
Local stability in kidney exchange programs

Marie Baratto
QuantOM, HEC Management School of the University of Liege,

Rue Louvrex 14, 4000 Liège, Belgium

e-mail: marie.baratto@uliege.be

Yves Crama
QuantOM, HEC Management School of the University of Liege,

João Pedro Pedroso
CMUP and Department of Computer Science, Faculty of Sciences, University of Porto,

Ana Viana
INESC TEC and ISEP – School of Engineering, Polytechnic of Porto,

Abstract: When each patient of a kidney exchange program has a preference ranking
over its set of compatible donors, questions naturally arise surrounding the stability of
the proposed exchanges. We extend recent work on stable exchanges by introducing and
underlining the relevance of a new concept of locally stable, or L-stable, exchanges. We
show that locally stable exchanges in a compatibility digraph are exactly the so-called
local kernels (L-kernels) of an associated blocking digraph (whereas the stable exchanges
are the kernels of the blocking digraph), and we prove that finding a nonempty L-kernel
in an arbitrary digraph is NP-complete. Based on these insights, we propose several inte-
ger programming formulations for computing an L-stable exchange of maximum size. We
conduct numerical experiments to assess the quality of our formulations and to compare
the size of maximum L-stable exchanges with the size of maximum stable exchanges. It
turns out that nonempty L-stable exchanges frequently exist in digraphs which do not
have any stable exchange. All the above results and observations carry over when the
concept of (locally) stable exchanges is extended to the concept of (locally) strongly sta-
ble exchanges.

Keywords: OR in health services, kidney exchange, stable exchange, local kernel,
integer programming

1

1 Introduction

Nowadays, the preferred treatment option offered to patients with an end-stage renal
disease is to receive a kidney transplant from a living donor. This option is primarily
used when the patient has a relative who is willing to donate a healthy kidney. However,
in many situations, the transplantation cannot take place due to immunological incom-
patibility (based, say, on blood and tissue type) between the patient and the healthy
donor.

Kidney exchange programs (KEPs) try to alleviate this limitation by enlisting a
(hopefully) large number of incompatible patient-donor pairs, say, pairs (Pi, Di) made
up of patient Pi and donor Di, for i = 1, . . . , n. Considering such a pool makes it
potentially feasible to identify, for example, three patients P1, P2, P3 and three donors
D1, D2, D3 such that D1 is compatible with P2, D2 is compatible with P3, and D3 is
compatible with P1. Then, three kidneys can be transplanted in cyclic fashion among
these six individuals. Kidney exchange programs typically try to maximize the number
of transplants at a given time by matching as many compatible individuals as possible.
But other objectives may be (sometimes, simultaneously) pursued as well; see, e.g.,
[Biró et al., 2021].

When identifying a potential exchange, it is important to realize that from the point
of view of the patients, not all donors’ kidneys are equal: indeed, some kidneys may
be preferred to others because they are more likely to allow successful transplants or
longer survival expectancy. Hence, if a cyclic exchange c is proposed by the program,
but another cycle c′ exists such that all patients of c′ are better off in c′ than in c, then
the exchange c may be considered as unstable, in the sense that it may be difficult to
convince the patients (and the doctors) to implement c rather than c′. (A more precise
definition will be given in Section 3).

The concept of stability has been widely studied in the literature on matching un-
der preferences [Gale and Shapley, 1962] and, to a lesser extent, on kidney exchanges
[Roth et al., 2004, Klimentova et al., 2023]. This literature will be briefly reviewed in
Section 2. In Section 3, we reexamine the concept and we introduce a weaker definition
of local stability which appears to be more relevant in the context of kidney exchanges.
Section 4 introduces the blocking digraph G∗ associated with a KEP compatibility graph.
We observe that stable exchanges correspond to kernels of G∗, while locally stable ex-
changes correspond to local kernels of G∗. The section also mentions some basic proper-
ties of kernels and local kernels. We prove that it is NP-complete to determine whether
a graph has a nonempty local kernel, and hence, to find a local kernel of maximum size.
In Section 5, we propose integer programming formulations for local stable exchanges.
Section 6 reports on various numerical tests, including an assessment of the quality of IP
formulations for the maximum local stable exchange problem, and a comparison with the
results obtained by [Klimentova et al., 2023] for the (more restrictive) maximum stable
exchange problem. Finally, in Section 7, the concept of local stable exchange is extended
to the concept of local strongly stable exchange. An IP formulation is proposed and
numerical tests are conducted for the computation of maximum local strongly stable
exchanges.

2

2 Basic concepts and literature review

2.1 Stable matching under preferences

The first matching problem involving preferences on possible outcomes has been studied
by [Gale and Shapley, 1962] under the name of stable marriage problem. The stable
marriage problem involves two disjoint sets of identical size n consisting respectively,
say, of men and women, such that each individual has a strict preference order over all
the individuals of the opposite sex. The aim is to identify a matching M of n pairwise
disjoint couples (m,w) (where m is a man and w is a woman) which is stable in the sense
that there is no blocking pair (m0, w0) /∈ M i.e. a pair (m0, w0) such that m0 prefers w0

to his partner in M, and w0 prefers m0 to her partner in M. Gale and Shapley showed,
in particular, that a stable matching always exists and can be found by a polynomial
algorithm.

Various extensions of this classical problem have been investigated in the operations
research and economic literature, such as bipartite matching problems with two-sided
preferences (e.g., the hospitals-residents assignment problem), bipartite matching prob-
lems with one-sided preferences (e.g., the house allocation problem), or non-bipartite
matching problems with preferences (e.g., the stable roommates problem), as well as
many variants that consider complete or incomplete preference lists, with or without
ties. Such extensions have been extensively studied from an algorithmic perspective,
and polynomial algorithms or hardness results are available for many of them; see, e.g.,
[Gale and Shapley, 1962], [Irving, 1985], [Ng and Hirschberg, 1991], [Manlove et al., 2002],
[Biró and McDermid, 2010], [Manlove, 2013].

2.2 Optimal kidney exchanges

The optimization of kidney exchanges is a more recent topic but has generated an
abundant literature over the past 20 years, in the footprints of a seminal paper by
[Roth et al., 2004].

A classical model is described as follows. A compatibility digraph G = (V,A) is
associated with the pool of patient-donor pairs (Pi, Di), i = 1, . . . , n: the vertex set of G
is the set V = {1, . . . , n}, and the arc set A contains the arc (i, j) if and only if donor
Di is compatible with patient Pj . A (feasible) exchange is a collection of vertex-disjoint
directed cycles of G. Maximizing the number of feasible transplants amounts therefore
to finding in G an exchange which contains as many vertices as possible.

In practice, kidney transplants associated with a cycle are usually carried out simul-
taneously in order to prevent situations where a donor would drop out once its intended
recipient has received a transplant, without the donor itself donating a kidney. In view
of the medical and logistical complexity of the resulting procedure, the cycles included in
an exchange are usually restricted in size, say, cycles of size at most two, three, or four.
We accordingly speak of K-way exchanges, with K ∈ {2, 3, 4}.

There is a large amount of literature documenting formulations and algorithms for kid-
ney exchange optimization problem; see, e.g., [Roth et al., 2007], [Constantino et al., 2013],
[Dickerson et al., 2016], [Biró et al., 2021] [Delorme et al., 2023b], [Delorme et al., 2023a].
When K = 2 or when K = n, maximizing the number of transplants reduces to a bi-

3

partite weighted matching problem and hence, can be done in polynomial-time. But the
problem is NP-hard for any fixed K ≥ 3.

Besides cycles, some programs also involve non-directed donors (NDD), i.e. donors
with no associated patient. When this is the case, directed paths (called chains) starting
with an NDD are also allowed to be part of an exchange: the NDD can initiate a sequence
of transplants by donating a kidney to a patient in a (patient, donor) pair, the donor of
that pair donates a kidney to another patient, and so forth until the last donor of the
chain donates a kidney to the deceased donors waiting list or becomes available to initiate
another chain on the next run of the program. Here again, a limit on the maximum chain
length is usually imposed. Chains can be taken into account in the compatibility digraph
model by adding dummy arcs between each pair and each altruistic donor: in this way,
chains are transformed into cycles in the augmented digraph. For the remainder of this
document, chains will not be explicitly mentioned as they can be handled in the same
way as cycles.

2.3 Stable kidney exchanges

The concept of stable kidney exchange extends the concept of stable matching. It will
be defined more precisely in subsequent sections. For now, we can already mention that
it was introduced as a natural solution concept in the early work by [Roth et al., 2004].
When the cycle length is not bounded (K = n), these authors observed that stable
exchanges are equivalent to core solutions of a model of the housing market previously
studied by [Shapley and Scarf, 1974]. It follows that a stable exchange always exists and
can be efficiently computed. At the other end of the spectrum, when K = 2, stable
exchanges correspond to stable solutions of the roommates problem with incomplete
preference lists. When no ties are allowed in the preference lists, then the existence of
stable solutions can be checked in polynomial time [Irving, 1985, Manlove, 2013]. On
the other hand, the question becomes NP-complete when ties are allowed ([Ronn, 1990],
[Manlove et al., 2002]).

When the maximum cycle length is greater than or equal to 3 (K ≥ 3), it is
NP-complete to decide if a stable kidney exchange exists. This follows from a result
of [Biró and McDermid, 2010] for three-sided stable matchings with cyclic preferences,
which is a special case of the stable exchange problem; see also [Mészáros-Karkus, 2017]
for extensions.

The papers cited above focus on the theoretical complexity of stable exchange prob-
lems. More recently, [Klimentova et al., 2023] turned to the challenge of actually comput-
ing stable kidney exchanges for large size, realistic compatibility digraphs. They defined
different optimization variants of the problem, proposed several integer programming
formulations, and carried out extensive numerical experiments with these formulations.

As mentioned in the Introduction, the main contribution of the present paper is
to propose an alternative, weaker concept of local stability for kidney exchanges, to
investigate some of its theoretical properties, and to compare it experimentally with the
classical concept handled in [Klimentova et al., 2023]. The next section introduces this
new concept.

4

3 Stability and local stability

3.1 Stability: definitions

Let G = (V,A) be an arbitrary digraph. For a vertex i ∈ V , we denote as N−
G (i) the set

of in-neighbors of i, that is, N−
G (i) = {j ∈ V : (j, i) ∈ A}.

When G is a compatibility digraph for kidney exchanges, we assume that each patient
i ∈ V has expressed preferences over its set of compatible donors. The preferences can
be described by a rank function ri : N−

G (i) → R, with the interpretation that, for all
j, k ∈ N−

G (i), patient Pi prefers donor Dj to donor Dk (or for short, i prefers j to k) if
and only if ri(j) < ri(k). We say that Pi is indifferent between Dj and Dk (or that i is
indifferent between j and k) if ri(j) = ri(k).

For example in Figure 1 hereunder, the patient of pair 2 prefers the donor of pair 4
to the donor of pair 1.

1

2

3

4

5

2

1

1

1

1

1

Figure 1: A small digraph with preferences

Given an integer parameter K, let CK(G) be the set of K-cycles of G, that is, the set
of directed cycles of G with length at most K. In the sequel, when we speak of a cycle,
we always mean a directed cycle in CK(G), where K is assumed to be fixed. We use
letters like u, v, w, . . . to denote cycles of G (this is admittedly unusual, but will become
natural in Section 4). For any cycle u, we let V (u) be the set of vertices of u, and we let
A(u) be its set of arcs.

Definition 1. An exchange of G is a collection M ⊆ CK(G) of pairwise vertex-disjoint

K-cycles. A vertex i is matched in M or simply, i is in M, if i is contained in one of

the cycles of M. We denote by V (M) =
⋃

u∈M V (u) the set of vertices matched in M
and by A(M) =

⋃
u∈MA(u) the set of arcs included in M.

Definition 2. Let M be an exchange, let u ∈ CK(G) \M be a cycle not contained in

M, and let i ∈ V (u). We say that vertex i prefers the cycle u to the exchange M if

either

• i ̸∈ V (M), or

• i ∈ V (M), (k, i) ∈ A(u), (k′, i) ∈ A(M), and i prefers k to k′.

In the context of kidney exchanges, the first condition in this definition expresses the
assumption that any vertex i prefers being matched (in cycle u) over being unmatched
(in M). The second condition states that i prefers its donor in the cycle u to its donor

5

in the exchange M. When M consists of a single cycle, say, M = {v}, we simply say
that i prefers u to v.

Definition 3. A blocking cycle for an exchange M is a cycle u ∈ CK(G) \ M (not

contained in M) such that each vertex in V (u) prefers u to M. When M = {v}, we say

that u is blocking for v.

So, each vertex i in a blocking cycle u would prefer being contained in the trans-
plantation cycle u rather than in the exchange M (either because i is not matched in
M, or because i prefers its donor in u to its donor in M). This naturally leads to
the definition of a stable exchange (see [Roth et al., 2004], [Biró and McDermid, 2010],
[Klimentova et al., 2023]).

Definition 4. An exchange M is stable if there is no blocking cycle for M in CK(G).

Example 1. In Figure 1, the exchange M = {u}, where u := (1, 2, 3, 1), is not stable.

Indeed, v := (2, 5, 4, 2) is a blocking cycle for M, since the patient of pair 2 prefers the

donor of pair 4 to the donor of pair 1.

Note that when K = 2, Definition 4 mimicks the definition of stable matchings given
in Section 2.

3.2 Local stability: definitions

Example 2. Consider the digraph G in Figure 2. For K = 2, there are four cycles of

interest, namely, u1 := (1, 2, 1) , u2 := (2, 3, 2) , u3 := (3, 1, 3) and u4 := (4, 5, 4). There

is no stable exchange in G. Indeed, at most one of the cycles u1, u2, u3 can be selected

in an exchange, but u1 is blocking for u2, u2 is blocking for u3, and u3 is blocking for u1.

Moreover, since u1, u2, u3 are disjoint from u4, they all block the exchange M = {u4}.
Note however that, from the point of view of the patients of a kidney exchange

program, it does not make sense to rejectM = {u4} since this cycle could be implemented

without opposition from anyone.

1

2

3

4

5

1

1
1

2

2

2

11

Figure 2: A digraph without stable exchange

6

The anomaly underlined in Example 2 arises because Definition 3 does not impose
that a blocking cycle u for M should intersect M (in the sense that V (M)∩ V (u) ̸= ∅).
As a result, an exchange (like M = {u4}) can be blocked by a cycle (say, u1) which is
disjoint from it and which, intuitively, is therefore unrelated. These observations motivate
the consideration of a weaker and seemingly new notion of stability, that we now proceed
to introduce.

Definition 5. A locally blocking cycle, or L-blocking cycle, for an exchange M is a

blocking cycle for M that intersects M. In other words, it is a cycle u that is not

contained in M, that intersects M, and such that each vertex in V (u) prefers u to M.

When M = {v}, we say that u is blocking for v.

Definition 6. An exchange M is locally stable, or L-stable, if there is no L-blocking

cycle for M in CK(G).

Comparing Definition 3 and Definition 5 makes it clear that every L-blocking cycle
is also blocking, but not conversely. As a consequence, every stable exchange is locally
stable, but not conversely.

Example 3. In Figure 3, the cycle u := (2, 4, 2) is L-blocking for the cycle v := (1, 2, 3, 1).

Indeed, these cycles have vertex 2 in common, which prefers u to v because it prefers the

donor of pair 4 to the donor of pair 1, and because vertex 4 is unmatched in v.

1

2

3

4

2

1

1

1

1

Figure 3: u := (2, 4, 2) is L-blocking for v := (1, 2, 3, 1)

Example 4. In Example 2 and Figure 2, the exchange M = {u4} is locally stable, but

not stable.

3.3 Stability and local stability: characterizations

In this section, we provide alternative characterizations of stable and L-stable exchanges
which will be used in Section 5 to derive integer programming formulations.

Definition 7. For a cycle v ∈ CK(G), we denote by B(v) the set of all L-blocking cycles

of v.

Definition 8. Two intersecting cycles u, v are friends if u does not L-block v and if v

does not L-block u. We denote by F(v) the set of cycles that are friends with v.

7

Clearly, u ∈ F(v) if and only if v ∈ F(u). Cycles u and v are friends when some
vertex i in V (u) ∩ V (v) has no preference between the two cycles (for example if the
cycles share an arc (j, i) as illustrated in Figure 4), or if the two cycles share at least two
vertices and one prefers u while the other one prefers v.

1

2

3

4

2

1

1
1

1

Figure 4: v = (1, 2, 3, 1) and u = (2, 3, 4, 2) are friends when K = 3

We note the following property for future reference.

Lemma 1. Two cycles u, v intersect each other if and only if u ∈ B(v) ∪ F(v) or v ∈
B(u) ∪ F(u).

Proof. This trivially follows from the definitions.

The following result will be crucial for the subsequent developments.

Lemma 2. LetM be an exchange and let v be a cycle not contained inM. The following

statements are equivalent:

(i) there exists w ∈ M such that w ∈ B(v) ∪ F(v);

(ii) v is not blocking for M;

(iii) v intersects M and v is not L-blocking for M.

Proof. (i) ⇒ (ii). Let w ∈ M. If w ∈ B(v), then by definition V (v)∩V (w) is not empty,

and any vertex in the intersection prefers w to v. It follows that v is not blocking for M.

If w ∈ F(v), then again V (v) ∩ V (w) is not empty and v /∈ B(w). Hence, there must

be a vertex i ∈ V (v) ∩ V (w) such that i does not prefer v to w. So, once again, v is not

blocking for M.

(ii) ⇔ (iii). This equivalence is just a restatement of Definition 5.

(iii) ⇒ (i). If v intersects M, but v is not L-blocking for M, it means that there

exists a cycle w ∈ M and a vertex i ∈ V (v) ∩ V (w) such that either i prefers w to v, or

i is indifferent between v and w. In particular, v /∈ B(w). But then, Lemma 1 implies

that w ∈ B(v) ∪ F(v).

We are now ready for the characterization theorems.

Theorem 1. For an exchange M, the following conditions are equivalent:

(a) M is stable;

(b) for each cycle v /∈ M, there exists w ∈ M such that w ∈ B(v) ∪ F(v).

8

Proof. This immediately follows from Definition 4 and from the equivalence of (i)-(ii) in

Lemma 2.

Theorem 2. For an exchange M, the following conditions are equivalent:

(a) M is L-stable;

(b) for each cycle v /∈ M, if v intersects M, then there exists w ∈ M such that w ∈
B(v) ∪ F(v).

Proof. (a) ⇒ (b). If M is L-stable and v /∈ M, then v cannot be L-blocking for M. So,

if v intersects M, then condition (iii) of Lemma 2 holds. This implies that condition (i),

and hence (b), also hold.

(b) ⇒ (a). Conversely, if (b) holds, then every cycle v /∈ M is either disjoint from M
(in which case it is not L-blocking) or satisfies condition (i) of Lemma 2 (in which case

it is also not L-blocking, in view of condition (iii)). Hence, M is L-stable.

4 Blocking digraph, kernels and local kernels

The aim of this section is to provide alternative interpretations of stable and L-stable
exchanges in terms of a digraph G∗ = (V ∗, A∗), to be called the blocking digraph of G,
that we define as follows:

• V ∗ = CK(G): there is a vertex v in V ∗ for each cycle v in CK(G);
• A∗ = {(v, w) : w ∈ B(v) ∪ F(v)}.

Remark 1. In view of Lemma 1, when two cycles u, v intersect, then at least one of the

arcs (u, v) or (v, u) is in A∗ (both arcs are in A∗ exactly when u and v are friends). And

conversely, if (u, v) is an arc in A∗, then u and v intersect. So, G∗ can be viewed as an

orientation of the intersection graph of K-cycles of G. When K = 2, G∗ is an orientation

of a line graph (see [Boros and Gurvich, 2006], [Maffray, 1992], [Ratier, 1996] for related

constructions when G is bipartite).

The following concept is classical in game theory and graph theory; see, e.g., [von Neumann and Morgenstern, 1953],
and [Boros and Gurvich, 2006] for related literature.

Definition 9. A kernel in a digraph D = (W,E) is a subset S ⊆ W which is both

independent and absorbing :

• independent : for all (u, v) ∈ E at most one of u, v is in S;

• absorbing : for every vertex v /∈ S, there exists a vertex w ∈ S such that (v, w) ∈ E

(see Figure 5).

From Theorem 1 and the definition of kernels, we immediately obtain:

9

S

w

v

Figure 5: An absorbing set S

Theorem 3. For a digraph G = (V,A) and its blocking digraph G∗ = (V ∗, A∗), the stable

exchanges of G are exactly the kernels of G∗.

The relation expressed in Theorem 3 does not come as a complete surprise, as similar
observations have been formulated in the literature, e.g., for the stable marriage problem;
see [Manlove, 2013], [Ratier, 1996]. We are not aware that the connection has been
explicitly stated for stable kidney exchanges.

Let us now turn to our new notion of local stability. [Galeana-Sánchez and Neumann-Lara, 1984]
define local kernels as follows (the terminology is due to [Duchet and Meyniel, 1993]).

Definition 10. A local kernel, or L-kernel, of a digraph D = (W,E) is a subset S of

vertices which is both independent and locally absorbing :

• locally absorbing : for all u ∈ S and v /∈ S such that (u, v) ∈ E, there exists w ∈ S

such that (v, w) ∈ E.

The second condition in this definition means that every out-neighbor of S is “ab-
sorbed” by S. Figure 6 provides an illustration. Clearly, every kernel is a local kernel.

S

w

v

u

Figure 6: A locally absorbing set S

The relation between L-stable exchanges and L-kernels is akin to the relation between
stable exchanges and kernels, namely:

Theorem 4. For a digraph G = (V,A) and its blocking digraph G∗ = (V ∗, A∗), the

L-stable exchanges of G are exactly the L-kernels of G∗.

Proof. Assume that M is an L-stable exchange in G. Then, M is independent in G∗. If

u ∈ M, v /∈ M and (u, v) ∈ A∗, then u intersects v (by Lemma 1). By statement (b)

10

in Theorem 2 and by definition of the blocking digraph, there exists w ∈ M such that

(v, w) ∈ A∗, and hence M is a local kernel in G∗.

Conversely, if M is an L-kernel in G∗, then M is an exchange in G. To verify

statement (b) in Theorem 2, suppose that v /∈ M and that v intersects M, i.e., there

is a cycle u ∈ M such that v intersects u. In view of Remark 1, then, (u, v) ∈ A∗ or

(v, u) ∈ A∗ (or both). If (v, u) ∈ A∗, then u ∈ B(v)∪F(v) by definition of A∗, and hence

condition (b) of Theorem 2 holds. If (u, v) ∈ A∗, then by definition of L-kernels there

exists w ∈ M such that (v, w) ∈ A∗, and condition (b) is satisfied again.

There only seems to be a handful of publications about local kernels. We collect here
some simple observations of interest.

Fact 1. Not every digraph has a kernel, but every digraph has an L-kernel, since the

empty set always is an L-kernel.

Fact 2. A directed cycle of odd length, say (u1, u2, . . . , u2ℓ+1, u1), has no L-kernel other

than the empty set. Indeed, in any nonempty independent set S of this odd cycle, there

is a vertex uk ∈ S such that uk+1, uk+2 are not in S. Then, uk and uk+1 violate the

definition of local absorption.

Fact 3. Every kernel is a maximal kernel and is a maximal L-kernel. However, in view

of Fact 1, a maximal L-kernel is not necessarily a kernel.

u1

u2

u3

u4

Figure 7: A blocking digraph without kernel but with a nonempty L-kernel

Example 5. Figure 7 illustrates the previous facts. It displays the blocking digraph G∗

of the digraph G in Figure 2. In line with the discussion in Section 3.2, G∗ has no kernel

(essentially, because of the cyclic component (u1, u2, u3, u1)), but S = {u4} is a maximal

L-kernel of G∗.

Fact 4. Even when a kernel exists, the maximum size of an L-kernel can be strictly

larger than the maximum size of a kernel.

Example 6. The digraph G∗ in Figure 8 illustrates this fact. Indeed, {u3} is the unique

kernel of G∗, while {u1, u2} is its largest L-kernel. The size of the maximum L-kernel

could actually be made arbitrarily large by creating multiple copies of vertices u1 and u2.

11

u1

u2

u3

u6

u5

u4

Figure 8: A digraph G∗ with an L-kernel larger than the unique kernel

1

7

2

4

8

6

3

5

9

13 12

16

17

10

11

14 15

1 1

11

1 1

11

1

1
1

2
2

1
1

1

3

1

2
1

2

1

1

1

Figure 9: A compatibility digraph G

It is interesting to observe that G∗ in Figure 8 is the blocking digraph of the KEP

compatibility graph in Figure 9 (for K = 4), where u1 = (1, 2, 3, 4, 1), u2 = (5, 6, 7, 8, 5),

u3 = (3, 5, 14, 9, 3), u3 = (3, 5, 14, 9, 3), u4 = (12, 13, 14, 15, 12), u5 = (9, 10, 11, 12, 9),

and u6 = (9, 16, 17, 13, 9). As a consequence, the maximum stable exchange in G is

Ms = {u3} where u3 = (3, 5, 14, 9, 3), whereas the maximum L-stable exchange is Mls =

{u1, u2} where u1 := (1, 2, 3, 4, 1) and u2 := (5, 6, 7, 8, 5).

Fact 4 and Example 6 confirm that a maximum locally stable exchange might be
larger than a maximum stable exchange. In the context of kidney exchanges, it means
that an L-stable exchange may increase the number of transplants. This observation
underlines the potential relevance of locally stable exchange.

In Section 6, we will turn to the computation of maximum L-kernels and L-stable
exchanges. [Chvátal, 1973] proved that deciding whether a digraph has a kernel is an
NP-complete problem. (The NP-hardness results cited in Section 2 for stable exchanges
strengthen this statement.) The complexity of computing L-kernels has apparently not
been investigated in the literature, but we can establish:

Theorem 5. Given a digraph G = (V,A), deciding whether G has a nonempty local

kernel is NP-complete.

The proof is in A. Note that, as a corollary of Theorem 5, computing a local kernel
of maximum size is also NP-hard.

12

5 Integer programming formulations

We are now ready to provide integer programming formulations of stable and L-stable
exchanges. For this purpose, we introduce the natural binary variables yv, for all v ∈
CK(G), with the interpretation that yv = 1 if cycle v is in the exchange.

Consider the following constraints:

yu + yv ≤ 1 ∀u, v ∈ CK(G) : V (u) ∩ V (v) ̸= ∅ (1)

1 ≤ yv +
∑

w∈B(v)∪F(v)

yw ∀v ∈ CK(G) (2)

yv ∈ {0, 1} ∀v ∈ CK(G). (3)

Theorem 6. The solutions of (1), (2), (3) describe all stable exchanges of G.

Proof. Suppose that y satisfies (1), (2), (3), and let M be the associated set of cycles.

Constraints (1) express that M is an exchange, and constraints (2) express condition (b)

in Theorem 1.

Formulation (1)-(3) can also be viewed as the natural formulation for the kernels
of G∗, as found for example in [Aharoni and Holzman, 1998], [Chen et al., 2016]. The
packing constraints (1) can be replaced by the stronger constraints∑

v∈CK(G):i∈V (v)

yv ≤ 1 ∀i ∈ V (4)

since (4) expresses that at most one cycle containing a given vertex i can be included
in an exchange. The collection of cycles {v ∈ CK(G) : i ∈ V (v)} is a clique in G∗ and
hence, (4) is one of the well-known clique inequalities∑

v∈C
yv ≤ 1 if C is a maximal clique in G∗.

Observe, however, that (4) does not necessarily include all maximal clique inequalities
for G∗. The strengthened formulation (2)-(4) is a restatement of the so-called “cycle
formulation” of stable exchanges in [Klimentova et al., 2023].

Let us turn next to a formulation of L-stability. Define the constraints:

yu + yv ≤ 1 ∀u, v ∈ CK(G) : V (u) ∩ V (v) ̸= ∅ (5)

yu ≤
∑

w∈B(v)∪F(v)

yw ∀u ∈ CK(G),∀v ∈ B(u) ∪ F(u) (6)

yv ∈ {0, 1} ∀v ∈ CK(G). (7)

Theorem 7. The solutions of (5), (6), (7) describe all L-stable exchanges of G.

13

Proof. When y satisfies (5), (6), (7), let M be the associated set of vertices in G∗. Then,

M is independent in G∗. To verify that M is locally absorbing in G∗, assume that

u ∈ M, v /∈ M and (u, v) ∈ A∗ (that is, v ∈ B(u) ∪ F(u)). Then, the inequalities (6)

imply the existence of w ∈ B(v)∪F(v) such that yw = 1, i.e., (v, w) ∈ A∗ and w ∈ M as

required for local absorption. Hence, (5)-(7) exactly describes the local kernels of G∗.

Here again, the constraints (5) can be replaced by the tighter clique inequalities (4).
Moreover, note that the inequalities (6) are redundant when v ∈ F(u): indeed, if v ∈ F(u)
then u ∈ F(v), hence the right-hand side of (6) contains yu. As it stands now, the
formulation (5)-(7) can be rewritten as the following natural formulation of local kernels
in G∗ = (V ∗, A∗):

yu + yv ≤ 1 ∀(u, v) ∈ A∗ (8)

yu ≤
∑

w:(v,w)∈A∗

yw ∀(u, v) ∈ A∗ (9)

yv ∈ {0, 1} ∀v ∈ V ∗. (10)

The stability constraints (9) can be aggregated by fixing v and summing for all u
such that (u, v) ∈ A∗. This leads to∑

u:(u,v)∈A∗

yu ≤ δ−(v)
∑

w:(v,w)∈A∗

yw ∀v ∈ V ∗ (11)

where δ−(v) = |{u : (u, v) ∈ A∗}|. One can easily verify that constraints (4), (10) and
(11) correctly describe the L-kernels of G∗ (and hence, the L-stable exchanges of G).
The linear relaxation of (11) is weaker than that of (9). However, there are only |V ∗|
aggregated constraints of type (11), while there are O(|A∗|) constraints of type (9). We
will experimentally compare these different formulations in Section 6.

6 Numerical tests for L-stable exchanges

The aim of this section is, first, to assess the practical difficulty of computing maximum
L-stable exchanges by solving the IP formulations proposed in Section 5 and second,
to compare optimal stable against optimal L-stable exchanges. All formulations were
implemented using Python 3.10 programming language and tested using Gurobi 9.5.0.
The tests were executed on a Dell Latitude 7490 running Windows 10 64Bit in an Intel
Core i5-7300U CPU with 2 Cores at 2.60GHz and 16 GB of RAM.

6.1 Instances

We have performed numerical tests on a set of randomly generated instances which are
meant to reproduce the features of compatibility digraphs arising in real-world KEPs.
The instances are described in more detail in [Klimentova et al., 2023]. Each instance
is defined by a compatibility KEP digraph G = (V,A), by preferences on the potential

14

donors of each patient, and by a value of K. The number n of incompatible pairs can
take 22 distinct values, namely,

n ∈ {20, 30, · · · , 170, 180, 200, 250, 300, 350, 400},

andK ∈ {2, 3, 4}. Each instance also contains ⌈0.05×n⌉ non-directed donors. The chains
originating from an NDD are viewed as cycles in an augmented digraph, as explained in
Section 2.2. Fifty different digraphs with |V | = n+⌈0.05n⌉ vertices are available for each
value of n. For each digraph, the preferences on the arcs are strict, that is, a patient is
never indifferent between two distinct donors. In total, we have 3300 instances (22 × 3
× 50) in this dataset.

We have also experimented with instances featuring weak preferences (as in [Klimentova et al., 2023]),
and with a third data set from [Smeulders et al., 2022]. Since the results were similar in
all cases, we only report here on the first type of instances.

By way of illustration, Table 1 displays some of the size parameters of the graphs
G and G∗ for the 50 instances with n = 40 and K = 3 (see also Table 4 further down
for instances of different size, with K = 2). In this and subsequent tables, with a slight
abuse of notations for |A|, |V ∗| and |A∗|:

• n is the number of patient/donor pairs in each digraph G;
• |V | = n+ ⌈0.05n⌉ is the number of vertices of G;
• |A| is the average number of arcs of G in 50 instances with the same value of n;
• |V ∗| is the average number of cycles in 50 instances with the same value of n,
that is, the average number of vertices in the corresponding blocking digraphs; the
next two columns (min|V ∗| and max|V ∗|) display the minimum and the maximum
number of cycles in the 50 instances;

• |A∗| is the average number of arcs in the corresponding blocking digraphs; the next
two columns (min|A∗| and max|A∗|) show the minimum and the maximum number
of arcs in 50 blocking digraphs, for the same value of n.

Table 1: Size parameters of instances with n = 40, K = 3

n |V | |A| |V ∗| min|V ∗| max|V ∗| |A∗| min|A∗| max|A∗|
40 42 471 452 27 1052 58533 156 199874

6.2 Comparison of formulations for maximum L-stable exchanges

In this section, we first compare the IP formulations proposed to describe locally stable
exchanges by solving the maximum locally stable exchange problem with the objective
function

max
∑

u∈CK(G)

|V (u)| yu (12)

where |V (u)| is the length of cycle u. Four different IP formulations have been tested:
beside the integrality constraints (7), they contain the following L-stability constraints.

• Formulation 1: constraints (5) and (6); total: 2|A∗| constraints.

15

Figure 10: Comparison of GapLP for Formulations 3 and 4 when n = 40, K = 3. The
horizontal axis displays gaps and the vertical axis displays the number of instances with
a gap smaller than a given value.

• Formulation 2: constraints (5) and (11); total: |A∗|+ |V ∗| constraints.

• Formulation 3: constraints (4) and (6); total: |V |+ |A∗| constraints.

• Formulation 4: constraints (4) and (11); total: |V |+ |V ∗| constraints.

Recall from Section 5 that constraints (4) are stronger than (5), and constraints (6) are
stronger than (11). So, Formulation 2 is in principle the weakest and Formulation 3 is
the tightest among these four formulations, whereas Formulations 1 and 4 are incompa-
rable with each other, and are intermediate between 2 and 3. However, the number of
constraints also differs significantly and as a result, it becomes hard to predict the total
running time of different formulations, in particular when A∗ grows large (see Table 1
and Table 4).

In order to assess numerically the quality of the linear relaxations, we computed the

integrality gap GapkLP = 100 × zkLP−z∗

z∗ , where zkLP is the optimal value of the linear
relaxation of Formulation k and z∗ is the optimal value of the problem. For all instances
with n ∈ {20, 30, 40} and K = 2, 3, Formulations 1 and 2 appear to have the same
integrality gap, and this gap is extremely large. For example, for 50 instances with
n = 40 and K = 3, the integrality gap is in [112; 6094] with a mean value of 2802%!
The gaps for Formulations 3 and 4 are much smaller. This is illustrated in Figure 10
which displays the performance profiles of Gap3LP and Gap4LP (it shows the number of
instances for which the gap is smaller than the abscissa on the horizontal axis; the gap for
Formulations 1 and 2 is too large to be meaningfully displayed in this figure). Both gaps
are smaller than 35% for all 50 instances. As expected, Formulation 3 is tighter than
Formulation 4, but only slightly so. These results confirm that the clique inequalities (4)
considerably tighten the formulations, whereas the aggregation of constraints (6) into (11)
does not deteriorate very much the upper bounds.

16

Figure 11: Comparison of running time for Formulations 1–4 when n = 40, K = 3.
The horizontal axis displays running times (in seconds) and the vertical axis displays the
number of instances with a running time smaller than a given value.

Table 2: Mean running time (in seconds) for Formulations 1–4 when n = 40, K = 3

Formulation 1 36.58

Formulation 2 3.78

Formulation 3 14.67

Formulation 4 0.56

Let us now consider the total running time of the IP solver on the different for-
mulations. Table 2 displays the mean running time (in seconds) for each formulation,
computed over 50 instances of size n = 40 and K = 3. Figure 11 displays the perfor-
mance profiles of the running time for the four formulations on the same instances; here,
the value on the vertical axis represents the number of instances solved as a function of
the running time (in seconds) indicated on the horizontal axis.

With Formulation 4, 44 instances are solved in less than 1 second and all 50 instances
are solved within 3 seconds. On the other hand, with Formulation 1, only 11 instances
are solved under 3 seconds, 47 instances under 120 seconds, and all the instances under
230 seconds. As the running time varies significantly for the different formulations, even
for small instances, a time limit of 2 minutes was set in order to test additional instances.
Table 3 displays the number of instances that were solved within the time limit among
50 instances with K = 3 and n ∈ {40, 60, 80, 100}.

17

Table 3: Comparison of formulations: number of instances solved within 2 minutes

n 40 60 80 100

Formulation 1 47 8 0 0

Formulation 2 50 50 25 0

Formulation 3 50 18 0 0

Formulation 4 50 50 49 47

Surprisingly, in spite of its weaker relaxation and of its larger size, Formulation 2 often
turns out to be more efficient than Formulation 3. This seems to be at least partially due
to the way Gurobi handles different types of constraints. Indeed, when the preprocessing
steps and the cut generation parameters of the solver are disabled, the running times of
Formulations 2 and 3 turn out to be worse, but very close to each other.

All in all, however, the results clearly suggest that, under our experimental setting,
Formulation 4 is the most efficient one, certainly because it is compact and has a relatively
good LP relaxation. Therefore, we restrict our attention to this formulation in the sequel.
When K = 2, we will see in the next section that large instances of the L-exchange
problem can be solved efficiently. When K = 3, however, the problem may become much
harder. For example, when n = 120, Gurobi solves Formulation 4 in 463 seconds on
average and can solve 41 of 50 instances in less than 10 minutes. When n = 130, the
average running time doubles (990 seconds) and only 19 instances are solved in less than
10 minutes. Clearly, more work may be needed in the future to solve large instances
efficiently. But for now, we prefer to turn to a comparison between stable and L-stable
exchanges.

6.3 Comparison with stable exchanges

As underlined in Section 4, the maximum size of an L-stable exchange (or an L-kernel)
may potentially be (much) larger than the maximum size of a stable exchange (or a
kernel). In particular, nonempty L-stable exchanges may exist even in situations where
there is no stable exchange.

Moreover, [Klimentova et al., 2023] have observed that, in spite of the theoretical
complexity of the problem (see [Biró and McDermid, 2010]), computing maximum stable
exchanges is relatively easy in practice. Within a time limit of 1 hour, they solve all
instances with K = 2, all instances up to n = 100 when K = 3, and all instances up to
n = 50 when K = 4 (on a relatively fast computer). By contrast, we are not aware of
any numerical work regarding the computation of L-stable exchanges.

We have therefore performed an experimental comparison of the solution of instances
of the maximum stable exchange problem and of the maximum L-stable exchange problem
using formulation (2)-(4) and formulation (4), (11), (7) (Formulation 4), respectively,
with the same objective function (12).

Let us first briefly comment on the running time of the IP solver for each problem.
Figure 12 and Figure 13 display the performance profiles for both problems on two sets of
50 instances with K = 3, n = 80 and n = 100 respectively. We see that the running time
never exceeds 480 seconds, and is actually much shorter for most instances. Moreover,

18

there is no clear dominance pattern regarding the practical difficulty of solving these two
models.

Figure 12: Running time for stable exchanges and L-stable exchanges, n = 80, K = 3.
The horizontal axis displays running times (in seconds) and the vertical axis displays the
number of instances with a running time smaller than a given value.

Figure 13: Running time for stable exchanges and L-stable exchanges, n = 100, K = 3.
The horizontal axis displays running times (in seconds) and the vertical axis displays the
number of instances with a running time smaller than a given value.

Let us next examine the features of the optimal solutions.
For K = 3, all the instances up to n = 180 have a stable exchange. Likewise for all

the instances up to n = 80 when K = 4. Moreover, for these instances, the maximum
size of a stable exchange and of an L-stable exchange is always the same (in spite of
Fact 4 and Example 6, which show that equality does not hold in general).

By contrast, when K = 2, many instances in our dataset do not have a stable ex-
change. For example, among 600 instances with n ranging between 50 and 400, 72
instances do not have a stable exchange. Table 4 provides information about these in-
stances, with the same notations as in Table 1. One can readily observe that for a fixed
value of n, the number of cycles in the compatibility digraphs can vary significantly, and
this translates into even more variance in the number of arcs in the blocking digraphs.

19

Table 4: Size parameters of instances with K = 2

n |V | |A| |V ∗| min|V ∗| max|V ∗| |A∗| min|A∗| max|A∗|
50 53 782 116 52 193 1394 316 2783

70 74 1522 217 143 348 3636 1693 7851

90 95 2520 365 220 577 7938 3661 16058

110 116 3736 544 337 838 14530 5378 26005

130 137 5183 749 479 1099 23487 10379 37859

150 158 6938 997 640 1337 35967 17765 52686

170 179 8892 1273 863 1676 51791 28275 75557

200 210 12104 1704 1255 2250 80657 49880 128648

250 263 19191 2718 1814 3582 162990 83531 251676

300 315 27554 3924 2686 5152 282393 145333 439438

350 368 37697 5361 4176 6890 451272 296268 677069

400 420 49019 6948 5557 8784 667607 467942 962287

Table 5 synthesizes some results of our computational experiments. The left part of
the table refers to the maximum stable exchange problem and the right part refers to
the maximum L-stable exchange problem. In detail, for each value of n:

• a and aL are the average optimal values for each problem; the averages are com-
puted over those instances which have a stable exchange or a nonempty L-stable
exchange, respectively;

• prep and prepL are the average times (in seconds) required to construct the models;
• solve and solveL are the average times (in seconds) required to solve the models;
• T and TL are the average total times (in seconds) required to handle each problem;
e.g., T = prep + solve;

• ϕ is the number of instances that do not have a stable exchange among 50 instances
with the same value of n;

• ϕL is the number of instances that do not have a nonempty L-stable exchange
among 50 instances with the same value of n.

20

Table 5: Results for instances with K = 2
n a prep solve T ϕ aL prepL solveL TL ϕL

50 23.3 0.0 0.0 0.0 2 22.9 0.0 0.0 0.0 0

70 32.9 0.0 0.0 0.0 3 32.1 0.0 0.0 0.0 0

90 43.8 0.1 0.0 0.1 6 42.7 0.1 0.0 0.1 0

110 56.2 0.1 0.0 0.1 3 54.7 0.1 0.0 0.2 0

130 67.1 0.2 0.0 0.2 2 65.8 0.2 0.0 0.3 0

150 78.6 0.2 0.0 0.2 2 77.4 0.4 0.1 0.5 0

170 90.3 0.3 0.0 0.3 8 82.7 0.6 0.1 0.7 0

200 105.8 0.5 0.1 0.6 5 99.6 0.8 0.2 1.0 0

250 137.8 1.0 0.2 1.2 8 122.5 1.4 0.5 1.9 0

300 167.6 1.9 0.5 2.4 4 154.9 2.6 0.9 3.5 0

350 198.9 3.0 0.9 3.9 11 164.6 4.0 1.4 5.4 0

400 230.4 4.6 1.4 6.0 18 167.6 5.9 2.2 8.2 1

A few observations can be made from Table 5. First, the average running times are
extremely low. They appear to be a bit higher for the L-stable exchange problem, but the
performance profiles show that no clear conclusion can be drawn in this respect. (When
K = 2, the stable exchange problem is equivalent to the stable roommate problem with
incomplete preferences, which is polynomially solvable; [Irving, 1985]. However, we have
not exploited this property in our experiments.)

More interestingly, just as in the cases K = 3 and K = 4, none of the random
instances we tested for K = 2 has an L-stable exchange larger than the maximum stable
exchange, provided that there is a stable exchange (this, in spite of Fact 4). However,
among the 72 instances in Table 5 which do not have a stable exchange, 71 have a
nonempty L-stable exchange.

The average optimal values of the two problems differ, but one should remember
that the averages are computed over those instances which have a stable exchange or
a nonempty L-stable exchange, respectively. So, the differences are due solely to the
instances that do not have a stable solution but have a nonempty L-stable solution. The
magnitude of the differences indicates that for such instances, the size of the maximum
L-stable exchange is both significantly larger than zero, and significantly smaller than
for the instances which have a stable exchange. For example, when n = 200, the average
size of a stable exchange (if there is one) is 105.8, whereas the average size of a maximum
L-stable exchange is 43.8 for the remaining 5 instances. Similarly, when n = 400, the
32 instances with a stable exchange have an average optimal value equal to 230.4 for
both problems, whereas 17 instances with no stable solution have an average maximum
L-stable exchange of size 59.41.

21

7 Local strong stability

7.1 Definitions

In [Klimentova et al., 2023], the authors define another type of stability, namely strong
stability, that we now proceed to introduce by adapting the definitions of Section 3.1.

Definition 11. Let M be an exchange, let u ∈ CK(G) \M be a cycle not contained in

M, and let i ∈ V (u).

We say that vertex i is indifferent between the cycle u and the exchange M if i ∈
V (M), (k, i) ∈ A(u), (k′, i) ∈ A(M), and i is indifferent between k and k′.

We say that i weakly prefers u to M if either i prefers u to M or i is indifferent

between u and M.

Definition 12. A weakly blocking cycle for an exchange M is a cycle u ∈ CK(G) \M
such that

• each vertex in V (u) weakly prefers u to M, and

• if u intersects M, then at least one vertex i ∈ V (u) ∩ V (M) prefers u to M.

When M = {v}, we simply say that u is weakly blocking for v.

Definition 13. An exchange M is strongly stable if there is no weakly blocking cycle

for M in CK(G).

Similarly to what we did in Section 3, we now propose a seemingly new concept of
locally weakly blocking cycles and locally strongly stable exchanges.

Definition 14. A locally weakly blocking cycle, or LW-blocking cycle, for an exchange

M is a weakly blocking cycle for M that intersects M. When v ∈ CK(G), we denote by

BW (v) the set of all LW-blocking cycles of the exchange {v} (or for short, of the cycle v).

Note that for an exchange M, an L-blocking cycle is an LW-blocking cycle, while
the converse is not necessarily true. In particular, for a cycle v, B(v) ⊆ BW (v) but in
general, B(v) ̸= BW (v).

Example 7. Consider again the digraph of Figure 4 with K = 3 and exactly two cycles

in CK(G), namely, v = (1, 2, 3, 1) and u = (2, 3, 4, 2). One can check that BW (v) = {u}.
Indeed, vertex 2 prefers its predecessor in u to its predecessor in v, vertex 3 has the same

predecessor in both cycles, and vertex 4 is not in V (v). On the other hand, B(v) is empty

since vertex 3 does not prefer u to v and hence, u is not L-blocking for v.

Definition 15. An exchange M is called locally strongly stable, or LS-stable, if there is

no LW-blocking cycle for M in CK(G).

22

Let us clarify the relations between the concepts introduced so far.

Theorem 8. Let M be an exchange and let v be a cycle not contained in M.

(a) If v is blocking for M, then v is weakly blocking for M.

(b) If v is locally weakly blocking for M, then v is weakly blocking for M.

(c) If v is locally blocking for M, then v is both blocking and locally weakly blocking for

M.

(d) If M is strongly stable, then M is both stable and locally strongly stable.

(e) If M is stable, then M is locally stable.

(f) If M is locally strongly stable, then M is locally stable.

Proof. All implications directly follow from the definitions. In particular, implication (d)

follows from (a) and (b), implications (e) and (f) follow from (c).

None of the implications can be reversed in Theorem 8. Moreover, stable exchanges
and locally strongly stable exchanges are, in general, unrelated. These points are illus-
trated by the next example.

Example 8. The exchange {u4} in Example 2 is LS-stable, but not stable. On the

other hand, the exchange {v} in Example 7 is stable, but not LS-stable (and hence, not

strongly stable). The latter observation also clarifies the fact that strong stability differs

from stability even when the preference relation between each vertex and its in-neighbors

is strict (no indifference).

Finally, we need one last definition before we turn to alternative characterizations of
(local) strong stability.

Definition 16. Two intersecting cycles u and v are strong friends if u is not LW-blocking

for v and v is not LW-blocking for u, that is, if u /∈ BW (v) and v /∈ BW (u). We denote

by FS(v) the set of strong friends of a cycle v.

Clearly, u ∈ FS(v) if and only if v ∈ FS(u). Two cycles are strong friends when they
share at least two vertices, one of which prefers v while the other one prefers u, or when
all vertices in V (u) ∩ V (v) are indifferent between their respective predecessors in u and
in v.

7.2 Characterizations and formulations

With the above definitions, most of the characterizations and formulations obtained in
previous sections for stable and L-stable exchanges can be adapted in a rather straight-
forward way for strongly stable and LS-stable exchanges. In particular, the statements
of Lemma 1, Lemma 2, Theorem 1 and Theorem 2 can be modified with B(v) replaced
by BW (v) and F(v) replaced by FS(v) for all v ∈ CK(G), as follows.

23

Lemma 3. Two cycles u, v intersect each other if and only if u ∈ BW (v) ∪ FS(v) or

v ∈ BW (u) ∪ FS(u).

Lemma 4. LetM be an exchange and let v be a cycle not contained inM. The following

statements are equivalent:

(i) there exists w ∈ M such that w ∈ BW (v) ∪ FS(v);

(ii) v is not weakly blocking for M;

(iii) v intersects M and v is not locally weakly blocking for M.

Proof. (i) ⇒ (ii). Let w ∈ M. If w ∈ BW (v), then V (v) ∩ V (w) is not empty, and at

least one vertex in the intersection prefers w to v. It follows that v is not blocking for

M.

If w ∈ FS(v), then by definition, V (v) ∩ V (w) is not empty and v /∈ BW (w). Hence,

either there is a vertex in V (v)∩V (w) which prefers w to v, or every vertex in V (v)∩V (w)

is indifferent between v and w. So, once again, v is not weakly blocking for M.

(ii) ⇒ (iii). Indeed, v is weakly blocking for M if and only if either V (v)∩V (M) = ∅
or v is locally weakly blocking for M.

(iii) ⇒ (i). If v intersects M, but v is not LW-blocking for M, then there exists a

cycle w ∈ M such that either some vertex in V (v)∩V (w) prefers w to v, or every vertex

in V (v) ∩ V (w) is indifferent between v and w. In particular, v /∈ BW (w). But then, by

Lemma 3, w ∈ BW (v) ∪ FS(v).

The next two theorems are now immediate consequences of Lemma 4.

Theorem 9. For an exchange M, the following conditions are equivalent:

(a) M is strongly stable;

(b) for each cycle v /∈ M, there exists w ∈ M such that w ∈ BW (v) ∪ FS(v).

Theorem 10. For an exchange M, the following conditions are equivalent:

(a) M is locally strongly stable;

(b) for each cycle v /∈ M, if v intersects M, then there exists w ∈ M such that w ∈
BW (v) ∪ FS(v).

By analogy with Section 4, we introduce the weak blocking digraph G∗∗ = (V ∗, A∗∗)
associated with G, where

• V ∗ = CK(G);
• A∗∗ = {(v, w) : w ∈ BW (v) ∪ FS(v)}.

Theorem 11. For a digraph G and its weak blocking digraph G∗∗, the strongly stable

exchanges of G are exactly the kernels of G∗∗, and the locally strongly stable exchanges

of G are exactly the L-kernels of G∗∗.

24

Proof. The statement follows from Theorem 9 and Theorem 10 (compare with Theorem 3

and Theorem 4).

7.3 Numerical tests for LS-stable exchanges

This section presents the results of numerical experiments based on the following formu-
lation of maximum LS-stable exchanges:

max
∑
v∈V ∗

|V (v)| yv (13)∑
v∈V ∗:i∈V (v)

yv ≤ 1 ∀i ∈ V (14)

∑
u:(u,v)∈A∗∗

yu ≤ ∆−(v)
∑

w:(v,w)∈A∗∗

yw ∀v ∈ V ∗ (15)

yv ∈ {0, 1} ∀v ∈ V ∗. (16)

where ∆−(v) := |{u : (u, v) ∈ A∗∗}| is the number of in-neighbors of v in the weak
blocking digraph G∗∗.

Interestingly, and unlike the case of (local) stability, several instances do not have a
strongly stable exchange when K = 3 and K = 4, but many of those instances do have
a locally strongly stable exchange! For example, when K = 3 and n ≤ 100, 35 instances
(out of 450) do not have a strongly stable exchange. Table 6 provides information about
the associated graphs. The notations are the same as in Table 4, and additionally:

• |A∗∗| is the average number of arcs in the weak blocking digraphs; the next two
columns, min|A∗∗| and max|A∗∗| show the minimum and the maximum number of
arcs in 50 weak blocking digraphs for each value of n.

Table 6: Size parameters of instances of with K = 3

n |V | |A| |V ∗| min|V ∗| max|V ∗| |A∗∗| min|A∗∗| max|A∗∗|
20 21 118 64 5 178 1924 6 9078

30 32 285 233 45 580 16600 371 66787

40 42 472 452 27 1052 53767 109 186104

50 53 782 1013 330 2064 206148 22292 619907

60 63 1081 1484 521 3035 399117 50755 1167418

70 74 1522 2521 1055 4764 961696 208876 2584228

80 84 1930 3495 1790 6404 1686656 469639 4609734

90 95 2520 5409 2554 11527 3477577 1020955 11826362

100 105 3020 6895 3783 13587 5296861 1637136 15697727

Comparing Table 6 and Table 4, a first observation is that the average number of
cycles increases considerably when K goes from 2 to 3. For example, when n = 90, |V ∗|
goes up (on average) from 365 to 5409. But the growth of |A∗∗| with respect to |A∗|

25

is even more spectacular: when n = 90 and K = 2, the average value of |A∗| is 7938,
whereas the average value of |A∗∗| is almost 3.5× 106 when K = 3.

Table 7 displays some results of the computational experiments. The left part of the
table refers to the maximum strongly stable exchange problem and the right part refers
to the maximum LS-stable exchange problem. For each value of n,

• aS and aLS are the average optimal values for each problem; the averages are
computed over those instances which have strongly stable or nonempty LS-stable
exchanges, respectively;

• prepS and prepLS are the average times (in seconds) required to construct the
models;

• solveS and solveLS are the average time (in seconds) required to solve the models;
• ϕS is the number of instances that do not have a strongly stable exchange among
50 instances with the same value of n;

• ϕLS is the number of instances that do not have a nonempty LS-stable exchange
among 50 instances with the same value of n.

Table 7: Results for instances with K = 3
n aS prepS solveS ϕS aLS prepLS solveLS ϕLS

20 8.4 0.0 0.0 2 8.3 0.0 0.0 1

30 14.4 0.1 0.0 1 14.4 0.1 0.0 0

40 19.2 0.2 0.0 3 18.0 0.3 0.1 0

50 25.1 0.8 0.3 4 23.0 1.2 0.4 0

60 29.9 1.4 0.7 4 28.4 2.5 1.0 1

70 36.4 3.5 3.9 3 35.1 6.1 2.5 1

80 41.1 5.7 14.8 9 36.1 11.4 5.9 1

90 49.1 11.8 41.9 5 43.8 23.5 14.9 3

100 53.9 18.8 84.3 4 51.3 38.4 22.1 1

For the instances that we considered, the average running time turns out to be slightly
higher for strongly stable exchanges than for locally strongly stable exchanges. But a
more interesting observation is that a significant number of instances (35) do not have
a strongly stable exchange, whereas only 8 instances do not have a nonempty LS-stable
exchange. For example, when n = 80, ϕS = 9 instances (out of 50 tested) do not have
any strongly stable exchange, but only one of them does not have a nonempty LS-stable
exchange (ϕLS = 1). When a strongly stable exchange exists, its average cardinality (for
n = 80) is aS = 41.1. In contrast, for those 8 instances which have no strongly stable
exchange, but which have a nonempty LS-stable one, the average size of an optimal
LS-stable exchange is 14.6. In spite of this relatively small value, the average size of a
nonempty maximum LS-stable exchange over all 50 instances with n = 80 is aLS = 36.1,
not much smaller than aS . This suggests once again that locally strongly stable exchanges
may provide a meaningful and fruitful alternative when stable exchanges do not exist.

26

8 Kernels and L-kernels of random digraphs

The numerical tests conducted in previous sections consisted in computing maximum
kernels or local kernels in (weak) blocking digraphs associated with kidney exchange
compatibility digraphs. Since it appears that no numerical results concerning L-kernels
have been published in the past, we have completed our experiments by computing
maximum kernels and L-kernels of randomly generated digraphs D = (W,E) using the
kernel IP formulation

max
∑
v∈W

yv

yu + yv ≤ 1 ∀(u, v) ∈ E

1 ≤ yv +
∑

w:(v,w)∈E

yw ∀v ∈ W

yv ∈ {0, 1} ∀v ∈ W

and the L-kernel IP formulation

max
∑
v∈W

yv

yu + yv ≤ 1 ∀(u, v) ∈ E

yu ≤
∑

w:(v,w)∈E

yw ∀(u, v) ∈ E

yv ∈ {0, 1} ∀v ∈ W.

Fifty digraphs D = (W,E) have been randomly generated for different values of
|W | = n and different densities d, where each arc (i, j), i ̸= j, is present in E with
probability d independently of the other arcs. Each line of Table 8 gives the following
information for 50 instances with parameters d, n:

• a is the average size of the maximum kernel among the instances which have a
kernel;

• aL denotes the average size of the maximum L-kernel among the instances which
have a nonempty L-kernel;

• ϕ is the number of instances that do not have a kernel;
• ϕL is the number of instances that do not have a nonempty L-kernel.

27

Table 8: Kernel vs. local kernel
d n a ϕ aL ϕL

0.01 50 35.2 1 35.0 0

100 57.4 5 57.1 0

150 73.2 11 71.6 0

200 86.1 17 81.5 0

250 97.2 27 88.3 0

0.02 50 28.0 3 27.8 0

100 43,1 10 41.3 0

150 53.5 20 45.2 0

200 59.9 23 41.3 2

250 66.8 23 44.6 1

0.05 50 19.4 14 17.1 1

100 27.7 16 23.0 5

150 31.7 14 30.2 13

0.10 50 14.0 13 12.2 6

100 17.7 12 17.7 12

150 20.2 5 20.2 5

A few observations can be made. First, out of 500 instances with small density
(d = 0.01 or 0.02), only three do not have a nonempty L-kernel, whereas 141 do not have
a kernel. As the density increases, more instances fail to have an L-kernel of size greater
than zero.

Second, for a fixed number of vertices n, the size of the kernels and L-kernels tends
to decrease as the density of the digraphs increases. This may be simply due to the
independence constraints. (With regard to this observations, note that the blocking
digraphs G∗ considered in Section 6.3 have a rather small density, whereas the weak
blocking digraphs G∗∗ in Section 7.3 have a higher one.)

Finally, as in previous experiments, the difference between the average optimal values
a and aL is explained by the instances that do not have a kernel but have a nonempty L-
kernel. This difference is relatively small, meaning that the L-kernels, when they are not
empty, are of comparable size with the kernels, when the latter exist. Actually, in spite
of Fact 4 and Example 6, none of the random instances considered in Table 8 features
a maximum kernel of size, say, κ and a maximum L-kernel of size strictly larger than κ.
But a couple of such instances occurred in our experiments when d = 0.01 and n = 300
or n = 350.

9 Conclusions and perspectives

In this paper, we have introduced a new concept of local stability for kidney exchanges.
We believe this concept to be quite natural in the KEP setting but surprisingly, it has
apparently not been investigated earlier. The concept extends in a similar way to strongly

28

stable exchanges.
We have also made explicit the link between (local) stable exchanges and (local) ker-

nels in an associated digraph. This leads to integer programming formulations which can
be optimized by a generic solver for graphs of moderate sizes, in spite of the NP-hardness
of (local) kernels. The experimental results show that nonempty L-stable exchanges fre-
quently exist in digraphs which do not have a stable exchange.

Our contributions open various directions for future research. First, it would be inter-
esting to investigate the relevance of local stability and local kernels for different classes
of matching problems, beyond kidney exchanges. Next, the complexity of computing
maximum L-stable exchanges is currently open (our complexity result only applies to
L-kernels in arbitrary digraphs). Finally, even though local kernels have been previously
considered in graph theory, their properties have barely been investigated so far. A
deeper understanding of these properties may be useful in order to efficiently compute
maximum L-kernels in large-size digraphs.

References

[Aharoni and Holzman, 1998] Aharoni, R. and Holzman, R. (1998). Fractional kernels
in digraphs. Journal of Combinatorial Theory Series B, 73(1):1–6.

[Biró et al., 2021] Biró, P., van de Klundert, J., Manlove, D., Pettersson, W., Andersson,
T., Burnapp, L., Chromy, P., Delgado, P., Dworczak, P., Haase, B., Hemke, A., John-
son, R., Klimentova, X., Kuypers, D., Nanni Costa, A., Smeulders, B., Spieksma, F.,
Valent́ın, M. O., and Viana, A. (2021). Modelling and optimisation in European kidney
exchange programmes. European Journal of Operational Research, 291(2):447–456.

[Biró and McDermid, 2010] Biró, P. and McDermid, E. (2010). Three-sided stable
matchings with cyclic preferences. Algorithmica, 58:5–18.

[Boros and Gurvich, 2006] Boros, E. and Gurvich, V. (2006). Perfect graphs, kernels,
and cores of cooperative games. Discrete Mathematics, 306(19):2336–2354.

[Chen et al., 2016] Chen, Q., Chen, X., and Zang, W. (2016). A polyhedral description
of kernels. Mathematics of Operations Research, 41(3):969–990.

[Chvátal, 1973] Chvátal, V. (1973). On the computational complexity of finding a ker-
nel. Technical Report CRM-300, Centre de recherches mathématiques, Université de
Montréal.

[Constantino et al., 2013] Constantino, M., Klimentova, X., Viana, A., and Rais, A.
(2013). New insights on integer-programming models for the kidney exchange problem.
European Journal of Operational Research, 231(1):57–68.

[Delorme et al., 2023a] Delorme, M., Garćıa, S., Gondzio, J., Kalcsics, J., Manlove, D.,
and Pettersson, W. (2023a). New algorithms for hierarchical optimization in kidney
exchange programs. Operations Research.

29

[Delorme et al., 2023b] Delorme, M., Manlove, D., and Smeets, T. (2023b). Half-cycle:
A new formulation for modelling kidney exchange problems. Operations Research
Letters, 51(3):234–241.

[Dickerson et al., 2016] Dickerson, J., Manlove, D., Plaut, B., Sandholm, T., and Trim-
ble, J. (2016). Position-indexed formulations for kidney exchange. arXiv.org.

[Duchet and Meyniel, 1993] Duchet, P. and Meyniel, H. (1993). Kernels in directed
graphs: a poison game. Discrete Mathematics, 115(1):273–276.

[Gale and Shapley, 1962] Gale, D. and Shapley, L. S. (1962). College admissions and the
stability of marriage. The American Mathematical Monthly, 69(1):9–15.

[Galeana-Sánchez and Neumann-Lara, 1984] Galeana-Sánchez, H. and Neumann-Lara,
V. (1984). On kernels and semikernels of digraphs. Discrete Mathematics, 48(1):67–
76.

[Irving, 1985] Irving, R. W. (1985). An efficient algorithm for the “stable roommates”
problem. Journal of Algorithms, 6(4):577–595.

[Klimentova et al., 2023] Klimentova, X., Biró, P., Viana, A., Costa, V., and Pedroso,
J. P. (2023). Novel integer programming models for the stable kidney exchange prob-
lem. European Journal of Operational Research, 307:1391–1407.

[Maffray, 1992] Maffray, F. (1992). Kernels in perfect line-graphs. Journal of Combina-
torial Theory, Series B, 55(1):1–8.

[Manlove, 2013] Manlove, D. F. (2013). Algorithmics of matching under preferences.
World Scientific Publishing, Singapore.

[Manlove et al., 2002] Manlove, D. F., Irving, R. W., Iwama, K., Miyazaki, S., and
Morita, Y. (2002). Hard variants of stable marriage. Theoretical Computer Science,
276(1-2):261–279.

[Mészáros-Karkus, 2017] Mészáros-Karkus, Z. (2017). Hardness results for stable ex-
change problems. Theoretical Computer Science, 670:68–78.

[Ng and Hirschberg, 1991] Ng, C. and Hirschberg, D. S. (1991). Three-dimensional stable
matching problems. SIAM Journal on Discrete Mathematics, 4(2):245–252.

[Ratier, 1996] Ratier, G. (1996). On the stable marriage polytope. Discrete Mathematics,
148:141–159.

[Ronn, 1990] Ronn, E. (1990). NP-complete stable matching problems. Journal of Al-
gorithms, 11(2):285–304.

[Roth et al., 2004] Roth, A., Sönmez, T., and Ünver, M. U. (2004). Kidney exchange.
The Quarterly Journal of Economics, 119(2):457–488.

[Roth et al., 2007] Roth, A. E., Sönmez, T., and Ünver, M. U. (2007). Efficient kid-
ney exchange: Coincidence of wants in markets with compatibility-based preferences.
American Economic Review, 97(3):828–851.

30

[Shapley and Scarf, 1974] Shapley, L. and Scarf, H. (1974). On cores and indivisibility.
Journal of Mathematical Economics, 1(1):23–37.

[Smeulders et al., 2022] Smeulders, B., Bartier, V., Crama, Y., and Spieksma, F. C. R.
(2022). Recourse in kidney exchange programs. INFORMS Journal on Computing,
34:1191–1206.

[von Neumann and Morgenstern, 1953] von Neumann, J. and Morgenstern, O. (1953).
Theory of Games and Economic Behavior. Princeton University Press, Princeton, NJ.

A Proof of Theorem 5

Theorem 5. Given a digraph G = (V,A), deciding whether G has a nonempty local
kernel is NP-complete.

Proof. The problem is clearly in NP. The completeness proof is inspired from [Chvátal, 1973].

We provide a reduction from the satisfiability problem, namely: given a Boolean con-

junctive normal form F on n variables x1, . . . , xn, say, F = C1 ∨ . . . ∨ Cm, we construct

a digraph D = (W,E) such that D has a nonempty local kernel if and only if F is

satisfiable.

• For each variable xi of F , we create two vertices xi and ¬xi in W and join them

by the arcs (xi,¬xi), (¬xi, xi) in E.

• For each clause Ck of F , we introduce three vertices ck1, ck2, ck3 in W , and join

them in the cyclic triangle (ck1, ck2), (ck2, ck3), (ck3, ck1).

• For each pair (ckj , v) such that literal v appears in clause Ck, we add the three arcs

(ck1, v), (ck2, v), (ck3, v) in E.

• We add a new vertex a and all the arcs of the form (a, ckj), for all clauses Ck and

for all j ∈ {1, 2, 3}.

• We add a new vertex b, the arc (b, a), and all the arcs of the form (xi, b), (¬xi, b)
in E.

The construction is illustrated in Figure 14 for a clause Ck containing a literal xi.

Suppose now that x∗ = (x∗1, . . . , x
∗
n) ∈ {0, 1}n is a satisfying assignment for F . Then

S∗ = {a} ∪ S, with S = {xi|x∗i = 1} ∪ {¬xi|x∗i = 0}, is a nonempty local kernel (and

even, a kernel) of D. Indeed, S∗ is an independent set, and all vertices xi /∈ S, ¬xi /∈ S,

b, ckj are absorbed by some vertex of S∗.

Conversely, assume that S∗ is a nonempty local kernel of D. Let us see what vertices

can be in S∗.

31

a

b

ck1

ck2

ck3

xi

¬xi

Figure 14: Construction for a clause Ck containing a literal xi

• Assume that ck1 ∈ S∗. Then, due to independence, ck2 /∈ S∗, ck3 /∈ S∗, and

v /∈ S∗ for any literal v that appears in Ck. Hence, the local absorption condition

of Definition 9 is violated, since ck1 ∈ S∗, (ck1, ck2) is an arc, but there is no vertex

w ∈ S∗ such that (ck2, w) ∈ E. This contradiction shows that ck1 /∈ S∗. The same

conclusion holds by symmetry for ck2 and ck3.

• Assume that b ∈ S∗. Since (b, a) is an arc, local absorption requires that (a,w)

must be an arc for some vertex w ∈ S∗. But this is not possible, since the only

arcs leaving a are of the form (a, ckj), and ckj is not in S∗ by the previous bullet

point: contradiction.

So, at this point, we know that the only vertices that can potentially be in S∗ are a,

xi, ¬xi for i ∈ {1, · · · , n}.

• If a /∈ S∗, then at least one vertex of the form xi, ¬xi must be in S∗, for i ∈
{1, · · · , n} (since S∗ is not empty), say x1 ∈ S∗. Then, (x1, b) being an arc, local

absorption implies that there is an arc of the form (b, w) with w ∈ S∗. But the

only arc leaving b is (b, a), which contradicts the assumption that a /∈ S∗.

• So, a ∈ S∗. Now, for all k, (a, ck1) is an arc of D. Hence, there must be an arc

(ck1, w) ∈ E for some vertex w ∈ S∗. This vertex w can only be a literal xi or ¬xi
that appears in clause Ck, for some i ∈ {1, . . . , n}. This shows that, for each clause

Ck, at least one literal of Ck must be in S∗.

32

We conclude that S∗ is of the form {a}∪S where S contains at most one of xi, ¬xi for
each variable xi, and S contains at least one literal of Ck for each k. Hence, the literals

in S define a satisfying assignment for F . (If for some i neither xi nor ¬xi appears in S,

then the corresponding variable can be assigned an arbitrary value; alternatively, either

xi or ¬xi can be added to S∗, which remains a local kernel.)

33

