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ABSTRACT 

Sample size is a key issue in species distribution modelling. While many studies focused on the 

relevance of sample size for model calibration, the importance of the size of the dataset used for 

model evaluation has received much less attention. Here, we highlight two previously published 

approaches to address the problem, and which are relatively simple to implement: the pooling 

evaluation and the implementation of null models. We discuss the importance of these or other 

potential approaches that are critical for model evaluation in rare species, which represent the bulk 

of biodiversity, and for which accurate models are most necessary in a conservation context. 

 

Introduction 

Species distribution models (SDM) - also called ecological niche models (ENM) or habitat suitability 

models (HSM) - are increasingly used in ecological studies, e.g. for testing biogeographic 

hypotheses, assessing global change impacts or planning conservation (Araújo et al., 2019; Guisan 

et al., 2013, 2017). They are typically based on the ecological niche concept and allow predicting 

probabilities of occurrence or habitat suitability in a given geographical space and time period. SDMs 

can be affected by numerous factors, notably the algorithm used, data bias, or what is often shown 

as the major factor, sample size (Fernandes et al., 2019; Guisan et al., 2017; Hernandez et al., 2006; 

Jeliazkov et al., 2022; Liu et al., 2018; Stockwell and Peterson, 2002; Valavi et al., 2022; van Proosdij 

et al., 2016; Wisz et al., 2008; Zurell et al., 2020). Sample size is especially a critical issue for rare 

species, which represent the bulk of biodiversity (Lomba et al., 2010; ter Steege et al., 2013). 

Modelling the distribution of rare species requires specific approaches (Breiner et al., 2015, 2018; 

Jeliazkov et al., 2022; Lomba et al., 2010; Mondanaro et al., 2023). In particular, sample size limits 

the number of predictors that can be included in a model, with a general rule of thumb that the 

addition of a new predictor variable requires another 10 occurrences (Harrell Jr. et al., 1996; Peduzzi 
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et al., 1996). Although models for rare species, which are more sensitive to climate change (Vincent 

et al., 2020) and prone to extinction (Courchamp et al., 2006; Enquist et al., 2019; Is¸ik, 2011), they 

are crucially needed to assess threat levels and support conservation actions, such models are thus 

highly prone to overfitting issues (Breiner et al., 2015; Lomba et al., 2010). To address this paradox, 

Lomba et al. (2010) proposed the “ensemble of small model” (ESM) approach, which consists of 

averaging models fitted with all possible combinations of pairs of predictors into a final ensemble. 

ESMs allow increasing the predictive power and avoiding overfitting (by reducing the number of 

predictors in each small model) while still allowing to consider all predictors deemed important for 

the species (i.e. defining its niche). Although other powerful methods exist to predict the distribution 

of species (see Jeliazkov et al., 2022 for a review), ESMs, which significantly outperform standard 

SDMs also for more common species (Breiner et al., 2015), thus represent an elegant solution to the 

problem of fitting models with limited sample size. However, little attention has been paid to the 

problem of evaluating models with small sample size (Bean et al., 2012; Hallman and Robinson, 

2020; Jimenez-Valverde, 2020). Here, we highlight this neglected issue and discuss two possible 

solutions to deal with it. We finally identify future refinements to these approaches, and potential 

tools associated. 

The neglected one: Sample size effect in model 

evaluation. How to deal with low sample size? 

The threshold used to binarize habitat suitability probabilities is impacted by the sample size which 

can likely influence the measurements of threshold-dependent evaluation metrics such as the True 

Skill Statistic or Cohen’s Kappa (Bean et al., 2012). In addition, Hallman and Robinson (2020) showed 

that the Partial Receiver Operating Characteristic (pROC), which is an alternative to the commonly-

used nonthreshold-dependent evaluation metric (Fourcade et al., 2018; Guisan et al., 2017), the Area 

Under the receiver operating Curve (Fielding and Bell, 1997; Peterson et al., 2008), tends to be 

artificially inflated when small test sets are used. For presence-absence data, Jimenez-Valverde 

(2020) demonstrated through simulations and with the Area Under the ROC Curve (AUC) metric that 

a sample size lower than 10 presences and 10 absences can seriously hamper predictive power, 

leading them to recommend that test sets should include at least 15 occurrence and 15 absence 

points. Following these recommendations, the minimum initial sample size of a dataset should be 

greater or equal to 50 occurrences and 50 absences when implementing the most commonly cross-

validation approach used for evaluating models from a single initial dataset, i.e., splitting it into a 

training set (typically 70% of the data) to calibrate the models and a test set (the remaining 30% of 

the data) to assess model performance (Guisan et al., 2017). To our knowledge, the minimal size of 

a test set has not yet been evaluated in the case of presence-only data, but since the latter carry less 

information than presence-absence data, the issue of the size of the test set will undoubtedly be 

even more critical than for presence-absence data. The size of the test set is therefore a crucial 

problem, especially for rare or under-represented species, and 
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further to conservation planning. 

To address this issue, Collart et al. (2021) proposed a solution (Fig. 1), which we call hereafter “the 

pooling evaluation”. In the context of a standard repeated split-sample cross-validation approach 

(see above), a presence or an absence can be used or omitted several times in the evaluation process 

across replicates, resulting in some cases in having very few presences and highly unbalanced 

prevalence in some test sets. Furthermore, the sub-sampling of a dataset that is already, in the case 

of rare species, potentially small, leads to very few occurrences available for model evaluation in the 

test set. These issues hamper proper model evaluation, typically leading to a general inflation of the 

accuracy metrics (Hallman and Robinson, 2020). The idea of the proposed evaluation is to pool 

together all the left-out test sets to ‘reconstruct’ a single test set of sufficient sample size for proper 

evaluation. If an occurrence or an absence was, by chance, sampled in several test sets, the habitat 

suitability values at this point can simply be averaged across all test sets. At the end, one obtains a 

test set with roughly the same length as the original dataset, suitable to compute different 

evaluation metrics, such as the AUC, the True Skill Statistic and the Boyce Index. With this 

evaluation-by-pooling, one can thus palliate the small size of the test set, reducing the statistical 

accuracy of evaluation metrics and allowing to model species with a minimum of 10–15 occurrences 

without increasing computation time. This method is now available in the ecospat R package 

(Broennimann et al., 2022) for ESMs (ecospat. ESM.EnsembleEvaluation) but also for more 

conventional SDMs (ecospat.poolingEvaluation function). 

Fig. 1. Procedure to evaluate species distribution models (SDMs) via the pooling evaluation (developed 

in Collart et al., 2021). A N-repeated split-sample cross-¬validation is first needed. The full dataset is 

thus randomly splitted into a training and a test set N times. The training set is used to infer the species 

ecological niche. This model is employed to afterwards make predictions on the test set. The N test sets 

are then pooled together to generate a single test set having roughly the same size as the full dataset. 

If an occurrence or an absence is used in several test sets (in bold red), a mean of probability values is 

applied. This resulting test set can be then used to compute different evaluation metrics such as the 

Area Under the Curve (AUC), the maximum value of True Skill Statistic (MaxTSS), the Boyce Index and/or 

the maximum value of kappa (MaxKappa). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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Another complementary and potentially powerful solution was proposed to evaluate models with 

small datasets (Bohl et al., 2019; Osborne et al., 2022; Raes and ter Steege, 2007; van Proosdij et al., 

2016; Warren et al., 2021). It consists of running a series of null models, sampling a number of 

background points that is equal to the number of actual occurrences used for model calibration, and 

using these background points as ‘fake’ occurrences. The fitted null model is then evaluated with 

the same test set used to evaluate the empirical model (Bohl et al., 2019). This procedure is repeated 

several times (99 for van Proosdij et al., 2016; ~1000 for Raes and ter Steege, 2007 and Bohl et al., 

2019) to obtain a null distribution of one or several evaluation metrics. The evaluation metrics of the 

initial models are finally compared with the evaluation metrics of the null models. However, because 

a fully random null model gives too optimistic evaluation of SDMs by not taking into account spatial 

autocorrelation nor sampling bias, it is recommended to generate bias-corrected null models based 

on target-group background sampling (Barber et al., 2022; Phillips et al., 2009; Ponder et al., 2001), 

i.e. randomly sampling background points in geographical (or environmental) space where the 

species occurs (van Proosdij et al., 2016). Null models can be run using, for example, the functions 

“ENMnulls” in the ENMeval R package (Kass et al., 2021) and nullRandom in dismo R package 

(Hijmans et al., 2022). When the study aim is to measure temporal changes of species distribution, 

Warren et al. (2021) proposed to project these null models onto different time periods, climate 

models and/or emission scenarios and computed the predicted changes in habitat suitability with 

the same method as with the empirical data This null distribution of change can be afterwards 

compared with the empirical results, which allows to determine to what extent predictions are 

driven by our data. However, one drawback of null models is an increase of computation time, which 
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can be important when applied on ESMs as null models need to be implemented for each bivariate 

model. 

If computation time is not a limitation, the most conservative option to deal with low sample size 

would be to combine the pooling evaluation and null models. By doing so, one can test if the 

generated SDMs for rare species (or with low sample size) are more accurate than expected by 

chance, while the pooling gives an approximation of how accurate models are. To apply this 

procedure, the idea would be to first generate several “null datasets” with fake occurrences 

randomly sampled from target-group background points and employ the pooling evaluation, thus 

performing a N-repeated split-sample cross-validation, pooling all the N test set and computing 

several evaluation metrics. 

What are the missing pieces? 

Even though these approaches can palliate some aspects of SDM evaluation with low sample size, 

many other aspects still require further investigations. Remaining questions are for instance: (1) 

How do presence-absence evaluation metrics other than AUC, such as the True Skill Statistic (TSS) 

or Cohen’s kappa, and presence-only evaluation metrics, such as the Boyce Index, vary depending 

on sample size? Can we define a minimum sample size for presence-absence and presence- only 

datasets? (2) Regarding the previous questions, does sampling bias or spatial autocorrelation affect 

the minimum sample size for the evaluation? 

Simulations by generating virtual species appear to be an appealing solution to answer these 

questions (Meynard et al., 2019; Meynard and Kaplan, 2013; Zurell et al., 2010). Virtual species can 

be defined as a simulated taxon for which its response to a particular environment is known and for 

which the sampling strategy can be totally controlled (Meynard et al., 2019). To understand the 

effect of sample size on model evaluation, several virtual species have to be generated, defining their 

responses to an environment and testing different niche properties (e.g. size). A sampling can then 

be applied defining where the species is present or not. In this step, one could create some noise, 

such as species misidentification (defining a species occurrence in a certain location where the 

species is actually not present) or adding species commission or omission errors (wrongly defining 

a species present or absent respectively; as in Fernandes et al. (2019)). These datasets can be split 

into training and test sets. Models can afterward be generated using the training sets and evaluated 

using the test sets. Then, one could decrease the sample size of the test sets to determine how the 

different metrics vary across the sample size. Virtual species can be generated via for example 

virtualspecies R package (Leroy et al., 2016). It is also possible applying the same procedure to test 

these questions using robust datasets based on real species (e.g., Dubuis et al., 2011; Elith et al., 

2020; Hallman and Robinson, 2020; Valavi et al., 2022). 



Published in : Ecological Informatics (2023), 75, 102106 

DOI: 10.1016/j.ecoinf.2023.102106 

Status : Postprint (Author’s version)  

 

 

 

Concluding remarks 

Although it is possible to accurately predict a species distribution with a low sample size, small test 

sets can provoke incorrect evaluations of these models. Here, we highlighted two solutions from 

recent papers to deal with a small number of occurrences in test sets. However, improving our 

understanding on how sample size affects the measurement of model performances is crucial to 

enhance future SDM studies, and will be particularly necessary to ensure robust SDM-based conser-

vation planning, especially in the context of climate change. For now, with only limited knowledge 

on the impact of sample size on SDM evaluations, the next SDM studies should at least keep in mind 

that a small training set also means a small test set and acknowledge this potential issue, especially 

regarding rare or under-represented species. 
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