

Development of a high resolution code for Hall effect thrusters

Electric Propulsion

Very high specific impulse Flexible charge density

- **Applications:** Satellite positioning & long duration missions
- **Belgian industry:** power units Thales Alenia Space

Hall Effect Thrusters

Electron trapping and high speed $\sim~{ m E} imes { m B}$ drift

- \rightarrow Electric potential
- \rightarrow In situ ionization

State of the Art

Simulation usaully in 0d, 1D or 2D Particle in Cell (PIC) is the most popular Model (high cost)

Model	Name	Collisions	Heat Tr.	Neutrals	Ionization
2D PIC	Villafana	×	N/A	×	×
	Lafleur	\checkmark	N/A	×	\checkmark
2D Hybrid	Dominguez	\checkmark	\checkmark	\checkmark	\checkmark
2D Fluid	Joncquieres	\checkmark	×	×	\checkmark
3D PIC	Villafana	×	N/A	×	×

Julien Clotuche

Aerospace and Mechanics Department, Université de Liège.

Towards: first principle simulation

- Study flow field and estimate performance
- Breathing Mode Instability
- **Electron Cyclotron Drift Instability** (ECDI)
- 4. Wall and Particle Collisions
- Anomalous Axial Drift

Breathing Mode

ECDI and MTSI

Density wave in azimuthal direction Density wave in radial direction

Requires 3D domain

Features

- SOA models in 3D

Promotors: HILLEWAERT Koen, MAGIN Thierry

Requirements **Boltzmann Equation** Collision modeling and constitutive law High precision numerics Lorentz Forces Heat Transfer First 3 moments divided by particle mass Variable Time Scaling **Current State of the Model** Features that have already been added

 Riemann problem for 3 very different species Variable Time Scaling Electric potential computation

Future Developments

- Magnetic Forces
- Thermal Diffusion
- Elastic Collisions
- Inelastic Collisions

Cases

- 2D Steady
- 2D Breathing Mode
- 3D Steady
- 3D Breathing Mode
- 3D ECDI & MTSI

 $\partial_t(n$

Choice

- Neutral, ion & electron frame
- Moments
- Particle and wall collisions

High order Discontinuous Galerkin method

- stable for generic convection-diffusion-reaction Iow dispersion/dissipation error on arbitrary meshes hp-adaptation

Multi-Fluid Model

$$t_t f_{\alpha} + v \; \partial_x(f_{\alpha}) + \partial_v \left(\frac{F_{\alpha}}{m_{\alpha}} f_{\alpha}\right) = S_{\alpha}^{coll}$$

$$\partial_t n_{\alpha} + \partial_x (n_{\alpha} v_{\alpha}) = S_{\alpha}^{(n)}$$
$$\partial_t (n_{\alpha} v_{\alpha}) + \partial_x (n_{\alpha} v_{\alpha}^2 + \frac{p_{\alpha}}{m_{\alpha}}) = S_{\alpha}^{(m)}$$
$$v_{\alpha} e_{\alpha}) + \partial_x (n_{\alpha} v_{\alpha} h_{\alpha}) = -\frac{1}{m_{\alpha}} \partial_x q_{\alpha} + S_{\alpha}^{(e)}$$

ForDGe Software

