in the residue, which was concurred with results
reported by previous literature (Campos et al., 2003).
It was worth mentioning that the FA percentages in
25 S and 25 L were affected obviously by the SPMD
compared with that in AMF, which might be caused by
the different melting points of FA, such as 54.4°C for
C14:0, 62.9°C for C16:0, and 69.6°C for C18:0 (Lopez et
al., 2006; Tzompa-Sosa et al., 2014).

TAG Variations

The physical and chemical properties of TAG directly
determine the quality and characteristic of milk prod-
ucts, such as cream and butter (Silva et al., 2014). In
the current study, a total of 44 TAG molecular species
were detected (Tables 3 and 4). These TAG molecular
species were classified into 3 groups based on the length
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of acyl-carbon, including LMW-TAG (carbon number:
24-34), medium molecular—weight TAG (MMW-TAG,
carbon number: 35-40), and high molecular—weight
TAG (HMW-TAG, carbon number: 41-54; Graphs H-J
in Figures 3 and 4; Smiddy et al., 2012). The propor-
tions of LMW- and MMW-TAG in the 25 L all were
higher than those in the AMF and 25 S. By contrast,
the HMW-TAG was accumulated easily in the 25 S, in
accordance with the previous results (Boudreau and
Arul, 1993; Lopez et al., 2006). During the distilling
process, the percentages of LMW- and MMW-TAG in-
creased sharply in all distillates (AMF, 25 L, and 25 S)
at 180°C and 200°C, however, these TAG demonstrated
a decreasing trend in the residue. These phenomena
were also reported by previous studies (Arul et al.,
1988; Campos et al., 2003). With the increase of distill-
ing temperature, the proportion of LMW-TAG declined
in the all distillates at 220°C. The proportion of MMW-
TAG decreased in the AMF distillate at 220°C, but
increased continually in the distillate of 25 L and 25
S, the opposite trend was observed in the residue. For
HMW-TAG, which accounted for 55.38% of total AMF,
it showed the decreasing trend in the distillate. On the
contrary, the proportion of HMW-TAG increased in
the residue. Another noteworthy finding was that the
percentage of LMW-TAG was affected obviously by the
SPMD in comparison with MMW- and HMG-TAG.

The TAG can also be classified into saturated TAG
(STAG), which contains 3 SFA, and unsaturated TAG
(UTAG), which contains at least one UFA. Here, the
percentage of STAG increased gradually in the distil-
late throughout the distilling process (Tables 3 and 4,
graphs K-L in Figures 3 and 4). By contrast, the STAG
showed a decrease in the residue, and the opposite
variation was observed for UTAG. This phenomenon
was more evident in the individual TAG molecular spe-
cies. For instance, the proportion of C52:2 and C52:3
increased from 5.73% and 0.96% to 6.65% and 1.10%,
respectively, in the AMF residue, with the increasing
rates of 16.10% and 14.58%, respectively. The increas-
ing proportion of (C52:2 in residue was 29.71% and
49.45% in 25 L and 25 S, respectively, and those of
(C52:3 were 32.11% in the 25 L and 36.84% in the 25
S, which all were more apparent in comparison with
the AMF. It was reported that C52:2 and C52:3 were
mainly composed of C18:1/C16:0/C18:1 and C18:1/
C16:0/C18:2, respectively, and they were the major
component in the human milk, accounting for 20-40%
of total TAG (Zhao et al., 2018; Zhu et al., 2021).

Thermal Characteristics

More than 3 endothermic peaks were observed in the
AMF, 25 S, and 25 L (Graphs A, C, and E in Figure
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5), which might be caused by the presence of some
TAG with different molecular weight, such as LMM-,
MMM-, and HMM-TAG in these samples (Fatouh et
al., 2003). The melting temperature of AMF ranged
from —12.47°C to 37.86°C, a wider range than both
25 S (—0.18°C—41.19°C) and 25 L (—11.87°C-25.31°C).
Moreover, the first endothermic peak of AMF appeared
at —11°C, followed by 25 L. (—8°C) and 25 S (9°C), and
these results were due to the greater accumulation of
LMM- and HMM-TAG in the 25 L and 25 S, respec-
tively (Lohman and Hartel, 1994; Ransom-Painter et
al., 1997). The melting temperature range of the distil-
late was shorter than that of their distilling substrates,
however, the residue had a wider melting temperature
range. In addition, the appearing temperature of endo-
thermic peak in the distilling products was delayed with
the increase of distilling temperature. For example, we
detected only one endothermic peak in the distillate of
25 L at 180°C and 200°C. The probable reason for this
phenomenon was that there were more LMW-TAG in
the distillate of 25 L at the relative low distilling tem-
perature. Moreover, the number of endothermic peaks
increased and the appearing position of endothermic
peaks shifted to the high-temperature area. The ap-
pearing positions for the main endothermic peak of
25 S and its distillate and residue were 37°C, 15°C,
and 40°C, respectively. These results indicated that
the content of LMW-TAG in the 25 S distillate was
higher, while more HMW-TAG accumulated in the 25
S residue, which were correspond with the data shown
in Tables 3 and 4.

For the crystallization curves, 25 S first crystal-
lized at 18.23°C, followed by AMF (12.60°C) and 25
L (8.90°C; Graphs B, D, and F in Figure 5). We de-
tected 3 exothermic peaks in 25 S compared with 2 in
AMF and one in 25 L, probably because 25 S had a
higher proportion of HMW-TAG (Lopez et al., 2001).
Moreover, the appearing position of exothermic peaks
in all distilling products moved gradually to the high-
temperature region as the distilling temperature in-
creased, and the crystallization temperature of residue
was higher than that of distillate at the same distilling
temperature. Three exothermic peaks were constantly
observed in the residues of 25 S and AMF, but the
number of exothermic peaks decreased gradually to one
in their distillates. In addition, only one exothermic
peak was observed in the residues and distillates of 25
L, which might be caused by the percentage of HMW-
TAG in 25 L and its distilling products was relatively
low (Lopez et al., 2001; Wang et al., 2019). The de-
tailed correlation between the peak points of exother-
mic peak and crystal forms in crystallization curve had
been previously reported, including low-, medium-, and
high-temperature exothermic peaks (0-10°C, 20-40°C,
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and >50°C), corresponding with o, 3, and {3 crystals,
respectively (Che Man et al., 1999). Therefore, we con-
jectured that the distillate was preferentially formed by
« crystal in this research, while the residue was mixed
by o and (3 crystals.

It was evident that the number of exothermic peaks
in the crystallization curve was lower than the number
of endothermic peaks in the melting curve (Figure 5).
We detected several reasons for this phenomenon. First,
the molecular chains of MF required some delay time
before entering into the crystal lattice during crystal-
lization; the degree of supercooling increased gradually
with the ambient temperature decreased, leading to the
low-melting-point component of substrate being crys-
tallized, and the exothermic peaks appeared simultane-
ously (Marquez et al., 2013). Furthermore, the kind of
FA in MF are diverse, with the melting point of TAG
comprised of 3 SFA was higher than that of the TAG
with one or 2 SFA, resulting in the inexact detection
of absolute melting point of MF. Finally, the polymor-
phism apparent in MF indicates that there are different
crystalline forms for one substance, producing «, 3, and
B ' crystals under different conditions (Kaylegian and
Lindsay, 1992; Wang et al., 2019). The crystals of MF
showed the concomitant phenomenon of crystallization
and melt with the increase of processing temperature.
This might be caused by some TAG with poor thermal
stability were first melted at the early stage in heat-
ing process, whereafter the remaining TAG were rear-
ranged and recrystallized to a more stable crystal form,
and melting occurred at a higher temperature (Wang
et al., 2010).

Crystal Forms and Accumulation Patterns

Milk fat is composed of a, §’, and (B crystals, the
melting points of which are 65°C, 70°C, and 72°C,
respectively (Van Aken and Visser, 2000). In the crys-
tallization process, o crystal is produced at the first
stage because of its unstable property, and it quickly
transforms to 3’ and (3 crystals (ten Grotenhuis et al.,
1999). Undoubtedly, the crystallizing characteristics
of MF is showed by the crystal polymorphism, there-
fore, the crystal accumulation and morphology of MF
are usually detected via the long- and short-spacing
models of XRD (van Aken et al., 1999). Here, in the
short-spacing model, a crystal corresponded with the
diffraction peak near 4.15 A, the diffraction peaks
around 4.2 A and 3.8 A all represented 3’ crystal, and
the diffraction peak located at 4.60 A corresponded
with 8 crystal (Szydlowska-Czerniak et al., 2005). As
shown in graphs A, C, and F of Figure 6, we detected
almost no diffraction peak in the curve of 25 L and its
distilling products, which might have given rise to the
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existence of these compounds as liquids, which were not
able to crystallize at room temperature. However, the
strong diffraction peaks at 3.80 A, 4.15 A, and 4.28 A
were demonstrated in the distillates of 25 S and AMF,
indicating that they were mixed o and P’ crystals. In
addition, the 25 S, AMF, and their residues all had
diffraction peaks near 4.52 A and 4.56 A, indicating
these compounds were mixed with «, B', and 3 crystals.
The height of diffraction peaks at 3.80 A, 4.28 A, and
4.58 A all rose apparently with the increase of distilling
temperature in the residue of AMF and 25 S, however,
they were observed a decrease in the distillate. These
results showed that there were more (' crystal in the
residues of AMF and 25 S.

The structure of chain length is formed by the TAG
crystals, which is detected by the long-spacing model
of XRD. It was reported that the accumulation pat-
tern of TAG was a double-length structure (2L) when
we detected diffraction peaks near 41 A and 14 A in
the long-spacing model. Moreover, the crystal structure
was determined to be a triple-length structure (3L)
when the diffraction peaks were appeared near 61 A
and 31 A (Sato, 2001, Haddad et al., 2010). In this
study, 25 L, 25 S, and AMF all had diffraction peaks
at 40.50 A, and the corresponding refraction peaks ap-
peared near 13.70 A, indicating that these components
were arranged as the 2L structure (Graphs B, D, and F
of Figure 6). The long-spacing models of distillates and
residues were similar to those of their distilling sub-
strates, and the diffraction peak heights at 40.50 A and
13.70 A all decreased in the residues as the increase of
distilling temperature. Furthermore, the low-intensity
refraction peak at 29.44 A was only observed in AMF,
25 S, and their residues, and the height of refraction
peak decreased during the distilling process. This was
because the TAG of the abovementioned components
was mixed by 2L and 3L structures at the early stage
of the SPMD, and then the percentages of LMW- and
MMW-TAG gradually decreased, resulting in that the
accumulation pattern of TAG was transformed to a
single 2L structure.

The height of diffraction peak in the residues was
higher than those of the distillates at the same distilling
temperature, in both the long- or short-spacing models,
possibly because the degree of polymorphism in the dis-
tillate was lower than that of the residues. In addition,
the height of diffraction peaks in the distilling products
all decreased with the increase of distilling tempera-
ture. These phenomena indicated that the degree of
polymorphism in the distilling products decreased dur-
ing the distillation process, and the accumulation pat-
tern of TAG was simultaneously transformed to a single
2L structure at the same time. Previous studies also
reported a decrease in degree of freedom in MF, and
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Figure 6. X-ray diffraction diagram of milk fat separation products, in which plots A, C, and E represent the crystal forms of 25 L, 25 S,
AMF, and their distilling products, detected via short-spacing model; plots B, D, and F represent the accumulation patterns of 25 L, 25 S,
AMF, and their distilling products, detected via long-spacing model. AMF = anhydrous milk fat; 25 L = liquid fraction at 25°C; 25 S = solid
fraction at 25°C; D = distillate; R = residue.
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the MF molecules moved slowly in the crystallization
process, taking certain time to form a stable lattice.
The transformation from « crystal to 3 crystal was
a spontaneous process (§ G <0), which could only be
accelerated or delayed rather than prevented by tem-
perature and crystallization rate (Herrera et al., 1999),
and this transformation was rapid while it was slow
from B’ crystal to B3 crystal. In addition, when TAG are
mainly accumulated by 3L structure, the melting point
of MF is higher and leads to a rough tasting product,
while the properties of MF have a rigid structure and
soft sense when the TAG are consisted with long-chain
UFA and MC-SFA (Tietz and Hartel, 2000).

CONCLUSIONS

The percentages of SC-SFA, MC-SFA, LMW-, and
MMW-TAG were higher in the distillate, and UFA and
HMM-TAG were accumulated easily in the residue.
Furthermore, the contents of FA and TAG both in 25
S and 25 L were affected obviously by the SPMD in
comparison to those of AMF. There were no diffrac-
tion peaks in 25 L and its distilling products; the 25
S, AMF, and their distillates were constituted with «
and (3’ crystals, and their residues were composed of
a, B', and 3 crystals. The accumulation patterns of 25
L, 25 S, AMF, and their distilling products all were
2L structure. Therefore, the combination of DF and
SPMD had a more significant effect on the separation
of MF when compared with the single fraction method,
and these phenomena present a new approach for the
separation of MF and provide some theoretical data for
the MF in practical production.
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