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Abstract
In this work, we generalize the problem of learn-
ing through interaction in a POMDP by account-
ing for eventual additional information available
at training time. First, we introduce the informed
POMDP, a new learning paradigm offering a clear
distinction between the training information and
the execution observation. Next, we propose an
objective for learning a sufficient statistic from the
history for the optimal control that leverages this
information. We then show that this informed ob-
jective consists of learning an environment model
from which we can sample latent trajectories. Fi-
nally, we show for the Dreamer algorithm that
the convergence speed of the policies is some-
times greatly improved on several environments
by using this informed environment model. Those
results and the simplicity of the proposed adap-
tation advocate for a systematic consideration of
eventual additional information when learning in
a POMDP using model-based RL.

1. Introduction
Reinforcement learning (RL) aims to learn to act optimally
through interaction with environments whose dynamics are
unknown. A major challenge in this field is partial observ-
ability, where only incomplete observation o of the Marko-
vian state of the environment s is available for taking action
a. Such an environment can be formalized as a partially
observable Markov decision process (POMDP). In this con-
text, an optimal policy η(a|h) generally depends on the
history h of observations and past actions, which grows
linearly with time. Fortunately, it is theoretically possible
to find a statistic f(h) from the history h that summarizes
all relevant information to act optimally, and that is recur-
rent. Formally, a recurrent statistic is updated according to
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f(h′) = u(f(h), a, o′) each time that an action a is taken
and a new observation o′ is received, with h′ = (h, a, o′).
Such a statistic f(h) for which there exists an optimal pol-
icy η(a|h) = g(a|f(h)) is called a sufficient statistic from
the history for the optimal control. Standard approaches
have thus relied on learning a recurrent policy ηθ,ϕ(a|h) =
gϕ(a|fθ(h)), using a recurrent neural network (RNN) fθ for
the statistic. Those policies are simply trained by stochastic
gradient ascent of a RL loss using backpropagation through
time (Bakker, 2001; Wierstra et al., 2010; Hausknecht &
Stone, 2015; Heess et al., 2015; Zhang et al., 2016; Zhu
et al., 2017). In this case, the RNN learns a sufficient
statistic fθ(h) as it learns an optimal policy (Lambrechts
et al., 2022; Hennig et al., 2023). Although those stan-
dard approaches are theoretically able to implicitly learn
a statistic that is sufficient for the optimal control, suffi-
cient statistics can also be learned explicitly. Notably, many
works (Igl et al., 2018; Buesing et al., 2018; Han et al.,
2019; Gregor et al., 2019; Guo et al., 2020; Lee et al.,
2020; Hafner et al., 2019; 2020; 2021; 2023; Guo et al.,
2018; Gregor et al., 2019) have focused on learning a recur-
rent statistic that is predictive sufficient (Bernardo & Smith,
2009) for the reward and next observation given the action:
p(r, o′|h, a) = p(r, o′|f(h), a). A recurrent and predictive
sufficient statistic is indeed proven to provide a sufficient
statistic for the optimal control (Subramanian et al., 2022).
It can be noted that in those works, this sufficiency objective
is pursued jointly with the RL objective.

Whereas those methods allow one to learn sufficient statis-
tics and optimal policies in the context of POMDP, they
learn solely from the partial observations. However, as-
suming the same partial observability at training time and
execution time is too pessimistic for many environments, no-
tably for those that are simulated. We claim that additional
information about the state s, be it partial or complete, can
be leveraged during training for learning sufficient statistics,
in order to increase the supervision of policies. To this end,
we generalize the problem of learning from interaction in a
POMDP by introducing the informed POMDP. This formal-
ization introduces the training information i about the state
s, which is available at training time, but keeps the execution
POMDP unchanged. Importantly, this training information
is designed such that the observation is conditionally inde-
pendent of the state given the information. Note that it is
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always possible to design such an information i, possibly by
concatenating the observation o with the eventual additional
observations o+, such that i = (o, o+). This formalization
offers a new learning paradigm where the training informa-
tion is used along the reward and observation to supervise
the learning of the policy.

In the context of informed POMDP, we show that re-
current statistics are sufficient for the optimal control of
the execution POMDP when they are predictive suffi-
cient for the reward and next information given the action:
p(r, i′|h, a) = p(r, i′|f(h), a). We then derive a conve-
nient objective for finding a predictive sufficient statistic,
which amounts to approximating the conditional distribu-
tion p(r, i′|h, a) through likelihood maximization using
a model qθ(r, i′|fθ(h), a), where fθ is a recurrent statis-
tic. Compared to the classic objective for learning suffi-
cient statistics (Igl et al., 2018; Buesing et al., 2018; Han
et al., 2019; Hafner et al., 2019), this objective approxi-
mates p(r, i′|h, a) instead of p(r, o′|h, a). In addition, we
show that this learned generative model qθ(r, i′|fθ(h), a) is
an environment model from which latent trajectories can
be generated. Consequently, policies can be optimized in
a model-based RL fashion using those generated trajecto-
ries. This proposed approach boils down to adapting model-
based algorithms, such as PlaNet or Dreamer (Hafner et al.,
2019; 2020; 2021; 2023), by relying on a model of the
information instead of a model of the observation. We
consider several standard environments that we formalize
as informed POMDPs (Mountain Hike, Flickering Atari,
Velocity Control and Flickering Control). Our informed
adaptation of Dreamer is shown to provide a significant
convergence speed and performance improvement on some
environments, while hurting performances in others, espe-
cially in the flickering environments.

Other methods were proposed to account for additional
information available at training time. Those approaches,
referred to as asymmetric learning, usually learn policies for
the POMDP by imitating an expert policy conditioned on the
state (Choudhury et al., 2018). Alternatively, asymmetric
actor-critic approaches use a critic conditioned on the state
(Pinto et al., 2018). However, those heuristic approaches
lack a theoretical framework, and the resulting policies are
known to be suboptimal for the POMDP (Warrington et al.,
2021; Baisero & Amato, 2022; Baisero et al., 2022). Intu-
itively, under partial observability, optimal policies might
indeed need to consider actions that reduce the state uncer-
tainty or that corresponds to safer trajectories. To address
those limitations, Warrington et al. (2021) proposes to con-
strain the expert policy such that its imitation results in an
optimal policy in the POMDP. Baisero & Amato (2022)
proposed an unbiased state-conditioned critic for asymmet-
ric actor-critic approaches, by introducing the history-state
value function V (h, s). Baisero & Amato (2022) adapted

this method to value-based RL, where the history-dependent
value function V (h) uses from the history-state value func-
tion V (h, s) in its temporal difference target. Alternatively,
Nguyen et al. (2022) modified the RL objective by trading
off the expert imitation objective with respect to the return,
resulting in an imitation bonus akin to the entropy in soft
actor-critic methods. Finally, in the work that is the closest
to ours, Nguyen et al. (2021) proposed, under the strong as-
sumption that beliefs b(s) = p(s|h) are available at training
time, to enforce that the statistic f(h) encodes the belief, a
sufficient statistic for the optimal control (Åström, 1965). In
contrast, we introduce a novel approach that is guaranteed to
provide a sufficient statistic for the optimal control, and that
leverages the additional information only through the objec-
tive. Moreover, our new learning paradigm is not restricted
to state supervision, but support any level of additional infor-
mation. Finally, to the best of our knowledge, our method
is the first to exploit additional information for learning an
environment model in model-based RL for POMDPs.

This work is structured as follows. In Section 2, the in-
formed POMDP is presented along with the underlying exe-
cution POMDP, and its optimal policies. In Section 3, the
learning objective for sufficient statistic is presented in the
context of informed POMDP. In Section 4, the model-based
RL algorithm that is used, Dreamer, is introduced along
with our proposed adaptation to informed POMDPs. In Sec-
tion 5, we compare the performance and convergence speed
of the Uninformed Dreamer and the Informed Dreamer in
several environments. Finally, in Section 6, we conclude by
summarizing the contributions and limitations of this work.

2. Informed Partially Observable Markov
Decision Process

In Subsection 2.1, we introduce the informed POMDP and
the associated training information, along with the underly-
ing execution POMDP. In Subsection 2.2, we introduce the
optimal policies and the reinforcement learning objective in
the context of informed POMDPs.

2.1. Informed POMDP and Execution POMDP

Formally, an informed POMDP P̃ is defined as a tuple
P̃ = (S,A, I,O, T,R, Ĩ, Õ, P, γ) where S is the state
space, A is the action space, I is the information space,
and O is the observation space. The initial state distribu-
tion P gives the probability P (s0) of s0 ∈ S being the
initial state of the decision process. The dynamics are de-
scribed by the transition distribution T that gives the prob-
ability T (st+1|st, at) of st+1 ∈ S being the state resulting
from action at ∈ A in state st ∈ S. The reward func-
tion R gives the immediate reward rt = R(st, at) obtained
at each transition. The information distribution Ĩ gives
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the probability Ĩ(it|st) to get information it ∈ I in state
st ∈ S. The observation distribution Õ gives the probabil-
ity Õ(ot|it) to get observation ot ∈ O given information
it. Finally, the discount factor γ ∈ [0, 1[ gives the rela-
tive importance of future rewards. The main assumption
about an informed POMDP is that the observation ot is
conditionally independent of the state st given the infor-
mation it: p(ot|it, st) = Õ(ot|it). In other words, the
random variables st, it and ot satisfy the Bayesian network
st −→ it −→ ot. In practice, it is always possible to define
such a training information it. For example, the information
it = (ot, o

+

t ) always satisfies the aforementioned condi-
tional independence, whatever o+

t is. Taking a sequence of
t actions in the informed POMDP conditions its execution
and provides samples (i0, o0, a0, r0, . . . , it, ot) at training
time, as illustrated in Figure 1.

o o oa a

i i ir r

s s s
P

Ĩ

Õ

R

T
. . .

training

execution

Figure 1. Informed POMDP: Bayesian network of its execution,
arrows represent conditional dependencies.

For each informed POMDP, there is an underlying execution
POMDP that is defined as P = (S,A,O, T,R,O, P, γ),
where O(ot|st) =

∫
I Õ(ot|i)Ĩ(i|st) di. Taking a sequence

of t actions in the execution POMDP conditions its execu-
tion and provides the history ht = (o0, a0, . . . , ot) ∈ H at
execution time, where H is the set of histories of arbitrary
length. Note that the information samples i0, . . . , it and
reward samples r0, . . . , rt−1 are not included in the history,
since they are not available at execution time, as illustrated
in Figure 1.

2.2. Reinforcement Learning Objective

A policy η ∈ H is defined as a mapping from histories
to probability measures over the action space, where H =
H → ∆(A) is the set of such mappings. A policy is said to
be optimal for an informed POMDP when it is optimal in
the underlying execution POMDP, i.e., when it maximizes
the expected return J(η), defined as,

J(η) = E
s0∼P (·)
ot∼O(·|st)
at∼η(·|ht)

st+1∼T (·|st,at)

[ ∞∑
t=0

γtR(st, at)

]
. (1)

The RL objective for an informed POMDP is thus to find
an optimal policy η∗ ∈ argmaxη∈H J(η) for the execution
POMDP from interaction with the informed POMDP.

3. Optimal Control with Recurrent Sufficient
Statistics

In Subsection 3.1, we introduce sufficient statistics for the
optimal control and discuss their relation with optimal poli-
cies. In Subsection 3.2, we derive an objective for learning
in an informed POMDP a recurrent statistic that is sufficient
for the optimal control. In Subsection 3.3, we propose a
joint objective for learning an optimal recurrent policy with
a sufficient statistic. For the sake of conciseness, in this
section, we simply use x to denote a random variable at the
current time step and x′ to denote it at the next time step.
Moreover, we use the composition notation g ◦ f to denote
the history-dependent policy g(·|f(·)).

3.1. Recurrent Sufficient Statistics

Let us first define the concept of sufficient statistic, from
which a necessary condition for optimality can be derived.
Definition 1 (Sufficient statistic). In an informed POMDP
P̃ and in its underlying execution POMDP P , a statistic
from the history f : H → Z is sufficient for the optimal
control if, and only if,

max
g : Z→∆(A)

J(g ◦ f) = max
η : H→∆(A)

J(η). (2)

Corollary 1 (Sufficiency of optimal policies). In an in-
formed POMDP P and in its underlying execution POMDP
P̃ , if a policy η = g ◦ f is optimal, then the statistic
f : H → Z is sufficient for the optimal control.

In this work, we focus on learning recurrent policies, i.e.,
policies η = g ◦ f for which the statistic f is recurrent.
Formally, we have,

η(a|h) = g(a|f(h)), ∀(h, a), (3)
f(h′) = u(f(h), a, o′), ∀h′ = (h, a, o′). (4)

This allows to process the history iteratively each time that
a new action is taken and a new observation is received.
According to Corollary 1, when learning a recurrent policy
η = g ◦ f , the objective can thus be decomposed into two
problems: finding a sufficient statistic f and an optimal
conditional distribution g conditioned on this statistic,

max
f : H→Z

g : Z→∆(A)

J(g ◦ f). (5)

3.2. Learning Recurrent Sufficient Statistics

Below, we provide a sufficient condition for a statistic to be
sufficient for the optimal control of an informed POMDP.
Theorem 1 (Sufficiency of recurrent predictive sufficient
statistics). In an informed POMDP P̃ , a statistic f : H → Z
is sufficient for the optimal control if it is (i) recurrent and
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(ii) predictive sufficient for the reward and next information
given the action,

(i) f(h′) = u(f(h), a, o′), ∀h′ = (h, a, o′), (6)
(ii) p(r, i′|h, a) = p(r, i′|f(h), a), ∀(h, a, r, i′). (7)

We provide the proof for this theorem in Appendix A, gen-
eralizing earlier work by Subramanian et al. (2022).

Now, let us consider a distribution over the histories and
actions whose probability density function writes p(h, a).
For example, we consider the stationary distribution induced
by the current policy η in the informed POMDP P̃ . Let us
also assume that the probability density function p(h, a) is
non-zero everywhere. As shown in Appendix B, under mild
assumption, any statistic satisfying the following objective,

max
f : H→Z

q : Z×A→∆(R×I)

E
p(h,a,r,i′)

log q(r, i′|f(h), a), (8)

also satisfies (ii). This variational objective jointly optimizes
the statistic function f : H → Z with the conditional proba-
bility density function q : Z ×A → ∆(R× I). According
to Theorem 1, a recurrent statistic satisfying objective (8) is
thus sufficient for the optimal control.

In practice, both the recurrent statistic and the probability
density function are implemented with neural networks fθ
and qθ, respectively. They are both parametrized by θ ∈ Rd,
such that the objective can be maximized by stochastic
gradient ascent. Regarding fθ, it is implicitly implemented
by an RNN whose update function zt = uθ(zt−1;xt) is
parametrized by θ. The inputs are xt = (at−1, ot), with
a−1 the null action, which is typically chosen to zero. The
hidden state of the RNN zt = fθ(ht) is thus a statistic from
the history that is recurrently updated using uθ. Regarding
qθ, it is implemented by a parametrized probability density
function estimator. The objective writes,

max
θ

E
p(h,a,r,i′)

log qθ(r, i
′|fθ(h), a)︸ ︷︷ ︸

L(fθ)

. (9)

We might wonder whether this informed objective is better
than the classic objective, where i = o. In this work, we
hypothesize that regressing the information distribution in-
stead of the observation distribution is a better objective in
practice. Indeed, according to the data processing inequal-
ity applied to the Bayesian network s′ −→ i′ −→ o′, the
information i′ is more informative than the observation o′

about the Markovian state s′ of the environment,

I(s′, i′|h, a) ≥ I(s′, o′|h, a). (10)

We thus expect the statistic fθ(h) to converge faster towards
a sufficient statistic, and the policy to converge faster to-
wards an optimal policy.

3.3. Optimal Control with Recurrent Sufficient
Statistics

As seen from Corollary 1, sufficient statistics are needed for
the optimal control of POMDPs. Moreover, as we focus on
recurrent policies implemented with RNNs, we can exploit
objective (9) to learn a sufficient statistic fθ. In practice,
we jointly optimize the RL objective J(ηθ,ϕ) = J(gϕ ◦ fθ)
and the statistic objective L(fθ). This allows to use the
information i to guide the statistic learning through L(fθ).
This joint objective writes,

max
θ,ϕ

J(gϕ ◦ fθ) + L(fθ). (11)

A policy ηθ,ϕ satisfying objectives (11) is guaranteed to
satisfy (5) and the policy is thus optimal for the informed
and execution POMDP. Note however that there may exist
policies satisfying (5) that do not satisfy (11).

The objective L(fθ) provides a recurrent model of the re-
ward and next information given the history and action. In
the following, we show that we can exploit this model to
generate artificial trajectories, called imagined trajectories,
under conditions on qθ. Those imagined trajectories can
then be used to maximize the imagined return of the policy,
which in turn maximizes J(gϕ ◦ fθ) if the model is accurate.

4. Model-Based Reinforcement Learning
through Informed World Models

Model-based RL focuses on learning a model of the dynam-
ics p(r, o′|h, a) of the environment, known as a world model.
Since this approximate model allows one to generate imag-
ined trajectories, a near-optimal behaviour is usually derived
either by online planning or by optimizing a policy based on
those trajectories (Sutton, 1991; Ha & Schmidhuber, 2018;
Chua et al., 2018; Zhang et al., 2019; Hafner et al., 2019;
2020). In the following, we show that our informed model
qθ(r, i

′|fθ(h), a) can be slightly modified to provide an in-
formed world model from which latent trajectories can be
sampled. We then propose the Informed Dreamer algorithm,
adapting to informed POMDPs the DreamerV3 algorithm
(Hafner et al., 2023). In Subsection 4.1, we introduce this
informed world model and its training objective. In Sub-
section 4.2, we present the Informed Dreamer algorithm
exploiting this informed world model to train its policy.

4.1. Informed World Model

In this work, we implement the probability density function
qθ with a variational autoencoder (VAE) conditioned on the
statistic of the RNN. Together, they form a variational RNN
(VRNN) as proposed in (Chung et al., 2015), also known
as a recurrent state-space model (RSSM) in the RL context
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(Hafner et al., 2019). Formally, we have,

ê ∼ qpθ (·|z, a), (prior, 12)
r̂ ∼ qrθ(·|z, ê), (reward decoder, 13)

î′ ∼ qiθ(·|z, ê), (information decoder, 14)

where ê is the latent variable of the VAE. The prior qpθ and
the decoders qiθ and qrθ are jointly trained with the encoder,

e ∼ qeθ(·|z, a, o′), (encoder, 15)

to maximize the likelihood of reward and next information
samples. The latent representation e ∼ qeθ(·|z, a, o′) of the
next observation o′ can be used to update the statistic to z′,

z′ = uθ(z, a, e). (recurrence, 16)

Note that the statistic z is no longer deterministically up-
dated to z′ given a and o′, instead we have z ∼ fθ(·|h),
which is induced by uθ and qeθ . This key design choice al-
lows sampling imagined trajectories without reconstructing
the imagined observation ô′ by using the latent ê in update
(16), as shown in the next subsection. This requirement of
latent representation sampling restricts the class of model-
based algorithm that can be adapted using our method.

In practice, we maximize the evidence lower bound (ELBO),
a tight variational lower bound on the likelihood of reward
and next information samples (Chung et al., 2015),

E
p(h,a,r,i′)
fθ(z|h)

log qθ(r, i
′|z, a) ≥ E

p(h,a,r,i′,o′)
fθ(z|h)

[
E

qeθ(e|z,a,o′)

[
log qiθ(i

′|z, e) + log qrθ(r|z, e)
]
−

KL (qeθ(·|z, a, o′) ∥ qpθ (·|z, a))
]
. (17)

Despite the statistic fθ(·|h) being stochastic, the ELBO ob-
jective ensures that the stochastic statistic fθ(·|h) becomes
predictive sufficient for the reward and next information.
Note that when i = o, it corresponds to Dreamer’s world
model and learning objective. Figure 2 shows, for a sam-
ple trajectory (i0, o0, a0, r0, . . . , iT , oT ), the update of the
statistic z according to the update function uθ and the en-
coder qeθ . Maximizing the ELBO maximizes the conditional
log-likelihood qrθ(r|z, e) and qiθ(i|z, e) of r and i′ for a sam-
ple of the encoder e ∼ qeθ(·|z, a, o′), and minimises the
KL divergence from qeθ(·|z, a, o′) to the prior distribution
qpθ (·|z, a), as highlighted in orange.

4.2. Informed Dreamer

While our informed world model does not learn the obser-
vation distribution, it can still generate imagined trajecto-
ries. Indeed, the VRNN only uses the latent representation
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Figure 2. Variational RNN: Bayesian graph of its evaluation for a
given trajectory at training time (dependence of qrθ and qiθ on z is
omitted). The loss components are illustrated in orange.

e ∼ qeθ(·|z, a, o′) of the observation o′, trained to recon-
struct the information i′, in order to update z to z′. Con-
sequently, we can use the prior distribution ê ∼ qpθ (·|z, a),
trained to minimise the KL divergence from qpθ (·|z, a, o′) in
expectation, to generate latent trajectories. The Informed
Dreamer algorithm uses this informed world model, a critic
vψ(z), and a latent policy a ∼ gϕ(·|z). Figure 3 illustrates
the generation of a latent trajectory, along with imagined
rewards r̂ ∼ qrθ(·|z, e) and approximate values v̂ = vψ(z).
During generation, the actions are sampled according to
a ∼ gϕ(·|z), and any RL algorithm can be used to maxi-
mize the imagined returns. Note that the mean imagined
reward and estimated values are given by functions that
are differentiable with respect to ϕ, such that the imagined
return can be directly maximized by stochastic gradient as-
cent. In the experiments, we use an actor-critic approach
for discrete actions and direct maximization for continuous
actions, following DreamerV3 (Hafner et al., 2023).

/

/

z z z
uθ

ê ê êqpθ

gϕ
v̂ v̂ v̂/ a a/ r̂ r̂

qrθ vψ

Figure 3. Variational RNN: Bayesian graph of its evaluation when
imagining a latent trajectory using policy gϕ (dependence of qrθ
and vψ on z is omitted).

A pseudocode for the adaptation of the Dreamer algorithm
using this informed world model is given in Appendix C.
We also detail some divergences of our formalization with
respect to the original Dreamer algorithm (Hafner et al.,
2023). Like in DreamerV3, we uses symlog predictions, a
discrete VAE, KL balancing, free bits, reward normalisation,
a distributional critic, and entropy regularization.

Finally, as shown in Figure 4, when deployed in the execu-
tion POMDP, the encoder qeθ is used to compute the latent
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representations of the observations and to update the statistic.
The actions are then selected according to a ∼ gϕ(·|z).

o o oa a
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z z z
uθ

e e e
qeθ

o o oa a
gϕ

Figure 4. Execution policy: Bayesian graph of its execution in the
POMDP using the VRNN encoder qeθ and update function ueθ to
condition the latent policy gϕ.

5. Experiments
In this section, we compare Dreamer to the Informed
Dreamer on several control problems, formalized as in-
formed POMDPs. We use the implementation of Dream-
erV3 released at github.com/danijar/DreamerV3 by the au-
thors, and release our adaptation to informed POMDPs at
github.com/glambrechts/informed-dreamer. For all environ-
ments, we use the same unique set of hyperparameters as in
DreamerV3, including for the Informed Dreamer.

5.1. Varying Mountain Hike

In the Varying Mountain Hike environments, the agent
is tasked with walking throughout a mountainous terrain.
There exists four versions of this environment, depending on
the initial state distribution and the type of observation that
is available. The agent has a position on a two-dimensional
map and can take actions to move relative to its initial ori-
entation. The initial orientation is either always North, or
a random cardinal orientation, depending on the environ-
ment version. The initial orientation is never available to the
agent, but the agent receives a noisy observation of its posi-
tion or its altitude, depending on the environment version.
The reward is given by its altitude relative to the mountain
top, such that the goal of the agent is to obtain the highest
cumulative altitude. Around the mountain top, states are
terminal. The optimal therefore consists in going as fast
as possible towards those terminal states while staying on
the crests in order to get less negative rewards than in the
valleys. We refer the reader to (Lambrechts et al., 2022) for
a formal description of this environment, heavily inspired
from the Mountain Hike of (Igl et al., 2018).

For this environment, we consider the position and initial
orientation to be available as additional information. In other
words, we consider the state-informed POMDP with i = s.
As can be seen from Figure 5, the speed of convergence of
the policies is greatly improved when using the Informed

Dreamer in this informed POMDP. Moreover, as shown in
Table 1, the final performance of the policy is always better
than or similar to the Dreamer algorithm.
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Figure 5. Uninformed Dreamer versus Informed Dreamer (i = s)
on the Varying Mountain Hike environments: non-discounted
return with respect to the number of million steps. Results show
the mean, minimum and maximum values over four runs.

Table 1. Final non-discounted reward of Dreamer and Informed
Dreamer on the Varying Mountain Hike environments.

ALTITUDE VARYING UNINFORMED INFORMED

FALSE FALSE −14.47 ± 03.27 −14.56 ± 03.45
FALSE TRUE −19.84 ± 03.91 −17.87 ± 01.18
TRUE FALSE −43.11 ± 59.89 −18.04 ± 11.94
TRUE TRUE −90.04 ± 35.57 −54.07 ± 54.87

5.2. Flickering Atari

In the Flickering Atari environments, the agent is tasked
with playing the Atari games (Bellemare et al., 2013) on a
flickering screen. The dynamics are left unchanged, but the
agent may randomly observe a blank screen instead of the
game screen, with probability p = 0.5. While the classic
Atari games are known to have low stochasticity and few par-
tial observability challenges (Hausknecht & Stone, 2015),
their flickering counterparts have constituted a classic bench-
mark in the partially observable RL literature (Hausknecht
& Stone, 2015; Zhu et al., 2017; Igl et al., 2018; Ma et al.,
2020). Moreover, regarding the recent advances in sample-
effiency of model-based RL approaches, we consider the
Atari 100k benchmark, where only 100k actions can be
taken by the agent for generating samples of interaction.

For these environments, we consider the RAM state of the
simulator, a 128-dimensional byte vector, to be available
as additional information for supervision. This informa-
tion vector is indeed guaranteed to satisfy the conditional
independence of the informed POMDP: p(o|i, s) = p(o|i).
Moreover, we postprocess this additional information by
only selecting the subset of variables that are relevant to the

https://github.com/danijar/dreamerv3
https://github.com/glambrechts/informed-dreamer
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game that is considered, according to the annotations pro-
vided in (Anand et al., 2019). Depending on the game, this
information vector might contain the number of remaining
opponents, their positions, the player position, its state, etc.
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Figure 6. Uninformed Dreamer versus Informed Dreamer (i =
ϕ(RAM)) on the Flickering Atari environments: non-discounted
return with respect to the number of million steps. Results show
the mean, minimum and maximum values over four runs.

Table 2. Final non-discounted reward of Dreamer and Informed
Dreamer on the Flickering Atari environments.

TASK UNINFORMED INFORMED

ASTEROIDS 1085.21 ± 236.29 1620.98 ± 579.77
BATTLE ZONE 5863.99 ± 2081.67 4258.01 ± 1000.00

BOWLING 55.08 ± 13.08 90.33 ± 04.51
BOXING 12.86 ± 03.21 −0.53 ± 10.69

BREAKOUT 03.38 ± 04.73 04.17 ± 01.53
FROSTBITE 413.95 ± 377.40 268.38 ± 490.85

HERO 4293.33 ± 2534.57 3133.27 ± 24.66
MS PACMAN 1262.75 ± 565.18 923.11 ± 665.01

PONG −19.24 ± 01.73 −9.08 ± 15.13
PRIVATE EYE −23.86 ± 57.74 448.28 ± 398.36

QBERT 879.47 ± 378.32 812.20 ± 1973.42
SEAQUEST 312.08 ± 80.83 302.60 ± 231.80

Figure 6 shows that the speed of convergence and the per-
formance of the policies is greatly improved by considering
additional information for three environments (Asteroids,
Bowling, and Pong), while degraded for four others (Box-
ing, Frostbite, Hero and Ms Pacman) and left similar for the
rest. The final non-discounted returns are given in Table 2,
offering similar conclusions.

5.3. Velocity Control

In the Velocity Control environments, we consider the stan-
dard DeepMind Control task (Tassa et al., 2018) where only
the joints velocities are available as observations, and not
their absolute positions, which is a standard benchmark in
partially observable RL literature (Han et al., 2019; Lee
et al., 2020; Warrington et al., 2021). For these environ-
ments, we consider the complete state (including the posi-
tions) to be available as additional information.
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Figure 7. Uninformed Dreamer versus Informed Dreamer (i = s)
on the Velocity Control environments: non-discounted return with
respect to the number of million steps. Results show the mean,
minimum and maximum values over four runs.

Figure 7 shows that the speed of convergence and the perfor-
mance of the policies is greatly improved in this benchmark,
for nearly all of the considered games. Moreover, the fi-
nal non-discounted returns are given in Table 3, and show
that the policies obtained after one million time steps are
generally better when considering additional information.
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Table 3. Final non-discounted reward of Dreamer and Informed
Dreamer on the Velocity Control environments.

TASK UNINFORMED INFORMED

ACROBOT SWINGUP 66.21 ± 52.25 163.01 ± 139.63
CARTPOLE BALANCE 959.60 ± 08.13 967.45 ± 24.47

CARTPOLE BALANCE SPARSE 852.71 ± 53.15 810.24 ± 248.14
CARTPOLE SWINGUP 667.95 ± 54.72 701.96 ± 88.14

CARTPOLE SWINGUP SPARSE 01.53 ± 03.46 28.48 ± 109.70
CHEETAH RUN 619.95 ± 241.31 543.14 ± 136.00

CUP CATCH 732.09 ± 477.75 950.31 ± 48.63
FINGER SPIN 626.15 ± 211.54 640.60 ± 233.99

FINGER TURN EASY 579.49 ± 447.18 849.73 ± 102.69
FINGER TURN HARD 451.75 ± 479.93 828.81 ± 132.77

HOPPER HOP 158.88 ± 13.78 167.22 ± 34.24
HOPPER STAND 361.82 ± 22.89 595.42 ± 198.96

PENDULUM SWINGUP 355.11 ± 406.69 229.88 ± 479.81
REACHER EASY 931.37 ± 43.92 944.82 ± 44.94
REACHER HARD 853.13 ± 102.10 954.89 ± 14.17

WALKER RUN 430.21 ± 83.55 604.20 ± 75.88
WALKER STAND 883.65 ± 98.58 925.09 ± 56.47
WALKER WALK 867.97 ± 103.26 910.38 ± 21.88

5.4. Flickering Control

In the Flickering Control environments, the agent performs
one of the standard DeepMind Control task from images but
through a flickering screen. Like for the Flickering Atari
environments, the dynamics are left unchanged, except that
the agent may randomly observe a blank screen instead of
the task screen, with probability p = 0.5. For these envi-
ronments, we consider the state to be available as additional
information, as for the Velocity Control environments.

Table 4. Final non-discounted reward of Dreamer and Informed
Dreamer on the Flickering Control environments.

TASK UNINFORMED INFORMED

ACROBOT SWINGUP 166.42 ± 117.81 333.86 ± 147.49
CARTPOLE BALANCE 988.09 ± 01.57 943.18 ± 39.97

CARTPOLE BALANCE SPARSE 971.12 ± 00.00 979.91 ± 00.00
CARTPOLE SWINGUP 838.44 ± 23.23 798.12 ± 28.26

CARTPOLE SWINGUP SPARSE 485.90 ± 334.90 677.38 ± 96.19
CHEETAH RUN 683.80 ± 53.87 590.43 ± 22.62

CUP CATCH 959.79 ± 12.75 946.11 ± 19.66
FINGER SPIN 708.31 ± 397.54 587.21 ± 188.07

FINGER TURN EASY 755.08 ± 483.89 925.93 ± 20.07
FINGER TURN HARD 568.66 ± 491.80 887.38 ± 32.84

HOPPER HOP 279.92 ± 30.22 213.99 ± 23.51
HOPPER STAND 450.49 ± 504.36 774.22 ± 120.96

PENDULUM SWINGUP 797.12 ± 70.80 741.94 ± 117.27
REACHER EASY 937.19 ± 16.79 926.02 ± 67.70
REACHER HARD 732.34 ± 168.36 556.36 ± 420.29

WALKER RUN 765.40 ± 21.11 580.77 ± 39.79
WALKER STAND 972.93 ± 39.72 933.29 ± 96.17
WALKER WALK 957.88 ± 26.84 898.33 ± 36.68

Regarding this benchmark, considering additional informa-
tion seem to degrade learning, generally resulting in worse
policies. This suggests that not all information is good to
learn, some might be irrelevant to the control task and hin-
ders the learning of optimal policies. The final returns are
given in Table 4, and offer similar conclusions.
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Figure 8. Uninformed Dreamer versus Informed Dreamer (i = s)
on the Flickering Control environments: non-discounted return
with respect to the number of million steps. Results show the mean,
minimum and maximum values over four runs.

6. Conclusion
In this work, we introduced a new formalization for con-
sidering additional information available at training time
for POMDP, called the informed POMDP. In this context,
we proposed an objective for learning recurrent sufficient
statistic for the optimal control. Next, we showed that this
objective can be slightly modified to provide an environ-
ment model from which latent trajectories can be generated.
We then adapted a successful model-based RL algorithm,
known as Dreamer, with this informed world model, result-
ing in the Informed Dreamer algorithm. By considering
several environments from the partially observable RL lit-
erature, we showed that this informed learning objective
improves the convergence speed and quality of the poli-
cies in several environments. However, we also observed
that this informed objective hurts performance in some en-
vironments, motivating further work in which a particular
attention is given to the design of the information i.
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A. Proof of the Sufficiency of Recurrent Predictive Sufficient Statistics
In this section, we prove Theorem 1, that is recalled below.
Theorem 1 (Sufficiency of recurrent predictive sufficient statistics). In an informed POMDP P̃ , a statistic f : H → Z is
sufficient for the optimal control if it is (i) recurrent and (ii) predictive sufficient for the reward and next information given
the action,

(i) f(h′) = u(f(h), a, o′), ∀h′ = (h, a, o′), (6)
(ii) p(r, i′|h, a) = p(r, i′|f(h), a), ∀(h, a, r, i′). (7)

Proof. From Proposition 4 and Theorem 5 of (Subramanian et al., 2022), we know that a statistic is sufficient for the optimal
control of an execution POMDP if it is (i) recurrent and (ii’) predictive sufficient for the reward and next observation given
the action: p(r, o′|h, a) = p(r, o′|f(h), a). Let us consider a statistic f : H → A satisfying (i) and (ii). Now, let us show
that it also satisfy (ii’). We have,

p(r, o′|f(h), a) =
∫
I
p(r, o′, i′|f(h), a) di′ (18)

=

∫
I
p(o′|r, i′, f(h), a)p(r, i′|f(h), a) di′, (19)

using the law of total probability and the chain rule. As can be seen from the informed POMDP formalization of Section 2
and the resulting Bayesian network in Figure 1, the Markov blanket of o′ is {i′}. As a consequence, o′ is conditionally
independent of any other variable given i′. In particular, p(o′|i′, r, f(h), a) = p(o|i′), such that,

p(r, o′|f(h), a) =
∫
I
p(o′|i′)p(r, i′|f(h), a) di′. (20)

From hypothesis (ii), we can write,

p(r, o′|f(h), a) =
∫
I
p(o′|i′)p(r, i′|h, a) di′. (21)

Finally, exploiting the Markov blanket {i′} of o′, the chain rule and the law of total probability again, we have,

p(r, o′|f(h), a) =
∫
I
p(o′|i′, r, h, a)p(r, i′|h, a) di′ (22)

=

∫
I
p(o′, r, i′|h, a) di′ (23)

= p(r, o′|h, a). (24)

This proves that (ii) implies (ii’). As a consequence, any statistic satisfying (i) and (ii) is a sufficient statistic from the history
for the optimal control of the informed POMDP.

B. Recurrent Sufficient Statistic Objective
First, let us consider a fixed history h and action a. Let us recall that two density functions p(r, i′|h, a) and p(r, i′|f(h), a)
are equal almost everywhere if, and only if, their KL divergence is zero,

E
p(r,i′|h,a)

log
p(r, i′|h, a)

p(r, i′|f(h), a) = 0. (25)

Now, let us consider a probability density function p(h, a) that is non zero everywhere. We have that the KL divergence
from p(r, i′|h, a) to p(r, i′|f(h), a) is equal to zero for almost every history h and action a if, and only if, it is zero on
expectation over p(h, a), since the KL divergence is non-negative,

E
p(r,i′|h,a)

log
p(r, i′|h, a)

p(r, i′|f(h), a)
a.e.
= 0 ⇔ E

p(h,a,r,i′)
log

p(r, i′|h, a)
p(r, i′|f(h), a) = 0. (26)
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Rearranging, we have that p(r, i′|h, a) is equal to p(r, i′|f(h), a) for almost every h, a, r and i′ if, and only if,

E
p(h,a,r,i′)

log p(r, i′|h, a) = E
p(h,a,r,i′)

log p(r, i′|f(h), a). (27)

Now, we recall the data processing inequality, allowing to write, for any statistic f ′,

E
p(h,a,r,i′)

log p(r, i′|h, a) ≥ E
p(h,a,r,i′)

log p(r, i′|f ′(h), a). (28)

since h(r, i′|h, a) = h(r, i′|h, f(h), a) ≤ h(r, i′|f(h), a), ∀(h, a), where h(x) is the differential entropy of random variable
x. Assuming that there exists at least one f : H → Z for which the inequality is tight, we obtain the following objective for
a predictive sufficient statistic f ,

max
f : H→Z

E
p(h,a,r,i′)

log p(r, i′|f(h), a). (29)

Unfortunately, the probability density p(r, i′|f(h), a) is unknown. However, knowing that the distribution that maximizes
the log-likelihood of samples from p(r, i′|f(h), a) is p(r, i′|f(h), a) itself, we can write,

E
p(h,a,r,i′)

log p(r, i′|f(h), a) = max
q : Z×A→∆(R×I)

E
p(h,a,r,i′)

log q(r, i′|f(h), a). (30)

By jointly maximizing the probability density function q : Z ×A → ∆(R× I), we obtain,

max
f : H→Z

q : Z×A→∆(R×I)

E
p(h,a,r,i′)

log q(r, i′|f(h), a). (31)

This objective ensures that the statistic f(h) is predictive sufficient for the reward and next information given the action. If
f(h) is a recurrent statistic, then it is also sufficient for the optimal control, according to Theorem 1.

C. Informed Dreamer
The Informed Dreamer algorithm is presented in Algorithm 1. Differences with the Uninformed Dreamer algorithm (Hafner
et al., 2020) are highlighted in blue. In addition, it can be noted that in the original Dreamer algorithm, the statistic zt encodes
ht = (o0, a0, . . . , ot) and at, instead of ht only. As a consequence, the prior distribution et ∼ qpθ (·|zt) can be conditioned
on the statistic zt only, instead of the statistic and last action. Similarly, the encoder distribution et ∼ qpθ (·|zt, ot+1)
can be conditioned on the statistic zt only, instead of the statistic and last action. On the other hand, the latent policy
at+1 ∼ g(·|zt, et) should be conditioned on the statistic zt and the new latent et to account for the last observation, and the
same is true for the value function vψ(zt, et). In the experiments, we follow their implementation for both the Uninformed
Dreamer and the Informed Dreamer, according to the code that we released at github.com/glambrechts/informed-dreamer.

Following Dreamer, the algorithm introduces the continuation flag ct, which indicates whether state st is terminal. A
terminal state st is a state from which the agent can never escape, and in which any further action provides a zero reward. It
follows that the value function of a terminal state is zero, and trajectories can be truncated at terminal states since we do not
need to learn their value or the optimal policy in those states. Alternatively, ct can be interpreted as an indicator that can be
extracted from the observation ot, but we have decided to make it explicit in the algorithm.

https://github.com/glambrechts/informed-dreamer
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Algorithm 1 Informed Dreamer - Direct Reward Maximization
Hyperparameters: Environment steps S, steps before training F , train ratio R, backpropagation horizon W , imagination horizon K,
batch size N , replay buffer capacity B.
Initialise neural network parameters θ, ϕ, ψ randomly, initialise empty replay buffer B.
Let g = 0, t = 0, a−1 = 0, r−1 = 0, z−1 = 0.
Reset the environment and observe o0 and c0 (true at reset).
for s = 0 . . . S − 1 do

// Environment interaction
Encode observation ot to et−1 ∼ qeθ(·|zt−1, at−1, ot).
Update zt = uθ(zt−1, at−1, et−1).
Given the current history ht, take action at ∼ gϕ(·|zt).
Observe reward rt, information it+1, observation ot+1 and continuation flag ct+1.
if ct+1 is false (terminal state) then

Reset t = 0.
Reset the environment and observe o0 and c0 (true at reset).

end if
Update t = t+ 1.
Add trajectory of last W time steps (aw−1, rw−1, iw, ow, cw)

t
w=t−W+1 to the replay buffer B.

// Learning
while |B| ≥ F ∧ g < Rs do

// Environment learning
Draw N trajectories of length W

{
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n
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n
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n
w)
W−1
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}N−1

n=0
uniformly from the replay buffer B.

Compute statistics and encoded latents
{
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n
w)
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= Encode

(
uθ, q

e
θ ,
{
(anw−1, o

n
w)
W−1
w=0

}N−1

n=0

)
.

Update θ using ∇θ

∑N
n=0

∑W−2
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w, where an−1 = 0 and,

Lnw = log qiθ(i
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// Behaviour learning

Sample latent trajectories
{{

(zn,wk , ên,wk )K−1
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}W−2
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= Imagine
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Predict rewards rn,wk ∼ qrθ(·|zn,wk , ên,wk ), continuation flags cn,wk+1 ∼ qcθ(·|zn,wk , ên,wk ), and values vn,wk = vψ(z
n,w
k ).

Compute value targets using λ-returns, with Gn,wK−1 = vn,wK−1 and

Gn,wk = rn,wk + γcn,wk
(
(1− λ)vn,wk+1 + λGn,wk+1

)
.

Update ϕ using ∇ϕ

∑N−1
n=0

∑W−2
w=−1

∑K−1
k=0 Gn,wk .

Update ψ using ∇ψ

∑N−1
n=0

∑W−2
w=−1

∑K−1
k=0 ∥vψ(zn,wk )− sg(Gn,wk )∥2, where sg is the stop-gradient operator.

Count gradient steps g = g + 1
end while

end for

Algorithm 2 Encode

inputs: Update function uθ , encoder qeθ , and histories
{
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n
w)
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Let zn−1 = 0.
for w = 0 . . .W − 1 do

Let enw−1 ∼ qeθ(·|znw−1, a
n
w−1, o

n
w).

Let znw = uθ(z
n
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end for
returns:
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Algorithm 3 Imagine

inputs: Update function uθ , prior qpθ , policy gϕ, statistics, encoded latents and actions
{
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Let zn,w−1 = znw, ên,w−1 = enw, an,w−1 = anw.
for k = 0 . . .K − 1 do

Let zn,wk = uθ(z
n,w
k−1, a

n,w
k−1, ê

n,w
k−1).

Let an,wk ∼ gϕ(·|zn,wk ).
Let ên,wk ∼ qpθ (·|z

n,w
k , an,wk ).

end for
returns:

{{
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}N−1
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.


