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my background, starting a PhD in Astrophysics was a tough journey, and I would have given
up on this project without his initial kick. Thanks for believing in me.

From the beginning of my PhD, I was surrounded by amazing colleagues. They made the
journey very fun, and generously supported me through so many opportunities. In this
regard I would like to thank everyone in the SPECULOOS consortium. A special thanks
to Julien, for his very strong support and for calling me a poet. Peter, thanks for sharing
my enthusiasm for technology. Besides the SPECULOOS consortium, many colleagues were
absolutely instrumental to my research and the development of my ideas. In particular, I
would like to thank Hannah Wakeford, for offering me a first paper and an amazing learning
opportunity. No matter the project, Benjamin Rackham was someone I could freely share
my ideas with, thank you so much. Among my external collaborators, I would finally like to
thank Daniel Foreman-Mackey, for the immense support on my new projects and for being
a great mentor.
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Abstract

During the next decade, the atmospheric characterization of exoplanets as small as Earth
will only be possible for planets transiting stars much smaller than the Sun: late M-dwarfs.
While progress in instrumentation slowly enables the study of these remote worlds, many
challenges remain. This PhD thesis intends to tackle some of these challenges, and provide a
path towards the detailed atmospheric characterization of terrestrial exoplanets around late
M-dwarfs.

Evidence from multiple fields suggest that life may have appeared and evolved in other
places than Earth. From these fields, Information Theory and Thermodynamics have set
themselves apart by jointly providing incentives to emergent phenomenons beyond our sub-
jective imagination, beyond life as we know it. Whatever form they take, such organisms
should intrinsically put the environment they live in out of equilibrium, making them indi-
rectly detectable. In this respect, the search for life in our Solar system is still ongoing, but
focus is increasingly given to the search for life on exoplanets, planets orbiting stars other
than the Sun. By measuring the composition of exoplanets atmospheres, one can assess the
existence of such disequilibria and try to link their origin to the presence of a biosphere,
but only to a certain degree. Indeed, distinguishing purely physical processes from potential
biosignatures requires a deep understanding of the planet in its entirety, not only its atmo-
sphere but also its oceans and crust (if terrestrial), in addition to its host star’s environment.
Such detailed knowledge is only available for a single planet in the whole Universe: Earth,
making Earth-like planets compulsory analogues to search for life outside the solar system,
on a terrestrial planet as we know it.

In the Introduction, I review the evidence suggesting life may have appeared and be present
elsewhere in the Universe, on exoplanets. In Chapter 1, I describe the architecture and
observation of these remote worlds, and draw a road-map of how life could be detected on
these planets in the next two decades. Doing so, I focus on the unique opportunity offered
by exoplanets transiting late M-dwarfs, and on two non-instrumental challenges that remain
to fully exploit their potential: the detection of transit signals in the light curves of these
cool objects, and the concerning effect of stellar contamination.

In Chapter 2, I expose my contribution to the observation of late M-dwarfs. I start by
describing SPECULOOS, a transit survey searching for temperate terrestrial planets around
1700 nearby late M-dwarfs. Then I describe prose, a Python package to build modular
image processing pipelines, initially developed to process the raw images of SPECULOOS.

In Chapter 3, I describe the development and application of nuance, an algorithm to detect
exoplanets around variable stars, well suited for late M-dwarfs.

In Chapter 4, I focus on the second challenge posed by stellar contamination, employing
the atmospheric reconnaissance of TRAPPIST-1h as a case study. Using Hubble Space Tele-
scope WFC3 observations, I present an infrared transmission spectrum of the outermost
planet of the ultra-cool M8-type star TRAPPIST-1 and show how stellar contamination hin-
dered the interpretation of such measurements. Overall, I highlight the limitations of using



1D stellar atmosphere models and state-of-the-art techniques to solve this issue.

Chapter 5 is a response to the effect of stellar contamination, and a description of new
strategies to better understand late M-dwarfs. In this chapter, I describe the constraints
that could be drawn from an ensemble analysis of the SPECULOOS rotational light curves,
and their use in atmospheric retrievals. Finally, I expose how spot occultations by large
planetary companions could help constrain the photospheres of late M-dwarfs, using the ob-
servation of TOI-3884 large polar spot as an example.

I conclude by making a summary of my contributions to the field of exoplanetary science, ul-
timately helping to lay a path towards the detailed atmospheric characterization of terrestrial
exoplanets around late M-dwarfs, in the search for life.
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Résumé

Au cours de la prochaine décennie, la caractérisation atmosphérique d’exoplanètes aussi pe-
tites que la Terre ne sera possible que pour des planètes en transit autour d’étoiles beaucoup
plus petites que le Soleil : les étoiles naines de type spectral M. Alors que nos instruments
sont de plus en plus aptes à étudier ces mondes lointains, de nombreux défis demeurent. Cette
thèse de doctorat a pour but d’étudier certains de ces défis et fournit une voie vers la ca-
ractérisation atmosphérique détaillée d’exoplanètes terrestres en transit autour des naines M.

Plusieurs domaines suggèrent que la vie a pu apparâıtre et évoluer ailleurs que sur Terre.
Parmi ces domaines, la théorie de l’information et la thermodynamique permettent d’expli-
quer l’apparition de phénomènes émergents qui dépassent notre imagination, allant au-delà
de la vie telle que nous la connaissons. Quelle que soit leur forme, ces organismes placent
leurs environnements hors de l’équilibre thermodynamique, ce qui les rend indirectement
détectables. À cet égard, la recherche de la vie dans notre système solaire continue, en pa-
rallèle de la recherche de la vie sur des planètes en orbite autour d’étoiles autres que le
Soleil. En mesurant la composition atmosphérique de ces exoplanètes, l’existence de tels
déséquilibres peut être détectée, et reliée à la présence d’une biosphère. Cependant, dis-
tinguer les processus purement géophysiques des biosignatures nécessite une compréhension
profonde de la planète dans son ensemble, non seulement de son atmosphère mais aussi de
ses océans et de sa croûte (si elle est rocheuse), combinée à l’environnement stellaire. Une
connaissance aussi détaillée n’est disponible que pour une seule planète dans tout l’Univers :
la Terre, faisant des planètes de type terrestre des analogues primordiaux pour la recherche
de vie ailleurs dans l’Univers.

L’introduction de ce manuscrit décrit les indices qui suggèrent que la vie a pu apparâıtre
et être présente ailleurs dans l’Univers, sur des exoplanètes. Dans le Chapitre 1, je décris
l’architecture et l’observation de ces mondes lointains, et décrit la manière dont la vie pour-
rait être détectée sur ces planètes durant les deux prochaines décennies. Ce faisant, je me
concentre sur l’opportunité unique offerte par les exoplanètes en transit autour d’étoiles de
type M, et sur deux défis non-instrumentaux qui restent à relever pour exploiter pleinement
leur potentiel : la détection d’exoplanètes autour de ces objets purement convectifs, et l’effet
préoccupant de la contamination stellaire.

Le Chapitre 2 expose ma contribution à l’observation d’étoiles de type M tardives. Je com-
mence par décrire SPECULOOS : un survey à la recherche de planètes rocheuses en transit
autour de 1700 naines tardives proches. Ensuite, afin de traiter ses images brutes, je décris
prose : un package Python facilitant le design et l’exécution de pipelines dédiés au traitement
d’images.

Dans le Chapitre 3, je décris le développement et l’application de nuance : un algorithme
pour détecter les transits d’exoplanètes autour d’étoiles variables, particulièrement adapté à
la recherche de transits dans les courbes de lumière de naines tardives.

Le Chapitre 4 se concentre sur la contamination stellaire, au travers de la reconnaissance at-
mosphérique de TRAPPIST-1h. En utilisant les observations du télescope spatial Hubble, je



présente un spectre de transmission infrarouge de la planète externe du système TRAPPIST-
1, et montre comment la contamination stellaire impacte son interprétation. Dans l’ensemble,
je souligne les limites de l’utilisation des modèles d’atmosphère stellaire 1D et le manque de
techniques de pointe en ce qui concerne le traitement de la contamination stellaire.

Enfin, le Chapitre 5 est une réponse à l’étude de TRAPPIST-1h, et présente de nouvelles
stratégies pour lutter contre la contamination stellaire. Dans ce chapitre, je décris les contraintes
qui pourraient être tirées d’une analyse d’ensemble des courbes de lumière rotationnelles de
SPECULOOS, et comment cette étude pourrait aider les caractérisations atmosphériques à
venir. Enfin, j’expose comment l’observation de planètes transitant des régions actives à la
surface d’étoiles de types M pourrait aider à contraindre leurs photosphères, prenant comme
exemple le cas unique de TOI-3884.

Je conclus cette dissertation par un résumé de mes contributions au domaine de l’exo-
planétologie, faisant un pas de plus vers la caractérisation atmosphérique détaillée d’exo-
planètes de type terrestres, à la recherche de vie ailleurs dans l’Univers.
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Introduction

Drop a stone from your hand: you can make assumptions simple enough to predict its tra-
jectory. Drop a feather from your hand: some knowledge about aerodynamics will still allow
you to make such predictions. But now, drop a living butterfly from your hand: chances are
you will never be able to predict where it will be landing. While the butterfly still obeys
the laws of aerodynamics, knowing what the butterfly will do requires a knowledge far more
extended than the laws of physics. For a start, it requires to know what the butterfly knows
about its environment: information. Add a flower to the scene and your chances of predic-
tions are changed.

Understanding the complexity of life required the separate development of Biology, in which
Physics could only explain separate and local phenomenons. But as Information Theory and
Thermodynamics recently stepped into the game, our view of life as a rare and unique event is
changing, and so is our view of its place in the Universe, among other physical phenomenons.
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The story of our planet as we know it starts 4.5 billions years ago, in the early solar system,
when Earth was a sterile rock with no moon. At this time, theories (reviewed in Hartmann
2014) suggest that Earth was involved in a dangerous dance with another body of the solar
system, Theia, until the day they collapsed in a giant impact1. After this dramatic event,
remnants from the impact formed the Moon, while the surface of Earth was left covered with
magma oceans that had to cool down. This is how astrobiologist Robert Hazen2 describes
the aftermaths of this dramatic impact:

”You’ve got a vast surface of area of Earth, you’ve got millions of years to
play with, you’ve got all different types of chemical systems and fluxes. Earth
was a great experimental laboratory for chemistry, with a lot of combinations of
chemicals you can try. Life pops out of it.”

600 millions years after the impact, Earth was striving with life (Dodd et al., 2017), and with
the story of its origins comes the question of its definition. There is currently no scientific
consensus on how to properly define life, but everyone share a common intuition about it: a
butterfly is a living entity, and a stone is definitely not.

Outside obvious comparisons, the question becomes trickier for everything in-between, a con-
tinuum of chemical complexity where non-living systems share common characteristics with
what we would call living things. These characteristics extend from self-replication (England,
2013) to evolution (Solé et al., 2007) up to redefining our sense of intelligence. For example,
in a computer simulation where disk-shaped particles were placed in specific configurations
(Wissner-Gross & Freer, 2013), a large disk was able to use a small disk to extract another
disk from a narrow tube, mimicking what we would call a tool. In the same kind of sim-
ulation, two disks in different containers spontaneously synchronized to pull down a larger
disk, a sense of cooperation. In opposition, what we accept to be characteristic of life (like
reproduction) fails for obvious living organisms (e.g. a mule). The definition of life falls down
to taxonomy.

Among complex systems, scientists recognize the peculiarity of biological structures, such
as the prevalence of chirality in the molecular building-blocks of a butterfly (Meierhenrich,
2013), and the impact these systems have on their environments from a physical point of
view. Using these purely physical principles, independent teams came to the conclusion that
life is an inevitable outcome of processes arising from non-equilibrium thermodynamics (e.g.
Jarzynski 2006, England 20133), living structures being the best at dissipating energy and

1The Giant Impact Hypothesis.
2Episode What is life? of the podcast The Joy of y.
3Not without critics, see Farmer 2005.
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maximizing entropy. To achieve that, these systems must constantly adapt to their environ-
ment and naturally become inference machines, storing and processing information in the
most energy-efficient way to make predictions and survive (Still et al., 2012). In that respect,
claims about the ubiquity of life are backed and complemented4 by numerous studies in the
field of Information Theory (e.g. Walker & Davies 2013).

When so many disciplines respond to each other presenting the emergence of life as an
obvious thing, a natural question would be: Where is everybody?5

From these fields, we learn that life, complex systems being good at harvesting energy,
only form in environments with the right composition (Adami & LaBar, 2015) exposed to an
external source of energy putting it far from equilibrium (Smith & Morowitz, 2018). Plan-
ets in the so-called habitable-zone of their stars (where liquid water can exist) match these
conditions, being rich reservoirs of chemicals exposed to very diverse host stars’ radiations.
From thermodynamics, we learn that life will arise from these non-equilibrium environments,
and imprint its mark at the scale of whole planets.

As early as 1965, James Lovelock identified that non-equilibrium thermodynamics would
be a direct marker for the presence of life on other worlds, and that studying the atmo-
spheric composition of a planet would provide some mean of detection (Lovelock, 1965). In
his study, he recognizes that the presence of Oxygen (in the form of O2), being naturally very
reactive hence rare, would be a significant clue for the presence of complex bio-chemistry, a
term later coined in the literature as biosignature. As in Mathematics, proving that some-
thing exists is much easier than proving it does not, we only need one instance of it. For
life elsewhere in the universe, we only need one detection. But what if O2 can be produced
by geophysical processes alone? How much false detections should we expect? Meadows
et al. (2018) explore this question by studying sources of abiotic O2 on exoplanets, high-
lighting that the detection of life should instead rely on combinations of biosignatures and a
good understanding of the planetary geophysical and atmospheric interplay. In that respect,
exporting our understanding of Earth to the study of other planets becomes compulsory.
Hence, focusing the search for life to rocky exoplanets like Earth will maximize our chances
of interpreting the biosignatures we are looking for.

4A natural reason why the two are linked is nicely illustrated in 7.5.1 Information theory as a mirror on
thermodynamics of Eric Smith and Harold Morowitz’ book The Origin and Nature of Life on Earth: The
Emergence of the Fourth Geosphere (see small review in Walker 2017).

5A famous but uncertain quote from Enrico Fermi during a conversation with fellow physicists Edward
Teller, Herbert York, and Emil Konopinski in the 1950. This question and its implications results in what is
called the Fermi paradox.
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Chapter 1

Exoplanets observation and
characterization

Some exoplanets may harbor life, complex systems that will necessarily imprint their mark
at a planetary scale. In this chapter, I describe how planetary systems can be studied, in
particular the atmosphere of exoplanets, where signs of life-like non-equilibrium thermody-
namics could be detected.

Exoplanetary systems consist in at least one non-stellar object being gravitationally bound
to a stellar system (one or several stars). This dissertation specifically deals with planets
(without entering in their somehow controversial definition, taking Earth-like bodies as our
main targets) in orbit around single host stars. The first mention of such systems, outside our
own, can be tracked back to the 16th century, when the Italian philosopher Giordano Bruno
raises the possibility that other stars may be surrounded by planets too. This possibility was
later confirmed by the detection of two planets orbiting the pulsar PSR B1257+12 in 1992
(Wolszczan, 1994), and in 1995, with the detection of a planet orbiting the Sun-like star 51
Pegasi (Mayor & Queloz, 1995). By the end of the 20th century, the first multi-planetary
system was discovered (Butler et al., 1999), and a total of 71 exoplanets were confirmed1.
This new era marked the beginning of exoplanetary science as we know it, with currently
more than 5000 planets detected, and over 9000 candidates waiting confirmation2.

1http://exoplanet.eu
2https://exoplanets.nasa.gov/discovery/discoveries-dashboard/ (2023.02.20)
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1.1 A planet and a star
While many configurations are possible, let’s consider the simple situation where a star of
mass M? and a planet of mass Mp are isolated in empty space where only gravitational
forces are at play (in a Newtonian setup where relativistic effects are neglected). We call
r the position vector of the planet with respect to the star, describing the system’s motion
under Newton’s second law

r̈ +GM?Mp
r

r3 = 0, (1.1)

where r̈ is the acceleration vector of the planet and G is the universal gravitational constant.
Treating the problem in polar coordinates, with the substitution u = 1/r leads to

Equation 1.1 ⇔ d2u

dθ2 + u = G
M? +Mp

h2 ,

also known as Binet’s equation, where it can be shown that h = r2θ̇ is a constant. A general
solution for this differential equation is

r = p

1 + e cos(θ − ω0) , (1.2)

where e and ω0 are constants of integration and p = h2/G(M? + Mp). Equation 1.2, that

Figure 1.1: Cir-
cular, elliptic and
parabola conic
sections.

describes the motion of the planet, is the expression of conic sections in polar coordinates,
whose specific form depends on the initial conditions of the system (see the margin Fig-
ure 1.1). Since planetary systems consist in stable elliptic orbits, I focus the rest of this
dissertation on the circular and elliptic cases for which 0 ≤ e < 1 (red and grey in Fig-
ure 1.1). Hence, the trajectory of the planet in the rest frame of the star is an ellipse of
ellipticity e and semi-major axis a given by a = p/(1 − e2) (see Figure 1.2), with the star
located at one foci. If we define the true anomaly f = θ−ω0 we can rewrite Equation 1.2 as

r = a(1− e2)
1 + e cos f . (1.3)

In this equation, ω0 is called the longitude of the periapse and is used to define the orientation
of the ellipse in the orbital plane (based on reference points defined in Figure 1.3).

1.1.1 Kepler’s problem

Although being very elegant, Equation 1.3 is rather impractical since it depends on the true
anomaly f . As we will see in the next subsection, we seldom have access to such a direct
observable and rather measure quantities along time t, making a time-dependant formulation
of Equation 1.3 highly desirable. To solve this problem, we define the eccentric anomaly E

(Figure 1.2) such that
r = a(1− e cosE), (1.4)

and use Kepler’s second and third laws to show that (Murray & Correia, 2010a, Section 3.)

M = E − e sinE, (1.5)

with M = 2π
P

(t− t0), (1.6)

where P is the orbital period of the system and t0 the boundary condition for E = 0. This
corresponds to Kepler’s equation, where M is defined as the mean anomaly. Given this
expression, the procedure to find the time-dependant polar coordinates (r, θ) of the planet
in the rest frame of the star at time t is:
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1. Compute M using its definition from Equation 1.6.

2. Compute E by solving Kepler’s Equation 1.5 (numerically).

3. Compute r using Equation 1.4 and f (then θ) using Equation 1.3.

tra
jecto

ry

Figure 1.2: Elliptic motion of a planet in orbit around its host star. O denotes the center of
the ellipse and F the ellipse’s focus where the star is located.

1.1.2 Three dimensional orbit

From the planet’s coordinate in the plane of its orbit, we can compute its coordinates in three
dimensions from any frame of reference. We define such a frame of reference, associated to an
orthonormal right-handed system (~x, ~y, ~z), centered on the star, with ~z pointing away from
the star towards an observer (us, see Figure 1.3). Hence, we are interested in the planet’s
coordinates (and motion) in this frame.

The elliptical motion of the planet in the plane ( ~x0, ~y0) of its orbit is known, a plane from
which we define the orthonormal right-handed system ( ~x0, ~y0, ~z0). The transformation of the
planet’s coordinates from ( ~x0, ~y0, ~z0) to (~x, ~y, ~z) can be obtained following three rotations
(Figure 1.3):

1. A rotation of angle ω about the ~z0-axis, the longitude of the periapse.

2. A rotation of angle −i about the ~x0-axis, the orbital inclination.

3. A rotation of angle Ω about the ~z-axis, the longitude of the ascending node.

These angles are defined and shown in Figure 1.3, measured with respect to reference points
that are specific to observations done from Earth. To compute these rotations, we use the
rotation matrices Px(φ) and Pz(φ) of angle φ respectively about the ~x and ~z axes:

Px(φ) =

 1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 and Pz(φ) =

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 . (1.7)
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ascending
node

periastron

Figure 1.3: Orbital parameters of the two-body problem. The ascending node Ω is the point
where the orbit of the planet crosses the ~x-~y plane from below. The argument of the periapse
ω is the angle between the ascending node and the periapse, the point of closest approach of
the planet to the star. Finally, the orbital inclination i is the angle between the ~x-~y plane
and the plane of the orbit.

The position R of the planet in the frame associated to (~x, ~y, ~z) is then

R = Pz(Ω)Px(−i)Pz(ω)r. (1.8)

With these expressions, the cartesian coordinates (x, y, z) of the planet in the rest frame
(~x, ~y, ~z) of the star are

x = r(cos(Ω) cos(ω + f)− sin(Ω) sin(ω + f) cos(i)),
y = r(sin(Ω) cos(ω + f) + cos(Ω) sin(ω + f) cos(i)),
z = −r sin(ω + f) sin(i).

(1.9)

This set of equations leads to a variety of observable quantities that can be measured to infer
the properties of a given planetary system.

1.1.3 Radial velocity

As an example, we can use Equation 1.9 to constrain the mass Mp of a planetary companion
around a known host star, using measurements of the star’s radial velocity along ~z. Indeed,
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in the two-body problem, not only the two bodies orbit around each other but they also orbit
around their common center of mass. Hence, the star also describes an eccentric orbit, with
a semi-major axis a? scaled as

a? = a
Mp

Mp +M?
,

i.e. a much narrower orbit than the one of the planet if Mp �M?. Hence, the radial velocity
vz of the star projected on ~z, towards the observer (see Figure 1.3), can be computed (Murray
& Correia, 2010b) using Equation 1.9 as

vz = v̄z +K(cos(ω + f) + e cosω),

where v̄z is the proper motion (i.e. intrinsic) of the system in this direction, and

K = Mp

Mp +M?

na sin i√
1− e2

.

where n = 2π/T is the mean motion of the planet, with T it’s orbital period. This variation
in radial velocity, modulated by the planet’s orbital motion with an amplitude K, leads to a
change of its observed color due to the Doppler effect, that can be measured through spec-
troscopic observations. If M? is known (thanks to spectroscopic measurements for example),
measurements of K lead to an estimate of Mp sin i, a lower constraint on the mass of the
planet. This method was used to discover the first known exoplanet orbiting a Sun-like star
(Mayor & Queloz, 1995).

1.2 Transiting exoplanets

An exoplanet with an orbital plane specifically aligned with our line of sight will eventually
pass in front of its host star, blocking the light we receive from its atmosphere (see the transit
of Venus in front of the Sun in Figure 1.4).

Figure 1.4: Transit of planet Venus in front of the Sun, observed by the Solar Dynamics
Observatory on the 2020-06-06 in the 193 Å filter, sensitive to Fe XII/XXIV emission from
the corona and hot flare plasma.
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At first order, this event produces a decrease δ of the apparent flux we receive from the star
corresponding to

δ = =
R2
p

R2
?

, (1.10)

a quantity denoted transit depth where Rp and R? are the planetary and stellar radii. As-
suming that all stars host at least one exoplanet with a random orbital inclination i (i.e.
that cos i is uniformly draw from 0 to 1) the probability to observe an exoplanet transiting
a star of radius R? is (Barnes 2007, Equation 8.)

p = R?
a(1− e2) , (1.11)

where a and e are the semi-major axis and ellipticity of the orbit, and the planet’s radius
Rp is assumed to be negligible compared to the star’s radius R?. Around 75% of known
exoplanets have been discovered through the detection of transit events 3.

1.2.1 Transmission spectroscopy

During the transit of an exoplanet, part of the stellar light is filtered through the planet’s
atmosphere (if any). Due to the variety of chemical species it contains, the opacity of the
atmosphere will be wavelength-dependant, and so will be the apparent radius of the exo-
planet. This leads to a chromatic dependance of the transit depth. Modeling these changes
requires the computation of radiative transfer equations, which consist in modeling how light
is absorbed, emitted and scattered throughout the atmosphere, an expensive task.

A simpler estimate for the wavelength-dependant transit depth can be found by considering
the simple case of an exoplanet with an atmosphere at hydrostatic equilibrium (Chamberlain
& Hunten, 1987), for which the typical atmospheric scale height H is

H = kbTeq
µg

,

where kb is the Boltzmann constant, Teq the equilibrium temperature of the atmosphere, µ
its mean molecular weight, and g the planet’s surface gravity. For such a toy model, the
transit depth observed at a wavelength λ is then simply

δλ = (Rp + nH)2

R2
?

(1.12)

3https://exoplanets.nasa.gov/discovery/discoveries-dashboard/ (2023.02.20)
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where n is the number of scale heights crossed at wavelengths with high opacity.

Then, transits observed at different wavelengths (transmission spectroscopy) can be used
to infer the wavelength-dependant radius of an exoplanet and allows the detailed characteri-
zation of its atmosphere. This technique led to the first detection of an exoplanet on the gas
giant HD 209458 b (Charbonneau et al., 2002) and is increasingly used in attempts to detect
and characterize atmospheres on small terrestrial exoplanets (e.g. Chapter 4 and references
therein).

1.2.2 Occultation spectroscopy

At opposite conjunction, the planet passes behind its star (occultation), leading to a de-
crease of the flux we receive from the system. This decrease corresponds to the thermal
emission and reflection of the planet being occulted and contains precious information about
the composition, temperature profile (emission) and albedo (reflection) of its atmosphere.
Depending on their precision, such measurements performed at high cadence can even allow
the 2D mapping of the planet’s emission, layer by layer (e.g. Majeau et al. 2012; de Wit
et al. 2012).

Throughout its revolution, the planet’s thermal emission and reflection remains visible. Mea-
suring the flux received from the system during a full orbit (phase curve) is a unique tool to
measure the aforementioned quantities at different longitudes of the exoplanet, among which
are the composition and physical properties of its atmosphere (e.g. Kreidberg et al. 2018).

In this dissertation, I study Earth-like planets around very small and cool stars, for which
a precise-enough measurement of occultation and thermal phase curves are prohibitively
expensive in terms of observing time. For this reason, I focus the rest of my thesis on the ac-
quisition of transmission spectra, particularly informative for planet’s orbiting late M-dwarfs,
from the study of their atmosphere to advancing the current state of knowledge about their
host star photospheres (see Chapter 5)
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1.3 Transit light curves
As an exoplanet transits its star, it produces a time-varying decrease of its apparent flux:
a time-series called transit light curve. While I explained the wavelength-dependant nature
of theses signals (spectroscopic light curves), I focus this section on describing transit signals
observed at a given wavelength λ.

1.3.1 Uniform stellar surface

Let consider a star of radius R = 1 and uniform brightness I = 1, located at the center of
the orthonormal system (~x, ~y, ~z) defined earlier, where ~z points away from the star towards
an observer. This star is transited by a planet of radius r < 1. We are interested in the
total flux received from the star while its surface is occulted by the planet, i.e. F = π − A,
where A is the overlap area between the planetary and stellar disks. To track the position
of the planet relative to the center of the star, we introduce the distance b =

√
x2 + y2(see

Figure 1.5). In this configuration, A is the overlapping area between two disks of radii 1 and
r, an area whose expression depends on the value of b.

Figure 1.5: Variable definition of the
overlapping disks problem.

• if b ≥ 1 + r, the planetary disk is projected
outside the stellar disk and A = 0

• if b ≤ 1 − r, the planetary disk is entirely con-
tained within the stellar disk, and A = πr2

• if |1−r| < b < 1+r, the planetary disk projects
only partially onto the stellar disk, and A cor-
responds to a lensed-shaped area, that can be
found through its decomposition in a sum of
simpler geometrical shapes (Figure 1.6)

Figure 1.6: Simple geometric decomposition enabling the computation of the overlapping
area A between two disks.

Doing so, the full set of expressions for A is

A =


0 1 + r ≤ b,

r2κ0 + κ1 −
√

4b2 − (1 + b2 − r2)2

4 |1− r| < b < 1 + r,

πr2 b ≤ 1− r

(1.13)
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(Agol et al., 2020), where

cosκ0 =
(

(r − 1)(r + 1) + b2

2br

)
,

cosκ1 =
(

(1− r)(1 + r) + b2

2b

)
,

and the differential flux 1 − A/π can be computed at any time, using the position (x, y) of
the planet from Equation 1.9. Such a signal is shown in Figure 1.7.
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Figure 1.7: Transit light curve of star with a disk of uniform intensity, obtained by computing
the area A over time using Equation 1.13 with r = 0.1 and b computed using Equation 1.9.

1.3.2 Non-uniform stellar surface

While the last subsection left us with a fairly simple expression of transit light curves, it is
of very limited interest. Indeed, stellar disks are non-uniform by essence. The goal of this
subsection is to present the causes of this non-uniformity, and to describe a mathematical
framework to model the transit light curve of stars with non-uniform surfaces.

Limb darkening

Stellar atmospheres, in general, are not fully opaque, leading their disk-projected surfaces
to look dimmer towards the limb. This effect, called limb-darkening, is due to the changing
optical depth towards the edge of the disk, corresponding to a surface seen at grazing angles,
exposing photons from deeper and cooler layers of the stellar atmosphere. A common ap-
proach to model these variations on the disk is to employ a quadratic formula (Claret, 2000),
and express the intensity I(µ) of a point on the disk as

I(µ)
I(0) = 1− u1(1− µ)− u2(1− µ)2. (1.14)

where µ = cos γ, γ being the angle between the line of sight and the emergent intensity.

Active regions

Beyond the limb-darkening effect, the disk is a projection of the stellar surface, itself funda-
mentally non-uniform due to the presence of active regions. Figure 1.8 shows the surface of
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the Sun for example, where small-scale granulation associated to convective cells of plasma
can be observed. This convection generates powerful magnetic fields capable, in turn, to
locally inhibit convection, leading to the large and cool sunspots (starspots for others stars)
seen in Figure 1.8. Other larger-scale structures can be present in the corona (see Figure 1.4).
Overall, depending on the wavelength and the precision of the observation, these sources of
non-uniformity strongly affect the shape and chromaticity of transit light curves, challenging
the interpretation of transmission spectra (see Chapter 4).

Figure 1.8: Spots at the surface of the Sun (image courtesy of Alan Friedman, NASA)

Spherical Harmonics

To model high-precision transit signals, one has to model these sources of disk non-uniformity,
accounting for both the effect of limb-darkening and the presence of stellar surface active re-
gions. Since these structures lie on stellar spheres4, a mathematical object well suited for this
application is the set of real spherical harmonics: special functions defined on the surface of
a sphere that can serve as orthonormal basis to represent any surface map.

From Luger et al. (2019), the orthonormal real spherical harmonics Ylm(θ, φ) of degree l ≥ 0
and order m ∈ [−l, l] are defined in spherical coordinates as

Ylm(θ, φ) =
{
P̄lm(cos θ) cos(mφ) m ≥ 0,
P̄l|m|(cos θ) sin(|m|φ) m ≤ 0,

with P̄lm the normalized associated Legendre functions (Luger et al., 2019, Equation A2).
On the surface of the unit sphere, the coordinates (x, y, z) can easily be found as

x = sin θ cosφ,
y = sin θ sinφ,
z = cos θ,

so that Ylm are just polynomials of x, y and z. Defined on the surface only, we rewrite
z =

√
1− x2 − y2. So that the projected surface disk can be described by (x, y) only.

Using the spherical harmonics basis vector

ỹ = (Y0,0 Y1,−1 Y1,0 Y1,1 Y2,−2 Y2,−1 Y2,0 . . . )>,

4An approximation we make.
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and the coefficients y, the specific intensity of the disk-projected surface at point (x, y) is

I(x, y) = ỹ> y,

where Ylm can be expressed solely using polynomials of x and y. Figure 1.9 shows the
disk-projected real spherical harmonics up to degree l = 3.

l = 0

l = 1

l = 2

m = 3

l = 3

m = 2 m = 1 m = 0 m = 1 m = 2 m = 3

Figure 1.9: Real spherical harmonics up to the degree l = 3.

Figure 1.12 shows a disk whose surface map is built from the real spherical harmonics basis
up to order l = 5 associated with random coefficients.

=

+ + + +

+ + + +

+ + + +

+ + + ...

Figure 1.10: Decomposition of a surface map into a sum of spherical harmonics.
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Rotational phase curves

Stars rotate. In order to compute the disk integrated flux of a rotating stellar surface, we
employ a special Wigner rotation matrix R (different from Equation 1.7; Luger et al. 2019,
Section 3) that can be directly applied to the spherical harmonic maps, so that the specific
intensity at point (x, y) of the rotated surface map is

I(x, y) = ỹ>Ry.

From there, the integrated flux over the projected disk of the (rotated) body is

F =
‹

I(x, y) dS. (1.15)

Hence, the basis ỹ needs to be computed only once, in opposition to the rotation matrix R
that needs to be computed over time, leading to the rotational phase curve of the star. To
simplify the computation of the surface integral in Equation 1.15, we define the change of
basis matrix A1, transforming from the spherical harmonics basis ỹ to the polynomial basis

p̃ = (1 x z y x2 xz xy yz y2 . . . ),

such that a vector y expressed in this basis is

p = A1y.

After the surface maps have been rotated and expressed in this new basis, we can rewrite

I(x, y) = p̃>A1Ry.

This way
F =

‹
I(x, y) dS

=
‹

p̃>A1Ry dS

=
(‹

p̃> dS
)
A1Ry.

(1.16)

We define

r> ≡
‹

p̃> dS where the n-th component rn =
‹

p̃n(x, y) dS

is shown to have a simple analytical expression that only depends on l andm (again, described
in Section 3 of Luger et al. 2019). The integrated flux over the projected disk of the rotated
body is then

F = r>A1Ry, (1.17)

where r and A1 are independent of the surface map coefficients (only their orders and de-
grees) and can be pre-computed for efficiency. If the map coefficients y are known, only R is
variable, and corresponds to the rotation matrix of the surface map of the body. Like before,
this matrix can be computed over time, yielding the rotation phase curve of the star.

Interestingly, the quadratic limb-darkening law from Equation 1.14 can easily be expressed in
the polynomial basis p̃, such that the rotational phase curve of a non-uniform limb-darkened
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body can now be easily computed. Using Equation 1.17, Figure 1.11 shows the rotational
phase curve of the surface map built in the previous subsection (Figure 1.10).

Figure 1.11: Rotation phase curve of the simulated surface map shown in Figure 1.10. The
signal is plotted in arbitrary time units and each marker is the value of the disk-integrated
flux of the maps shown at the top of the figure.

Transit light curves

Computing the light curve of a surface occulted by another spherical body is done thanks
to the same Equation 1.16, but this time integrating the specific intensity only over the
unocculted surface of the star. This integral then depends on the radius r and the position
(x0, y0) of the occulting body (like in subsection 1.3.1) and may be difficult to evaluate.

In calculus, Green’s theorem allows to express a double integral over a surface S of the
form ‹

S

(
δM

δx
− δL

δy

)
dx dy

as the line integral over the closed contour C of S as
˛
C

(Ldx+M dy) ,

where M and L are functions of (x, y) defined and differentiable on the surface S.

The idea to simplify the evaluation of the double integral in Equation 1.16 over the un-
occulted stellar disk is to apply Green’s theorem (Pál, 2012), by expressing the contour of
the occulting disk on this surface in a simple form, and finding a change of basis matrix A2

such that
g̃> = p̃>A2,

where it exists a vector function G such that the n-th component of the new basis g̃ can be
written as

g̃n(x, y) = δGny
δx
− δGnx

δy
,
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decomposing Gn(x, y) into Gnx(x, y) ~x + Gny(x, y) ~y. The total flux of the unocculted disk
of the star is then

F =
‹
S

I(x, y) dS

=
‹
S

g̃>A2A1Ry dS

= s>ARy,

(1.18)

where A ≡ A2A1, and thanks to to Green’s theorem, the n-th component of s is

sn ≡
‹
S

g̃n(x, y) dS =
˛
C

Gn(x, y) · dr. (1.19)

In Luger et al. (2019), a basis g̃ (called the Green’s basis) obeying these properties is found,
where Gn can be simply expressed in terms of l and m. Given a last rotation of the disk
through a matrix R′, a simple expression for the geometrical contour C of the occulting body
on the stellar disk is also established, so that the total flux F follows the idiomatic linear
equation5

F = s>AR′Ry. (1.20)

For a known surface described by y, only R′ and R are time-dependant, so that s> and A
can be pre-computed once. This makes Equation 1.20 very efficient to compute the transit
light curve of a planet over a non-uniform stellar surface. The transit light curve of a planet
of radius r = 0.1 in front of the stellar surface built in the previous subsection is shown in
Figure 1.12.

Figure 1.12: Transit light curve of the simulated surface map shown in Figure 1.10 by a
secondary companion (black disk). The signal is plotted in arbitrary time units and each
marker is the value of the flux from the surface shown at the top of the figure.

We note that finding an expression for the line integral in Equation 1.19 is tedious. Nonethe-
less, this expression exists and only involves sines, cosines and complete elliptic integrals, all
being analytical. Finally, we note that the spherical harmonic basis (computed once) can
serve to express Equation 1.20 at different wavelengths, providing spectroscopic maps of the
stellar surface.

5Read ”starry”.
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1.4 Bayesian data analysis
Applying the technique of transmission spectroscopy to study the composition of an exo-
planet atmosphere starts with the acquisition of spectroscopic transit light curves, and their
comparison with a model from which the wavelength-dependant planet’s radius can be in-
ferred. In this section, I describe how this parameter inference can be done in practice.

1.4.1 Parameter estimation

At a given wavelength λ, let f be the observed flux of a star, sampled and arranged in the
(1 × N) column-vector f associated to the column-vector of times t. Given these data, we
want to infer the planet’s radius Rp (Rp,λ where we omit λ for simplicity), a parameter
involved as r in the expressions leading to Equation 1.20, that we assume to accurately
describe the data. These data correspond to physical fluxes measurements, with associated
measurement errors, so that Rp can be described as a random variable in this model. Other
parameters, such as the stellar radius R?, must also be treated as random variables, using
values inferred from other type of measurements. Overall, the probabilistic modeling of these
measurements and parameters (including Rp) must account for any prior knowledge that may
exist on the system parameters, calling for a Bayesian analysis of the data.

Gaussian processes

In what follows, we assume that the flux measurements can be modeled as a Gaussian process:
an extension of Gaussian distributions to functions. For discrete data, a Gaussian process is
similar to a multivariate Gaussian distribution, described by a mean vector µ and a matrix
C characterizing the covariance of the data. Applied to functions (i.e. at infinite dimensions)
a Gaussian process can be described by a mean function µ(t) (of time t in our case) and a
covariance function k(t, t′) that characterizes the covariance between the function values at
any two times t and t′. Thanks to its relation to the multivariate Gaussian distribution,
Gaussian processes can be easily sampled from.

Bayes theorem

With Bayes’ theorem, the probability to observe the model parameters θ (including Rp)
given the data f is

P = p(θ|f) = p(f |θ)p(θ)
p(f) . (1.21)

In this equation:

• p(θ|f) is the posterior probability of the model parameters θ given the data f .

• p(θ) is the prior knowledge on the model parameters θ.

• p(f |θ) is the likelihood of the data f given the model parameters θ.

I assume that our fluxes measurements can be modeled by a Gaussian Process with a
mean µ and a covariance matrix C, i.e.

f ∼ N (µ,C).
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In other words, the data is drawn from a distribution with a mean µ and covariance
matrix C. With these assumptions, the natural logarithm of the likelihood (aka log-
likelihood) is simply

log p(θ|f) = −1
2(f − µ)>C−1(f − µ)− 1

2 log |C| − 1
2N log 2π,

with N the number of measurements (i.e. the length of f). If we assume that each
measurement fi is drawn from a normal distribution with variance σ2

i (the uncertainties
of our measurements), we can write C = σ2I +K, with σ2I a diagonal matrix and K
describing the covariance structure of the data (a condition called homoscedasticity).

• p(f) is the evidence, acting as a normalization term, and is usually prohibitively ex-
pensive to compute.

Parameters expectation6

Hence, p(θ|f) takes the form of a probability density function. Conditioned on this distri-
bution, the expectation of the model parameters θ̂ is

θ̂ = 〈θ〉 =
ˆ
θ p(θ|f) dθ = 1

Z

ˆ
θ P (θ) dθ, (1.22)

where P (θ) = p(f |θ)p(θ), and Z = p(f) is the evidence, independent of θ.

Usually, the expectation given by Equation 1.22 doesn’t have a closed form, but an ap-
proximate solution can be found through a Monte Carlo algorithm which consists in:

1. Draw a set of N samples θi from p(θ|f)
2. Compute

θ̂ ' 1
N

N∑
i

θi

Unfortunately, we generally cannot draw samples directly from P = p(θ|f) because 1) Z is
unknown and expensive to compute and 2) even knowing Z, drawing from P would require
to evaluate most of its values, an intractable task as the number of dimensions of θ increases.

1.4.2 Sampling algorithms

Fortunately, there exists a wide variety of sampling algorithms to efficiently draw samples,
not from P directly, but using its pointwise evaluation up to a certain factor, from P ∗ = Z P .

Metropolis-Hasting

Most sampling algorithms successively draw samples from P ∗ through a proposal (fixed and
pre-defined) density Q, that must look like P and from which we can (unlike P ) draw samples
from.

In opposition, the Metropolis-Hasting method uses a distribution Q that does not need to
look like P , and is adapted from each sample to the next. If we call θi the i-th drawn sample
and Qi the probability density Q associated to θi, the Metropolis-Hasting method to draw
θi+1 goes as follows:

6A presentation of the problem borrowed from Luengo et al. (2020).
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1. Draw a sample θu from Qi

2. Compute
a = P ∗(θu)

P ∗(θi)
Qu(θi)
Qi(θu) ,

and accept the new sample with a probability min(a, 1).

• If accepted, the new sample is θi+1 = θu

• Else, the new sample is θi+1 = θi

The density probability of the N samples formed this way converges to P as N → ∞,
whatever the choice of Q. This way, samples are drawn using evaluations of P ∗ only, without
knowing Z.

Hamiltonian Monte Carlo

The Hamiltonian Monte Carlo method is a kind of Metropolis-Hasting method to sample
distributions of the form

P (θ) = e−E(θ)

Z
(1.23)

where E is differentiable. At sample θi, it uses the gradient of E to generate a sample θi+1

based on its momentum pi simulated using Hamiltonian dynamics. With this information,
the Hamiltonian Monte Carlo method draws samples towards the maximum probability,
sampling a wider region of the target distribution and in a more efficient way (see Figure 1.13).

Figure 1.13: From MacKay 2003: (a,b) Hamiltonian Monte Carlo used to generate samples
from a bivariate Gaussian. (c,d) For comparison, a simple random-walk with the Metropolis-
Hasting method, given equal computer time. Arrows mark the chains’ starting points.

22



In this dissertation most parameters inferences are done through the Hamiltonian Monte
Carlo method, exploiting the fact that the model given in Equation 1.20 can be analytically
differentiated.

1.5 The M-dwarf opportunity

1.5.1 Signatures of molecular species

In theory, partly thanks to the tools presented in the last section, we could use transmission
spectroscopy to probe the atmospheric composition of any transiting exoplanet. In practice
however, this exploration is fundamentally limited by our instrumental capabilities.

As an illustration, let consider the case of Earth being observed as an exoplanet through
its transit in front of the Sun. Using Equation 1.10, this signal has a depth

δ⊕ =
R2
⊕

R2
�

= 8.4050179× 10−5 ' 84 ppm,

observable exactly once per year. The precision we can expect from this measurement would
be dependant on the type of telescope and instrument used. Let assume that we are only
limited by photon noise. If we observe N photons from this system, the signal-to-noise ratio
(SNR) of the measurement is

S = N√
N
.

However, as we are interested in studying the atmosphere of the planet using transit spec-
troscopy, we would perform this measurement at different wavelengths. Using a spectrograph
covering a wave-band of width ∆λ with a resolution R = λ/l (where l is the width of the
resolution element), the SNR of the flux we receive from the star at wavelength λ is

Sλ = S

√
λ

R∆λ.

Hence, the larger the waveband we observe at the larger resolution R, the smaller our preci-
sion on the spectroscopic flux measurements of the system in each spectral bin. Translated
into the signal-to-noise-ratio Sδλ of the transit depth δλ observed at λ (Pont et al., 2006),
we have

Sδλ = δλ

√
nNλ

R∆λ,

with n the number of transits. Hence, for a molecule M found at scale height H (Equa-
tion 1.12), we approximate the signal-to-noise-ratio of its signature at its peak absorption

SM = H2

R2
?

√
nNλ

R∆λ. (1.24)

With these equations, we can estimate the strength of molecular species signatures found in
the transmission spectrum of the planet, and assess the feasibility of their remote detections.

Using a formalism similar to the one described above, Kaltenegger & Traub (2009) consider
a 6.5 meter telescope (such as the James Webb Space Telescope) observing an Earth-like
planet transiting a Sun-like star located 10 parsec away, and explore the potential of trans-
mission spectroscopy to detect several species of interest. Assuming a contemporary Earth
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atmosphere, the signal-to-noise-ratio of O2 is SO2 = 1.67. One way to improve this figure is
to increase the number n of observed transits (see Equation 1.24). For 200 hours of transits,
SO2 reaches 6.47, providing a detection of O2 requiring the observation of 15 transits, a
campaign spanning no less than 15 years for an Earth-like planet around a Sun-like star...

Looking closely at Equation 1.24, we understand that the signal-to-noise-ratio of a given
species can be increased in several ways:

1. By observing at lower resolution to decrease R (i.e. to increase the resolution element l),
or waiting for the development of telescopes capable of collecting an increased number
of photons N (7).

2. By focusing on extended atmospheres only, increasing the scale heights H. However,
these atmospheres would not be representative of compact Earth-like atmospheres (7).

3. By studying planets around much smaller stars. This way, not only the signal-to-
noise-ratio SM will increase through the quadratic decrease of R?, but it will benefit
from the fact that stars cooler and smaller than the Sun have a close-in habitable zone.
Hence, planetary systems transiting such stars are both more likely and more frequently
observed, increasing the number of observable transits n for a given time-frame (3).

We illustrate the benefit of observing smaller stars in Figure 1.14, using some results from
Kaltenegger & Traub (2009).
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Figure 1.14: Simulation of molecular species SNR in the transmission spectrum of Earth-like
planets around stars of different radii. This figure uses the SNR computed in Table 2 from
Kaltenegger & Traub (2009), and the number of transits from Table 4. Radii are computed
based on Mann et al. (2015) relations at different spectral types.

1.5.2 Late M-dwarfs

Stars with a radius R? lower than ∼ 0.6R� are M-type stars, also called M-dwarfs, and
lie at the bottom of the main sequence. These are the smallest and coolest main-sequence
stars in the Universe, and the most abundant in our Galaxy (∼80%, Henry et al. 1994). Due
to their faintness and large convective layers (Reiners & Basri, 2009), these stars are both
challenging to observe and model (discussed in the following chapters and, for example, in
Iyer et al. (2023)). Despite this difficulty, arguments such as those previously drawn make
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these small objects our best chance to characterize and understand rocky exoplanets in the
next decades, by taking advantage of their short orbital periods and large transit depths
when located in the habitable zone of their cool hosts. Before describing how the detailed
atmospheric characterization of a rocky exoplanet around a cool M-dwarf may be achieved
in the next two decades, I focus the next paragraphs on a major obstacle we will encounter
when trying to achieve this goal: their potentially strong magnetic activity leading to a non-
uniform photosphere.

In subsection 1.3.2, we modeled the flux of a star with a non-uniform surface, partly mo-
tivated by the possible presence of stellar active regions. These regions (such as the spots
shown in Figure 1.8) form trough the complex interplay between the star’s plasma dynamics
and magnetic fields. In the case of the Sun for example, the radiative pressure from the core
counterbalance the inward forces of gravity, shaping the internal structure of the star as a
large radiative zone surrounded by a thin convective envelope. Energy is transported differ-
ently in these layers, resulting in a slow rotation of the radiative core and a faster differential
rotation of the convective layers. At the interface between the two lies the tachocline, where
tubes of highly conductive plasma endure a strong shear and slowly transform the poloidal
magnetic field of the Sun into a toroidal shape (see Figure 1.15; e.g. Charbonneau 2005).

poloidal toroidal

Figure 1.15: Evolution of the magnetic field lines of the Sun (in light grey, evolving from the
left to right) due to shear effects induced by differential rotation at the star’s tachocline.

Plasma physics describes how the strength of these magnetic fields, carried in tubes, increase
as they get elongated. This increased magnetic fields translate into a lower density plasma,
that starts to rise towards the surface, directing field lines out of it. These strong fields inhibit
the convective transport of heat from the core to the surface and lead to the surrounding
plasma being at a cooler temperature, appearing darker. This process is at the origin of
sunspots and explains how they form and evolve throughout the Solar cycle.

Late M-dwarfs are fully convective, with no radiative zone and no tachocline. However,
they exhibit signs of activity such as flares (happening during the dramatic reconnection
of magnetic-field lines after they emerge) and surface non-uniformity. Indeed, spots on M-
dwarfs (e.g. Bailer-Jones & Mundt 2001; Libby-Roberts et al. 2023a) are also believed to arise
from strong magnetic fields generated in their fully-convective interiors (Browning, 2008). In
addition, trends in magnetic fields topologies between partially-radiative stars (e.g. the Sun)
and fully-convective stars (e.g. late M-dwarfs) are observed. Fully-convective stars tend to
have strong poloidal magnetic fields while stars with masses greater than 0.5M� show weaker
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magnetic fields with toroidal components (Morin et al., 2008). However, magnetic fields with
different topologies are observed on stars with similar stellar parameters, a possible indica-
tion that magnetic topologies depend on stellar ages and evolve with time (in a cyclic or
chaotic manner; Morin et al. 2010).

While being poorly understood, the presence of active regions at the surface of late M-dwarfs
is an observational fact (cf. Chapter 5) that can have dramatic impacts on the characteri-
zation of their transiting exoplanets. Indeed, transmission spectra are built assuming that
the transited chord is representative of the full stellar photosphere, enabling a differential
spectrum to be constructed. However, any difference between the transited chord and the
rest of the stellar photosphere may translate in stellar spectral features able to mimic or hide
signatures from the planetary atmosphere. This effect, called stellar contamination, is ex-
pected to profoundly challenge the detailed atmospheric characterization of rocky exoplanets
envisioned for the next two decades and is the focus of Chapter 4 and Chapter 5.
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1.6 A road-map
Given current technologies, the detailed atmospheric characterization of exoplanets as small
as Earth will only be possible for exoplanets transiting late M-dwarfs7. Despite being the
most numerous stars in our solar neighborhood, these objects are poorly understood and
require particular instrumentation and surveys to be developed. The following is a road-map
of how the detailed atmospheric characterization of a rocky exoplanet around a late M-dwarf
might be conducted, with instrumentation available in the next two decades.

OBSERVATION

M-dwarfs photometry

Everything starts with the search for rocky ex-
oplanets, by making photometric observations of
late M-dwarfs to search for transiting candidates.
In this context, many surveys are already being
conducted from the ground (e.g. Nutzman & Char-
bonneau 2008; Bonfils et al. 2015; Gillon et al. 2017;
Delrez et al. 2018; Dietrich et al. 2023) and from
space (e.g. Ricker et al. 2015). Chapter 2 describes
some of these observations, and the processing of
their raw products.

DATA ANALYSIS

Transits detection
From large amounts of photometric light curves, transit
search algorithms are used to detect potential candidates,
later followed-up and accompanied by more observations,
such as radial velocity measurements to have an estimate
of their masses. However, due to their non-uniform surfaces,
the detection of transit signals in the light curves of active
M-dwarfs still poses a challenge to the community, especially
for small rocky exoplanets. Chapter 3 is a review of exist-
ing transit search techniques and present a new algorithm
particularly suited to late M-dwarfs light curves.

7Assuming that new technologies to directly image and study small rocky exoplanets remain inaccessible
in the next decade.
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OBSERVATION

Transmission spectroscopy

Once promising targets are identified, spec-
troscopic light curves can be obtained using
major space-based and ground-based facilities.
As current instrumentation will require many
transits to be observed, this effort might take a
couple of decades, even for a single target, but
might result in auxiliary data that can help to
understand these planetary systems as an all,
including their host stars. Such measurements
are presented in Chapter 4.

DATA ANALYSIS & MODELING

Spectra decontamination

From the inferred transmission spectra, it will be essen-
tial to disentangle planetary signals from stellar ones,
and tackle the so-called effect of stellar contamination.
To deal with it, the community is currently left with no
other choice but to employ 1D stellar atmosphere mod-
els, whose mutual discrepancies for M-dwarfs strongly
bias the inference of planetary atmosphere properties
(Iyer et al., 2023). Chapter 4 demonstrates the impact
of this approach on the atmospheric characterization
of TRAPPIST-1h and Chapter 5 presents alternative
strategies and new avenues to better understand and
tackle the effect of stellar contamination.

Atmospheric retrieval

Finally, atmospheric properties can be inferred from de-
contaminated planetary transmission spectra. Among
these properties is the chemical composition of an
atmosphere, and the study of the planet’s surface
conditions, matching or not with the presence of
complex non-equilibrium thermodynamics. In this
context, a detailed modeling of planetary atmospheres
is required, as well as assessing the significance of
biosignatures combinations: two subjects extending
beyond the present dissertation.
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Chapter 2

Time-series photometry of late
M-dwarfs
A chapter based on the work published in Garcia et al. 2022b with Mathilde Timmermans,
Francisco J. Pozuelos, Elsa Ducrot, Michaël Gillon, Laetitia Delrez, Robert D. Wells, and
Emmanuël Jehin. In this chapter, my personal contributions have been distinctly emphasized
and clearly differentiated from those made by co-authors.

The first step to characterize the atmosphere of a rocky exoplanet is to find one. In this
quest, late M-dwarfs offer several advantages, but also come with few drawbacks. These stars
are faint, and have their peak intensity in the near-infrared, requiring specific surveys with
specific instruments. Such activities are ongoing (Nutzman & Charbonneau, 2008; Quir-
renbach et al., 2014; Artigau et al., 2014; Bonfils et al., 2015; Delrez et al., 2018; Dietrich
et al., 2023) fitting into a global effort to detect and characterize the planetary systems they
host. In this chapter, I describe the SPECULOOS survey (Gillon, 2018), one of the highest-
precision ground-based photometric survey as of 2023, specifically designed to observe late
M-dwarfs.

Once observed, whether by the SPECULOOS telescopes or other facilities, extracting the
photometry of stars from full frame images is computationally demanding, and motivated the
development of several codes and frameworks in the last decades. I review some of these tools
and present prose, a Python package dedicated to astronomical images processing offering
several advantages over state-of-the-art alternatives. Overall, this chapter is an update on
Garcia et al. 2022b, describing version 3.0.0 of the package and ending with a brief showcase
of the Science it enabled since its creation in 2021.
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2.1 The SPECULOOS project

2.1.1 Telescopes

Given their potential impact on the field of exoplanetary science, the SPECULOOS survey
specifically focuses on late M-dwarfs, using 6 telescopes located around the globe (Figure 2.1)
to search for transiting Earth-sized planets.

TENERIFE
SPECULOOS-North OUKAÏMEDEN

TRAPPIST-North

SAN PEDRO MÁRTIR
SAINT-EX

PARANAL
SPECULOOS-South

LA SILLA
TRAPPIST-South

The SPECULOOS telescopes

Figure 2.1: Location of the SPECULOOS telescopes. Blue symbols correspond to the TRAP-
PIST telescopes, used to conduct the SPECULOOS prototype survey, and red symbols to
the more recent SPECULOOS telescopes.

In 2010, The TRAPPIST-South telescope (Gillon et al., 2011) was first installed and com-
missioned at the ESO La Silla Observatory, Chile. The TRAPPIST-South telescope is a
robotic telescope with a 60 cm primary mirror with a f/8 Ritchey–Chrétien design attached
to a German equatorial mount (all built and designed by the German company ASTELCO).
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Searching for transits on the 50th brightest southern very-late M-dwarfs (Gillon et al., 2013),
this prototype survey led to the discovery of the TRAPPIST-1 system: 7 Earth-sized planets
orbiting an M8 type star, 3 of which lying in its habitable zone. In parallel to this survey, the
first two SPECULOOS telescopes were installed in 2017 at Paranal, Chile. These were later
followed by two more telescopes, thereby completing the SPECULOOS-South observatory
(Delrez et al., 2018; Murray et al., 2020). In the same year, this network of robotic telescopes
was further complemented by the TRAPPIST-North telescope located in Oukaimeden, Mo-
rocco, as well as a SPECULOOS-North telescope (Burdanov et al., 2022) installed in Tenerife,
Spain. Lastly, the Saint-Ex telescope was installed in 2019 at San Pedro-Martir, Mexico, as
a further extension of the SPECULOOS network. Overall, the SPECULOOS project is led
by the University of Liège, in collaboration with the University of Cambridge, the University
of Birmingham, The University of Bern, the Massachusetts Institute of Technology and ETH
Zurich.

2.1.2 Survey

The SPECULOOS survey focuses on 1,657 ultra-cool-dwarf stars within 40 parsecs from the
Sun, with spectral types ranging from M4 to L9 (Sebastian et al., 2021). The survey contains
three separate programs designed to maximize its scientific return in synergy with currently
deployed space and ground-based facilities:

• Program 1 focuses on the search of temperate Earth-sized planets (with a solar irra-
diance of 1S⊕) that are amenable for atmospheric characterization using transmission
spectroscopy with the James Webb Space Telescope (365 targets).

• Program 2 focuses on targets already observed by the TESS mission (171 targets).

• Program 3 contains all other targets with spectral types later than M6 (1,121 targets)
and intend to asses the occurrence rate of exoplanets around ultra-cool-dwarf stars.

The strategy of the SPECULOOS survey is optimized to observe at least 80% of the orbital
phase of the typical planet of each program, i.e. a 1S⊕ planet for program 1 and a 4S⊕
planet for program 2 and 3. This is achieved by observing each target from 100 to 200 hours
depending on each program requirements.

2.1.3 Data

The aforementioned strategy leads to telescopes operating during all nights with good ob-
serving conditions, daily yielding ∼70 Gigabytes of raw data in the form of full-frame FITS
images (Wells & Greisen, 1979). From these images, photometric time-series of the survey’s
targets need to be extracted (see next section) and made available for the SPECULOOS
consortium to be vetted and searched for transits. In order to obtain first-hand products, an
automatic pipeline was developed and deployed by Murray et al. (2020), and a web-based
interface developed by Peter Pihlmann Pedersen (back-end) and myself (front-end) to ease
the vetting process (see features in Figure 2.2).

The next section presents prose, a tool to process raw images into photometric time se-
ries, with applications extending well beyond the field of exoplanetary science.
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Figure 2.2: SPECULOOS data portal aspect and features.
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2.2 Image processing with prose
When an observation is completed, one has to process its raw products into a desired output.
Observatories and surveys-specific pipelines are sometimes available (Murray et al. 2020 in
the case of SPECULOOS) but general or custom software are often required, offering higher
flexibility and control. These tools and their development benefit from legacy and modern
algorithms, implemented into community-maintained libraries (like IRAF (Tody, 1986) or
astropy (Astropy Collaboration et al., 2013, 2018)). However developing a custom option re-
quires time and effort. Indeed, once the algorithms are selected, their implementations must
be assembled into a complex software, ingesting raw FITS images and able to interact with
many components of a given computational stack (CPUs, GPUs, file system, databases...
etc.). To reach an optimized output, a fine-tuning of this code is often required, from its
individual processing components up to the complete pipeline, including complex I/O oper-
ations and architectural choices. In its final version, such software are generally frozen and
maintained (rather fixed) when they break. These tools, whether custom or third-party, sel-
dom provide a complete analysis framework such that their end products still end up being
exploited into scripting languages like Julia1 or Python2.

In 2020, driven by the need of the SPECULOOS survey, I proposed an alternative for these
tools, fundamentally limited in their design. Pipelines are generally described as a sequence
of individual data-processing units. These processing units (hereafter called blocks) are fun-
damentally common from one pipeline to another. They complete independent tasks using
algorithms widely used by the whole community. Hence, in a framework where such blocks
are all inter-compatible, one would only have to focus on which algorithms to use and assem-
ble these processing units into a modular pipeline, with less need for software architecture
considerations.

In this section I present prose3, a Python package acting as a framework to build modu-
lar image processing pipelines for astronomy, allowing rapid iterations toward specific needs
and rich scientific products. Its architecture allows the creation of inter-compatible blocks,
many being pre-implemented and available in the initial package. Developed in the context
of transiting exoplanet observations, it contains tools specific to high-precision point-source
photometry. However, the aim of prose is to be versatile and to adapt to a variety of astro-
nomical datasets, something driving the development of its latest versions.

2.2.1 Principle

A pipeline, strictly speaking, is a series of connected tubes running a fluid. In the sci-
entific literature, the word refers to processing pipelines in which data are flowing, going
through processing units as in tubes. Usually, image processing algorithms are implemented
as standalone codes which are easy to run on single images. However, assembling multiple
low-level codes, successively ran on a set of images requires a complete architecture to be
built and tested. The final result is often monolithic, far from where we take the word pipeline
from. Of course, the flexibility offered by lower-level codes is essential. However, working
with astronomical observations during the writing of this dissertation led to a simple idea,

1https://julialang.org/
2https://www.python.org/
3https://prose.readthedocs.io

33

https://julialang.org/
https://www.python.org/
https://prose.readthedocs.io


that generalizing the approach of building pipelines for astronomical image processing would
come with great advantages, especially if available in a well-maintained open-source package.

prose contains the structure for such a modular concept to work by providing three key
objects: Image, Block and Sequence. An Image encapsulates the data and metadata of an
exposure frame, much like a FITS file does (Wells & Greisen, 1979). A Block is a single
processing unit that acts on an Image. Finally, a Sequence is a series of Block, assembled
sequentially to process images (see Figure 2.3).

Source

Block

Sequence

Image processing Products

Fluxes

Image

Figure 2.3: Illustration of prose key objects

Blocks

With this architecture, one can focus on designing robust and reusable blocks, independently
tested and maintained. To do that, prose comes with pre-implemented blocks featuring
common state-of-the-art algorithms, some being listed in Table 2.1. Describing all base
blocks of prose is beyond the scope of this paper, and the interested reader is redirected to
the online documentation4.

4https://prose.readthedocs.io
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Detection blocks
AutoSourceDetection Detect all sources
PointSourceDetection Detect point sources
DAOFindStars DAOPHOT (Stetson, 1987) stars detection
SEDetection Source Extractor (Bertin & Arnouts, 1996) stars detection
TraceDetection Detect trace sources

PSF blocks
MedianEPSF Stack cutouts into a median effective PSF
Gaussian2D Model PSF as a 2D Gaussian profile
Moffat2D Model PSF as a 2D Moffat profile
Trim Image trimming.

Alignment & geometry blocks
Cutouts Create cutouts around all sources
Align Align image data to a reference image
AlignReferenceSources Align sources to reference image
AlignReferenceWCS Compute image WCS based on a reference image

Centroiding blocks
CentroidCOM Center of mass centroiding
CentroidQuadratic Quadratic model centroiding
CentroidGaussian2D 2D Gaussian model centroiding
CentroidBallet Neural network centroiding

Photometry blocks
AperturePhotometry Aperture photometry
AnnulusBackground Background annulus photometry

Other blocks
Get Retrieve and store properties from an image
Calibration Flat, Bias and Dark calibration
SortSources Sort sources
CleanBadPixels Detect and clean bad pixels

Table 2.1: List of some base blocks currently included in prose

Telescope

Blocks are likely to use image characteristics to complete their tasks. In the case of FITS
images, this information is located in their headers, whose definition may differ between ob-
servatories. To deal with the variety of header keywords and configurations, prose provides
a Telescope object containing a semantic dictionary of keywords used to retrieve physical
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quantities from image headers. Once a new Telescope is declared, its dictionary is saved
and used whenever its name appears, filling the appropriate Image metadata. This mecha-
nism, also found in general reduction tools like AIJ (Collins et al., 2017), allows prose to be
instrument-agnostic but is only suited to single extension FITS products containing simple
headers. Images from the Vatican Advanced Technology Telescope 4K camera (VATT4k),
for example, are taken by two amplifiers, leading to FITS images spread over two extensions.
Each of these extensions contains data as well as useful header information, while more gen-
eral characteristics can be found in a separate primary header. To allow such images to be
combined and processed, prose allows custom Image loaders to be developed (which in the
case of the VATT4k images, for example, consists in 5 lines of Python code).

A simple example

Most blocks in prose use state-of-the-art methods and libraries. The novelty of the package
only stands in its object-oriented structure, allowing for powerful abstraction in implement-
ing custom pipelines. In this section, I present a simple example: a pipeline to characterize
the effective point-spread-function (PSF) of images taken during a full night of observa-
tion. For every image, the pipeline starts with bias, dark and flat calibration (Howell, 2006,
section 4.5). Then, bright stars are detected to build an effective PSF from cutouts, and
characterized using a specific PSF model. Here, I use a 2D Moffat profile (Moffat, 1969).
Finally, images are stacked and a movie of the night is generated for further vetting.

The Python code to build such a pipeline with prose (version 3.0.0) is shown in Figure 2.4,
where blocks have been assembled into a single sequence to perform each task.

from prose import Sequence, FitsManager
from prose import blocks

fm = FitsManager("images−folder")

sequence = Sequence([
blocks.Calibration(∗∗fm.calibs),
blocks.DAOFindStars(n=100),
blocks.Moffat2D(),
blocks.Get("fwhm"),
blocks.Video("video.gif"),
blocks.Stack(),

], fm.images)

sequence.run()

Figure 2.4: Python code of the pipeline described in 2.2.1, performing the characterization
of images effective PSF over a full night of observation. The right plot shows the resulting
stack image and PSF model of the observation and was produced using products directly
accessible from the sequence object. This example is made from 742 10s exposure images
taken by the TRAPPIST-South telescope on December 14, 2018.
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In this pipeline, a wide range of stellar profiles or detection techniques may be experimented
with through the use of different blocks. prose online documentation5 provides many more
examples as well as the description of several convenient tools, such as the FitsManager object,
allowing to deal with highly disorganized FITS folders by using their header information.

2.2.2 Base photometric pipeline

Using the structure previously described, I developed a standard photometric reduction
pipeline requiring minimal user inputs. This pipeline can be decomposed in few steps:

1. A reference image is selected on which reference stars are detected and the effective PSF
of the observation characterized. This can be done by running the following sequence
on the reference image:

from prose import Sequence, blocks

calibration = Sequence([
blocks.Calibration(∗∗calibs), # calibration
blocks.Trim(), # trimming image overscan
blocks.PointSourceDetection(n=20), # stars detection
blocks.Cutouts(21), # making small cutouts around stars
blocks.MedianEPSF(), # combine cutouts into an effective PSF
blocks.psf.Moffat2D(), # modeling the effective PSF

])

The Calibration block employs a typical bias, dark and flat correction (Howell, 2006,
section 4.5) and PSF-related blocks are added in preparation of step 3.

2. A set of radii are defined, providing the relative sizes of the circular apertures used for
the photometric extraction.

3. All images are calibrated and aligned to the reference, before the fluxes from each
detected star are extracted. For each image, all apertures are scaled with the full-width
at half-maximum (FWHM) of the effective PSF, allowing the photometric reduction
to adapt to seeing variations throughout the observation. This processing is performed
through the following sequence:

photometry = Sequence([
∗calibration, # we reuse the previous sequence
blocks.AlignReferenceSources(ref), # alignment of sources to the reference
blocks.CentroidBallet(), # centroiding
blocks.AperturePhotometry(radii=radii), # aperture photometry
blocks.AnnulusBackground(), # background estimate
blocks.GetFluxes() # storing fluxes information

])

Due to pointing errors, a centroiding block (CentroidBallet) is employed (see section 2.2.2).

The products obtained by running these steps can be accessed within a Python instance,
through the values stored in the GetFluxes block, and saved for later use. A variety of time-
series are also recorded in this block, such as the mean FWHM of the effective PSF, airmass,

5https://prose.readthedocs.io
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background levels or frame misalignments, overall essential to model the extent of systematic
signals in the measured fluxes.

Differential photometry

During the reduction, visible stars are automatically detected for every frame and aperture
photometry is performed over a range of 40 apertures, yielding ideal measurements to lever-
age the power of ensemble differential photometry. For that purpose, prose implements a pure
Python version of the algorithm described in Broeg et al. (2005). This algorithm consists
in building an artificial comparison star using the weighted sum of all available stars in the
field. Appropriate weights are iteratively found as to minimize variance over all differential
light curves. Doing so, higher weights are given to stars displaying lower variability and
higher signal-to-noise ratio (SNR), more likely to feature systematic signals shared among
all sources. Finally, the best aperture is chosen as the one minimizing the white noise of the
target’s light curve, estimated with the median standard deviation of points within 5 minutes
bins.

The photometric pipeline described above relies on a strategy which consists in aligning
the sources of each to a set of reference stars, requiring a perfect registration of the detected
stars to the reference ones and a powerful centroiding algorithm to refine their positions. If
processing time is a concern, general registration and centroiding algorithms are a problem.
To keep prose fast on domestic computers, a centroiding method based on neural-networks
has been developed, as well as a fast registration algorithm based on Lang et al. (2010), both
presented in the next subsections.

Twirl: stars registration

Stars registration is a common need in astronomy. Given two sets of stars positions, it con-
sists in identifying pairs of coordinates corresponding to unique objects, but observed from
different angles, hence requiring an absolute reference on the celestial sphere. To do that,
many algorithms, as well as humans, birds and seals (Foster et al., 2018), use asterisms:
shapes produced by stars arrangements, like constellations, recognizable in the sky. Lang
et al. (2010) provide the most frequently used method for this application, standing at the
core of the widely adopted astrometric calibration service astrometry.net. While it produces
robust astrometric solutions, it requires a cross-match to a whole-sky catalog, that must be
avoided if speed is required. Hence, a faster solution consists in avoiding the computation of
a complete WCS solution but a transformation matrix allowing stars to be registered to a
common frame. If a WCS solution is required and the coordinates of an image are approxi-
mately known, this lighter solution can be used in combination with local catalogs queries.

The algorithm I proposed starts by computing four-points asterisms, translated into unique
hash codes consisting in four numbers as described in Figure 2.5. These codes have the ad-
vantage of being invariant over any affine transformation. Then, if set 1 must be registered
to set 2, their hash codes can be produced and matched to find the transformation from
set 1 to set 2. The proposed implementation produces unique hash codes the same way
as Lang et al. (2010) but using a simpler matching strategy. For all asterims in set 1, the
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closest asterism from set 2 are found6, and all corresponding transformations computed and
applied to set 1. The number of cross-matched stars between the transformed set 1 and
set 2 are computed, serving as a metric to asses the accuracy of each transformation. The
transformation maximizing the number of cross-matched stars between the transformed set
1 and set 2 is kept as the correct one. The overall method and its implementation in Python
is referred to as twirl.

Figure 2.5: Demonstration of the four-points asterisms used in twirl. The left figure is
reproduced from Lang et al. (2010) and shows how a unique hash code (xC , yC , xD, yD) is
formed from four points coordinates: by taking the relative positions of two of the coordinates
(C, D) with respect to the outermost ones (A and B). The right plot shows the matching of
this same asterism with one from another set.

This method is used extensively throughout the alignment blocks provided by prose, and its
Python implementation is made publicly available in the twirl Python package7.

ballet: Fast centroiding

Star positions being computed, as well as their alignment to a common reference, the caveat
of the reduction strategy previously described is to rely on a centroiding algorithm to refine
their centroids on every frame, which can be CPU intensive and lead to variable results de-
pending on the method used. Inspired by Herbel et al. (2018), a deep convolutional neural
network (CNN) was designed and trained to predict accurate centroid positions out of nor-
malized stars cutouts.

The network architecture is shown in Figure 2.6 and consists in 3 ReLu-activated convo-
lutional layers of sizes 64, 128 and 256, each followed by a pooling layer downsampling their
outputs by a factor 2. The 1028 resulting weights serve as inputs to 2 sigmoid-activated fully
connected layers, finally leading to the centroid (x, y) coordinates.

6Thanks to a kd-tree structure, like in Lang et al. (2010) but using an implementation from
scipy.spatial.KDTree

7https://github.com/lgrcia/twirl
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Figure 2.6: Neural network architecture

This CNN was implemented with the tensorflow Python package8, and trained using the
Adam stochastic gradient descent algorithm (Kingma & Ba 2017) on a Huber loss function
(Huber, 1964). The training samples consisted in 200 000 simulated Moffat profiles (Moffat,
1969) expressed as:

F (x, y) = b+ 1(
1 + dx2

σ2
x

+ dy2

σ2
y

)β

where
{
dx = (x− x0) cos θ + (y − y0) sin θ
dy = −(x− x0) sin θ + (y − y0) cos θ

with (x0, y0) the centroid position, (σx, σy) the standard deviation of the point-spread-
function (PSF) in the x and y-axis, θ its relative angle with respect to the x-axis, β the
concentration of the Moffat profile and b its relative background. To train the model, these
parameters were randomly drawn from the distributions given in Table 2.2, representative of
a wide range of PSF characteristics, including widely off-center ones.

Parameter Distribution

x0, y0 U(3, 12)

σx U(2.5, 7.5)

σy σx · U(0.5, 1.5)

θ U(0, π/8)

β U(1, 8)

b U(0, 0.1)

Table 2.2: Training sample parameters distributions. U(a, b) is a uniform distribution
bounded by a and b.

To assess the performances of the trained network, another 10 000 samples were drawn
from the same distributions and their predicted centroids compared to the predictions of

8https://www.tensorflow.org/
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method
accuracy

(10−2 pix) time (s) robustness

Quadratic 4.13 0.41 92.8 %
1D Gauss 2.27 39.50 99.5 %
2D Gauss 1.52 70.23 99.9 %
ballet 1.52 0.33 99.8 %

Figure 2.7: Performance assessment of multiple centroiding algorithms against the presented
model using 10 000 samples drawn from the distributions described in Table 2.2. In the
right table: accuracy corresponds to the root-mean-square of the differences between the
true centroid coordinates and their predicted values; time is the processing time to predict
the centroids of 1000 PSF cutouts; and robustness is the percentage of errors under 0.1
pixels, which is linked to the occurrence of prediction outliers. This newly developed CNN
is referred to as ballet.

three other centroiding methods. The first consisted in fitting the star cutout with a two-
dimensional quadratic polynomial; the second with a fit of the marginal x and y PSF to
univariate Gaussians; and the third in a complete fit of the cutout to a two-dimensional
Gaussian. These are implemented in the photutils9 package (Bradley et al., 2020) under
the name centroid quadratic, centroid 1dg and centroid 2dg. The optimized neural network,
named ballet, predicts centroid positions with an error of 0.015 pixels, comparable to the
precision obtained from directly fitting a two-dimensional Gaussian while being two orders
of magnitudes faster (see Figure 2.7). For more details about this particular application of
CNNs, the interested reader is redirected to Herbel et al. (2018), in which rich references were
found. Choosing and tweaking the architecture of a neural network yet remains empirical
and, in this case, was the result of many manual optimizations. This pre-trained model
and its tensorflow10 implementation is made available in the ballet repository11, which will
be complement with other CNN applications in the future. Most importantly this CNN is
integrated into the CentroidBallet block, which makes its use straightforward in any pipeline
developed with prose.

2.2.3 TESS follow-up comparison with AstroImageJ

The power of the pipeline described in section 2.2.2 is to rely on general-purpose blocks
leading to rich sets of measurements to work on. In this section, I present a comparison
of this pipeline with AstroImageJ (AIJ, Collins et al. 2017), a graphical user interface to
process astronomical images into high-precision photometry. AIJ has become a reference in
the field of transiting exoplanet observations and the main software for the TESS Follow-
up Observing Program12 working group (TFOP), to process ground-based transit follow-up

9https://photutils.readthedocs.io/en/stable/centroids.html
10https://www.tensorflow.org/
11https://github.com/lgrcia/ballet
12https://tess.mit.edu/followup/
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observations. For this reason, I will do this comparison on 26 TESS follow-up observations,
all already shared within TFOP.

Observations sample and metrics

telescope date target filter type
TRAPPIST-South 2018-10-01 TOI-145 z other
TRAPPIST-South 2018 10 18 TOI-142 I+z transit
TRAPPIST-South 2018-11-03 TOI-169 B transit
TRAPPIST-South 2018-11-25 TOI-207 I+z transit
TRAPPIST-South 2018-11-28 TOI-212 z transit
TRAPPIST-South 2018-11-29 TOI-171 B transit
TRAPPIST-South 2018-12-14 TOI-273 I+z other
TRAPPIST-South 2018-12-15 TOI-270 z transit
TRAPPIST-South 2018-12-19 TOI-150 B transit
TRAPPIST-South 2018-12-27 TOI-270 z transit
TRAPPIST-South 2019-01-12 TOI-350 I+z transit
TRAPPIST-South 2019-02-16 TOI-442 z transit
TRAPPIST-South 2019-03-24 TOI-500 B transit
TRAPPIST-South 2019-03-27 TOI-504 RC transit
TRAPPIST-South 2019-04-17 TOI-602 z transit
TRAPPIST-South 2019-05-13 TOI-674 I+z transit
TRAPPIST-South 2019-05-21 TOI-674 z transit
TRAPPIST-South 2020-11-21 TOI-370.01 z transit
TRAPPIST-South 2020-12-02 TOI-713.02 z transit
TRAPPIST-South 2020-12-12 TOI-2202.01 I+z transit
TRAPPIST-South 2020-12-13 TOI-2407.01 I+z transit
TRAPPIST-South 2020-12-19 TOI-2416.01 z transit
TRAPPIST-South 2020-12-24 TOI-2202.01 I+z transit
TRAPPIST-South 2021-01-07 TOI-542.01 Exo other
TRAPPIST-South 2021-01-17 TOI-736.02 I+z transit
TRAPPIST-South 2021-01-24 TOI-2322.01 z other

Table 2.3: Observations used for comparison with AIJ.

The 26 observations used for this comparison are detailed in Table 2.3 and came from the
TRAPPIST-South telescope. They were gathered between July 2018 and March 2021. AIJ
reductions and analysis were provided by several members of the TRAPPIST team and prod-
ucts shared within TFOP as part of the standard follow-up program. prose reductions were
done in bulk, the only interaction from the user being the manual selection of the target star
on the reference images. For each observation, I chose the reference image as the one from the
middle of the night. Finally, I produced the differential light curves using Broeg et al. (2005).

I assessed the performances of both tools using four distinct metrics. The first was the
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median standard deviation of the target light curve within 12 points bins (arbitrary), a
proxy to the white noise variance. The second and third metrics were the white and red
noise computed using a method inspired by Pont et al. (2006) which has the following prin-
ciple: if the light curve only contains white noise, the variance of the binned light curve with
bins of varying sizes would be inversely proportional to the number of points in the bins.
In opposition, the variance of varying-sized bins will be independent of the bin size for a
light curve with a purely correlated signal. The white and red noise can then be obtained by
fitting the bin-size dependent variance of the light curve to

ν(n) = σ2
w

n
+ σ2

r ,

where σw and σr are the white and red noise standard deviations and n the bins size. The
last metric considered was the single-transit SNR as described in Pont et al. (2006), i.e.

Sr = df√
σ2
w

n + σ2
r

, (2.1)

where df is the relative depth of the transit and n is the number of points in transit. Most of
the light curves of the sample contained a transit signal and a meridian flip13 that, if being
ignored, could be considered as red noise. To avoid that, the estimation of σr was done on
light curves for which the meridian flip has been modeled and removed, simultaneously with
the transit signal using orbital parameters found by peers.

Results

Figure 2.8 shows that prose automatically yielded light curves with lower white noise and
comparable red noise, resulting in transit recovered at similar SNR on average. The mea-
sured red noise was dominated by the light curve correlation with airmass, itself driven by the
choice and weights of comparison stars. This red noise also dominated the denominator of
the transit SNR (Equation 3.3), that prose did not generally improve despite producing light
curves with lower white noise. In Figure 2.9, a light curve of TOI-142 is shown, featuring
the most striking difference observed between AIJ and prose. This difference was likely due
to a non-optimal choice of aperture size and comparison stars in the manual analysis done
with AIJ, illustrating the advantage of using several apertures together with an automatic
differential photometry algorithm. In opposition, the same figure shows a transit of TOI-647
where similar outputs were observed between the two tools, being far more representative of
this comparison.

AIJ does not require prior programming knowledge, making it a popular choice for profes-
sional astronomers as well as in the amateur astronomy community. Aperture photometry
with AIJ employs a unique aperture size. In opposition, using standard blocks in prose pho-
tometric pipeline allows to automatically detect a larger number of stars, use a wide range
of apertures and apply an automatic differential photometry algorithm, overall yielding light
curves with lower white noise. Apart from alignment and centroiding aspects, AIJ and prose
use similar algorithms (such as aperture photometry) which naturally led to comparable
results. This validated the performances of prose default photometric pipeline against AIJ.

13A flip of the telescope required to track objects passing across the meridian line, required for some types
of German equatorial mounts.
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Figure 2.8: Noise and transit SNR comparison of prose against AstroImageJ (AIJ) on
26 TESS follow-up observations.
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Figure 2.9: Light curves of TOI-142 (top) and TOI-647 (bottom) obtained with AstroImageJ
(left) and prose (right).

Processing time

Comparison products from AIJ were provided by several users with no information on the
time required to do their complete reduction. In addition, prose provides measurements on
a much larger number of stars and a wide range of apertures, making the comparison with
AIJ uneven. That said, prose pipeline was developed with domestic computers in mind, an
aspect which deserved to be quantified.

Given an observation, the reduction time of prose photometric pipeline depends on the num-
ber of images to process, their sizes, the number of stars to extract photometry on, the
number of apertures considered, their radii and of course the computer being used. Provid-
ing a figure for all these parameters is beyond the scope of this chapter, instead, a practical
metric which can be easily adapted to estimate the time required to reduce a given observa-
tion can be produced. The sample for this analysis contained 2096× 2080 pixels images on
which I considered the 100 brightest stars using 40 apertures. I performed the reductions on
a 3 Ghz Intel core i5 processor and 8Gb of RAM, taking an average of 10 ms per image per
star, which translated into 8 minutes for a typical 500 frames observation with photometry
extracted on 100 stars and 40 apertures.

Reports

TESS candidates follow-ups are meant to be reported to the TFOP community. To comply
with this need, the companion Python package verse14 with advanced reporting capabilities
was developed, in collaboration with Mathilde Timmermans. Reports produced with verse
consist in LATEXtemplates that can be instantiated and automatically filed from Python

14https://github.com/mathtimm/verse
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scripts. While they contain general sections, TESS-specific pages are added to provide all
information related to TFOP activities. An example of such report is shown in section 2.2.4.

2.2.4 Other applications

Applications of prose extend beyond its base photometric pipeline. Here is a list of different
applications it was used for since its creation:

• The reduction of raw Hubble Space Telescope spectroscopic images of TRAPPIST-1
to produce transmission spectra of the Earth-sized outermost planet TRAPPIST-1h
(Garcia et al. 2022a, Chapter 4).

• The development and deployment of an automatic pipeline for the ASTEP+ telescope
(Antarctic Search for Transiting ExoPlanets, Dransfield et al. 2022).

• Development and deployment of at least two automatic pipelines for separate ama-
teur projects targeting the observation and discovery of new variable stars (private
communications).

• The publishing of more than an hundred exoplanet follow-up reports to the TESS
Follow-up Observing Program15 (through the work of colleagues Khalid Barkaoui and
Mathilde Timmermans)

• Overall, the reduction of images from 12 different observatories, without modification
of the base photometric pipeline presented in this section, thanks to prose instrument-
agnostic design.

• As of April 2023, the reduction of several observations used in a few dozen exoplanets
discovery papers (published in peer-reviewed journals, e.g. Schanche et al. 2022; Delrez
et al. 2022a)

In addition of these past achievements, current activities from outside the field of exoplane-
tary science are ongoing:

• Development of a semi-automatic pipeline for the comet observations of the TRAPPIST
telescopes (Mathieu Vander Donckt).

• Development of a pipeline to monitor satellite pollution of scientific observations at the
ESO Paranal Observatory (Chile, Sebastián Zúñiga-Fernández in collaboration with
ESO).

• At least two similar projects led by PhD students, one initiated by a private company
(private communications).

• Development of solutions to track low earth orbit satellites (private communications).

By adopting the modular approach offered by prose, its development team hopes to see the
deployment of transparent pipelines which can live beyond individuals projects, serving the
entire community and leading to reproducible results.

prose is open-source under the MIT license and publicly developed under a version controlled
environment16.

15https://tess.mit.edu/followup/
16https://github.com/lgrcia/prose
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Appendix
Figures 2.10 and 2.11 show elements of a TESS follow-up report produced with prose using
LATEX. While the first Summary page is automatically generated, other pages are pre-filled
and can be freely complemented with figures and text.
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TESS follow-up

TOI-370.01
2020 11 21 · Trappist-South · z

NIGHT

TIC id 251855940

Time 02:32 - 06:49 [4h16]

RA - DEC 8.65967 -32.16653

Images 119

GAIA id 2317155751208922112

Mean std · fwhm (epsf) 1.53 · 3.59 pixels

Fwhmx · fwhmy (target) 3.18 · 3.75 pixels

Optimum aperture 5.51 pixels

Telescope Trappist-South

Filter z

Exposure 120.0 s

PSF

LIGHTCURVE

RAW

SYSTEMATICS

COMPARISON STARS

1

Figure 2.10: verse reports start with a Summary page, which intends to provide a quick look to an observation and its main products. The left side
of this page features a stack image with the detected stars, among which are highlighted the target star (in blue) and comparison stars (yellow) used
to build the differential light curves. At the bottom left, a cutout around the target as well as a radial PSF is plotted and the corresponding aperture
overlaid. The rest of the page displays the raw and differential flux of the target star, as well as external parameters time-series (e.g. airmass) and
comparison stars’ light curves.
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TRANSIT MODEL

MODEL PARAMETERS

Parameters Model TESS

[u1,u2] [0.3508,0.2223] -

[R*] [1.05486 R� ] 1.05486 R�
[M*] [1.04 M� ] 1.04 M�
P 4.046 ± 0.0 d 4.046292 ± 0.000365 d

Rp 18.607 ± 0.342 R⊕ 18.266975 ± 0.382044 R⊕
Tc 2459175.706 ± 0.001 BJD-TDB 2459175.7061 BJD-TDB

b 0.532 ± 0.033 -

Duration 183.17 min 180 ± 18

(Rp/R*)² 2.61e-2 -

Apparent depth 2.89e-02 2.83e-2

a/R* 10.26 -

i 87.01° -

SNR 40.65 30.06

RMS per bin (7.2 min) 1.24e-03 -

2

Figure 2.11: The Transit model report page shows a model of the transit light curve together with the inferred transit parameters (here a corner plot
has been added manually). This model was inferred using the exoplanet Python package (Foreman-Mackey et al., 2021) and the corner plot done
with corner (Foreman-Mackey, 2016).
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Chapter 3

Detection of exoplanets around
M-dwarfs
A chapter based on a paper in preparation including contributions from Daniel Foreman-
Mackey and Francisco F. Pozuelos.

Although transit signals can be seen in the apparent flux received from transiting exo-
planets’ host stars, they are often mixed with other astrophysical and instrumental signals.
If they can be disentangled from nuisance signals, transits offer a powerful way to detect
exoplanets. However, disentangling these signals comes with many challenges, especially for
M-dwarfs, usually observed at lower SNR and more likely to display photometric variabil-
ity (e.g. Murray et al. 2020). In this dissertation, the term correlated noise encapsulates
all nuisance signals that impact the search for transits, even if having an astrophysical origin.

Widely used transit-search algorithms (BLS types, Kovács et al. 2002) are capable of de-
tecting transits in light curves containing only transit signals and white noise. Hence, the
simplest way to find periodic transit signals is to first clean a light curve from nuisance
signals before performing the search. This strategy is widely adopted by the community,
both using physically-motivated systematic models like Luger et al. (2016, 2018), or filtering
techniques (Jenkins et al. 2010, Hippke et al. 2019). However, when correlated noise starts
resembling transits, this cleaning step (often referred to as detrending) is believed to degrade
their detectability. In this case, the only alternative to search for transits is to perform a
full-fledged modeling of the light curve, including both transits and correlated noise, and
to compute the likelihood of the data to the transit model on a wide parameter space, an
approach largely avoided due to its intractable nature. Nonetheless, Kovács et al. (2016) ask:
Periodic transit and variability search with simultaneous systematics filtering: Is it worth it?.
The latter study discards the benefit of using a full-fledged approach in the general case, but
fails at exploring the light-curves characteristics for which it becomes necessary.

While it might only represent a handful of systems, transits hidden in correlated noise are ex-
tremely valuable for the exoplanetary science community. Indeed, correlated noise associated
with stellar variability may originate from surface active regions, that can be probed with
the help of planetary transits. A better understanding of these structures benefit both the
study of stellar atmospheres and their concerning impact on planetary atmosphere retrievals
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(see Chapter 4 and Chapter 5).

In this chapter I present nuance, an algorithm using linear models and Gaussian processes
to simultaneously search for transits while modeling correlated noise in a tractable way.

Transit light curve simulations
In order to study the effect of correlated noise on transit search, this chapter relies on transit
light curve simulations including a stochastically driven model of stellar variability. The
following describes how such signals are modeled.

=

+

+

f

Figure 3.1: Example dataset sampled at N = 2880 times corresponding to an observation of
4 days with an exposure time of 2 minutes. The mean of this signal consists in a periodic
transit signal of period P = 0.7 days, duration D = 0.05 days and depth of 2% (T in gray)
plus instrumental signals (S in blue). Correlated noise in the form of stellar variability is
simulated by modeling the covariance matrix of the signal with a Gaussian process (V in red)
including a diagonal variance of 0.0012 corresponding to white noise. This simulated signal
is not intended to be physically realistic.

Let f be the simulated flux of a star sampled and arranged in the (1×N) column-vector f
associated to the column-vector of times t. f is such that

f ∼ N (µ,C),

i.e. that f is drawn from a Gaussian process (GP) of mean µ and covariance matrix C
(see section 1.4 for a definition of GPs). In this equation, µ is such that its i-th element is
defined by µi = T (ti) + S(ti) where ti is the i-th time of observation, T is a periodic transit
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function and S a function describing the instrumental part of the signal (both described
below). The covariance matrix C is built such that Ci,j = ν(ti, tj) where ν is a covariance
function accounting for correlated noise in the form of stellar variability with added white
noise. An example of such signal is simulated and shown in Figure 3.1.

Transit signal T
The periodic transit signal T is simulated using the simple model described in Protopapas
et al. (2005), where a transit of period P , epoch T0, duration D and unitary depth observed
at time t is given by

Tc(t, P, T0, D) = 1
2 tanh

(
c

(
θ − 1

2

))
− 1

2 tanh
(
c

(
θ + 1

2

))
,

with θ = P

πD
sin
(
π(t− T0)

P

)
,

(3.1)

where the dimensionless parameter c controls the roundness of the transit depth (c � 1
corresponding to a box-shaped transit as shown in Figure 3.2). This analytical model is fully
empirical but easily differentiable.

c = 1 c = 5 c = 12 c = 500

Figure 3.2: Simulations of a single transit signal (Equation 3.1) shown for different values of
c.

In this chapter, all transits are simulated with c = 12, a value arbitrarily chosen that can
be fined-tuned in real applications using the limb-darkening coefficients of a given star. The
periodic transit signal T seen in Figure 3.1 corresponds to T = 0.02×Tc=12(t, P = 0.7, T0 =
0.2, D = 0.05), all parameters in unit of days.

Instrumental signals S
Instrumental signals are simulated as a linear model of M explanatory variables arranged in
the (M ×N) design matrix X. Hence,

S = wX,

where the vector w contains the linear coefficients of the model. The simulated flux shown
in Figure 3.1 contains a linear model where the M = 4 columns of the design matrix X
are given by Xi = ti (i.e. X is the Vandermonde matrix order 3 of time t) and w =
[1.0 0.0005 -0.0002 -0.0005].

Stellar variability ν

As this chapter focuses on stellar variability and its effect on transit detection, I employed
a physically-motivated GP kernel, describing stellar variability through the covariance of
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a stochastically-driven damped harmonic oscillator (SHO, Foreman-Mackey et al. 2017;
Foreman-Mackey 2018) taking the form

k(τ) = σ2 exp
(
−ω τ2Q

)
1 + ω τ for Q = 1/2
cosh(f ω τ/2Q) + sinh(f ω τ/2Q)/f for Q < 1/2
cos(g ω τ/2Q) + sin(g ω τ/2Q)/g for Q > 1/2

where τ = |ti − tj |, f =
√

1− 4Q2 and g =
√

4Q2 − 1

(3.2)

where Q is the quality factor of the oscillator, ω its pulsation and σ the amplitude of the
kernel function. GP computations in this chapter use the implementation from tinygp1,
a Python package exposing the quasi-separable kernels from Foreman-Mackey (2018) and
powered by JAX2. The stellar variability signal in Figure 3.1 has been sampled from a GP
with an SHO kernel of parameters ω = π/6D (i.e. a period equal to 12 times the duration
D of the simulated transit), Q = 45 and σ = 0.02, the depth of the simulated transit. An
extra term σ2

f = 0.0012 is added to the diagonal of the covariance matrix, corresponding
to the variance of the simulated measurement f and leading to the white noise observed in
Figure 3.1.

Using these simulated signals, with an absolute control on the model parameters, I study in
the next section the impact of correlated noise and its detrending on transits detectability.

3.1 The issue with correlated noise and its detrending
Two sources of correlated noise particularly justify the need for a detrending step before
searching for transits: instrumental noises (such as telescope pointing errors) and stellar
variability (induced by pulsations or starspots).

3.1.1 The effect of correlated noise on transits detectability

To study transits detectability, I focused on the signal-to-noise (SNR) of a unique event,
reduced to the simplified expression (Pont et al. 2006, Equation 12):

SNR = ∆√
σ2
w

n + σ2
c

Ntr

(3.3)

where ∆ is the relative transit depth, n is the number of points within transit, Ntr the
number of transits (Ntr = 1 here since we consider a single transit), and σ2

w and σ2
c are

the white and correlated noise variances. To show the impact of correlated noise on transit
detectability, I simulated a unique transit signal (using Equation 3.1) and computed its SNR
using Equation 3.3, both in the presence and absence of correlated noise (Figure 3.3).

1https://github.com/dfm/tinygp
2https://github.com/google/jax
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transit SNRLight curve

white noise + transit

51.64

+ correlated noise

14.42

Figure 3.3: Illustration of the effect of correlated noise on a single transit SNR. I simulated a
1-hour transit of depth 1% on top of white noise (variance of 0.00152) as part of a 24-hours
observation with an exposure time of 1 minute (top). Then, in the bottom plot, correlated
noise was added to the transit signal and simulated using a GP with a Matèrn-32 kernel
of scale 1 hour and sigma of 0.2%. The SNR on the right of each light curve is computed
using Equation 3.3, where the white and red noise standard deviations are computed as in
subsection 2.2.3.

As illustrated in Figure 3.3, the presence of correlated noise strongly decreased the transit
signal SNR, limiting its detection. This issue naturally motivated the development of sys-
tematic detrending algorithms such as the Trend Filtering Algorithm (TFA, Kovács et al.
2005, in its primary use case), SysRem (Tamuz et al. 2005), or Pixel Level Decorrelation
(PLD, Deming et al. 2015; see also Everest from Luger et al. (2016, 2018)). Most of these
methods rely on the shared nature of instrumental signals among light-curves (or neighbor-
ing pixels) such that the correction applied should not degrade the transit signal. Except
for TFA, these algorithms were mostly applied to space-based continuous observations, that
provided continuous stellar baselines and mostly reproducible systematic signals. This is not
the case for the vast majority of sparse ground-based observations, in addition subject to
periodic daytime interruptions and varying atmospheric extinction.

3.1.2 The effect of detrending on transits detectability

Instrumental signals often have the benefit to be shared among light curves of stars observed
with the same instrument, strongly correlated with measurements from the experimental
setup (like detector’s temperature, pointing error, sky background or airmass time series).
While not being true in general, I first assumed that the detrending of the systematic signals
in light curves based on their incomplete modelling, one that ignores transit signals (because
unknowns), do not affect the search for transits. In opposition, stellar variability and other
astrophysical correlated noise are generally unknown and harder to correlate with simultane-
ous measurements. This gave rise to several treatments in order to reconstruct and detrend
stellar variability. One of them is physically-motivated and makes use of Gaussian processes
(e.g. Aigrain et al. 2016). Another is empirical and makes use of filtering algorithms (Jenk-
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ins et al. 2010, Hippke et al. 2019). In this section, I study the effect of both approaches
on transit detectability, by estimating the degradation of a unique transit SNR for a wide
variety of stellar variability characteristics.

To study this effect, I added to a transit signal correlated noise in the form of stellar vari-
ability, featuring different timescales and amplitudes. In case a (purple in Figure 3.4), I
detrended the resulting light curves using the widely-adopted Tukey’s bi-weight filtering
method presented in Mosteller & Tukey (1977) and its implementation from wõtan3 (Hippke
et al., 2019). Presented as an optimal value in the latter study, I used an optimal window
size of three times the transit duration. In case b (red in Figure 3.4) I employed the same GP
model used to simulate stellar variability to reconstruct and remove correlated noise from
the light curves. In both cases, such detrending ignores the presence of potential transits
(the case of unknown transits search). Once light curves were cleaned from correlated noise,
I computed the remaining transit SNR using Equation 3.3.

20.13 21.35

10.37 8.69

0.92 3.75

1.28 2.00

original light curve

+ variability

a. biweight

SNRcleaned light curve

b. SHO GP

SNRcleaned light curve

Figure 3.4: (Top left) I added a transit signal with a depth of 0.8% and a duration of 0.1
days to a 1000 points pure white noise signal of variance 0.00152, representing an observation
spanning 3 days. (Left) Correlated noise in the form of stellar variability with different
timescales and amplitudes were added to the signal. This signal was then fitted using a
bi-weight filter (Hippke et al., 2019, in purple) and a GP with an SHO kernel (in red) with
the same hyperparameters used to generate the data. I then subtracted the fitted variability
(central and left plots) and computed the transit SNR using Equation 3.3, with the transit
depth estimated as the minimum in-transit flux.

Figure 3.4 clearly shows the effect of both detrending techniques on transits SNR, and intu-
3https://github.com/hippke/wotan
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itively suggests that this degradation is strongly dependant on the correlated noise charac-
teristics encountered.

In order to explore the parameter space for which detrending is the most problematic, I
simulated 10 000 light curves containing correlated noise in the form of stellar variability
that I detrended using a bi-weight filter. For convenience, the simulated light curves shared
a common transit added on top of white noise, and a variability signal only defined by two
parameters: τ , the relative timescale of the variability with respect to the transit duration;
and δ, the relative amplitude of the variability against transit depth, i.e.

τ ∝ variability timescale
transit duration and δ ∝ variability amplitude

transit depth . (3.4)

To follow this parametrization, I used a GP with a SHO kernel with the following hyperpa-
rameters:

ω = π

τD
, σ = δ

∆
2 and Q = 10, (3.5)

with ∆ = 1% and D = 0.04 days, the depth and duration of the simulated transit. For τ = 1
and δ = 1, the expressions of ω and σ given in Equation 3.5 correspond to a variability signal
with a period half that of the transit duration, and a standard deviation two times that of
the transit depth, i.e. strongly resembling the simulated transit signal. As in Figure 3.4, I
reconstructed the variability using a bi-weight filter with an optimal window length of 3×D
(Hippke et al., 2019), that I subtracted from each light-curve. I then computed the result-
ing transit SNR, using Equation 3.3, where the transit depth was taken as the remaining
in-transit minimum flux. Figure 3.5 shows the remaining SNR values of transits computed
this way, after each variability signal with random (τ, δ) have been detrended.

Figure 3.5 shows that it exists an entire region of the (τ, δ) parameter space for which
the bi-weight detrending degrades transit SNR to the point of no detection (SNR < 6).
Hence, bi-weight filter detrending makes transit-search blind to many systems. While this
study should be extended to other detrending techniques, it highlights the need for a more
informed transit search algorithm able to deal with correlated noise.
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Figure 3.5: SNR of a unique transit after detrending light curves using an optimal bi-weight
filter. All light curves correspond to a 2.8 days observation with a cadence of 2 minutes, and
contain a unique transit of duration 1 hour and a depth of 1%, added on top of white noise
with a standard deviation of 0.5% plus stellar variability. Light curves at the top and right
side of the central plot are shown with their corresponding τ and δ values. The amplitude
of the variability increases with δ and the timescale of the variability increases with τ .

3.2 nuance
nuance is an algorithm capable of searching for planetary transits in light curves containing
correlated noise, such as instrumental signals and stellar photometric variability.

Let assume that the flux f of a star is observed and arranged in the (1×N) column-vector
f , associated to the column-vector of times t. This flux contains instrumental signals, stellar
variability and a periodic transit signal that we wish to uncover (see Figure 3.1). I assume
that a set of M observed measurements (such as the position of the star on the detector, the
FWHM of the PSF or the sky background) taken at the same time as the flux can be treated
as explanatory variables for f . These measurements are arranged in the (M ×N) matrix X,
later called design matrix.

Ideally, we would detect the periodic transit signal in this flux by sampling the posterior
likelihood of this data to a full-fledge model including stellar variability (more generally cor-
related noise), instrumental systematic signals (modeled with explanatory variables), and a
periodic transit signal of period P , epoch T0, duration D and depth ∆. We would then
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reduce the posterior likelihood to p(f |P ), its marginalized version over all parameters except
the period P , producing a transit search periodogram Q(P ). However, this approach has two
issues: It is highly intractable, and it may lead to multimodal distributions that are hard to
interpret.

Given a period P , we instead want to compute the likelihood of a periodic transit signal
at the maximum likelihood parameters T̂0, D̂ and ∆̂, i.e the periodogram

Q(P ) = p(f |P, T̂0, D̂, ∆̂) (3.6)

This is done by adopting the strategy of Foreman-Mackey et al. (2015), and separate the
transit search into two components: the linear search and the periodic search. During the
linear search, the likelihood of a single non-periodic transit is computed for a grid of epochs,
durations and depths. Then, the periodic search consists in combining these likelihoods to
compute the likelihood of the data given a periodic transit signal for a range of periods.
These combined likelihoods yield a transit-search periodogram on which the periodic transit
detection is based. nuance differs from Foreman-Mackey et al. (2015) and other existing
transit search algorithms as it models the covariance of the light curve with a GP, account-
ing for correlated noise (especially in the form of stellar variability) while keeping the model
linear and tractable. This way, nuance searches for transits while, at the same time, modeling
correlated noise, avoiding the detrending step that degrades transit signals SNR.

The approach employed by nuance (a two-step approach proposed by Foreman-Mackey et al.
(2015)), shares similarities with the approach of Jenkins et al. (2010), where a single event
statistic is computed and combined into a multiple event statistics.

3.2.1 The linear search

During the linear search, the goal is to compute the likelihood p(f |T,D,∆) of the data given
a single non-periodic transit signal of epoch T , duration D and depth ∆, for a grid of epochs,
durations and depths.

To account for correlated noise, the light curve f is modeled as being drawn from a GP,
like the simulated light curves described in the introduction of this chapter, such that

f ∼ N (wX,Σ),

with mean wX (i.e. a linear model of the M explanatory variables with coefficients w)
and covariance Σ. To account for the presence of a single non-periodic transit of epoch
T and duration D, this signal is computed and appended as the last column of the design
matrix X, using the simple transit model from Protopapas et al. (2005) with a unitary
depth (Equation 3.1). This way, the transit signal is part of the linear model and its depth
∆ can be solved linearly. Under this assumption, the log-likelihood of the data given a single
non-periodic transit is (Rasmussen & Williams, 2005)

ln p(f |I) = −1
2(f −wX)TΣ−1(f −wX)− 1

2 ln |Σ| − N

2 ln 2π, (3.7)

where the parameters vector w and their errors σ are computed using the generalized least-
square solution

w = (XTΣ−1X)−1XTΣ−1f and σ = (XTΣ−1X)−1, (3.8)
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with Σ the covariance matrix modeled using the GP. Hence, ln p(f |I) can be computed on a
grid of epochs and durations, the transit depth being linearly solved for any (T,D). In this
equation. This linear search leads to the set of likelihoods

{ lnLi,j }i,j = { ln p(f |Ti, Dj ,∆i,j) }i,j ,

were ∆i,j is the depth linearly solved for a given (Ti, Dj)4. Figure 3.6 shows this likelihood
grid computed for a simulated dataset, using the same GP and design matrix X used to
simulate the data.
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Figure 3.6: Principle and output of the linear search. The simulated dataset (top) corre-
sponds to the one shown and described in Figure 3.1. First, a set of durations and depths
{Ti, Dj }i,j is generated. For each pair of indices (i, j), the likelihood ln p(f |Ti, Dj ,∆i,j) is
computed using the parameters from Equation 3.8 and the expression of Equation 3.7. This
process yields the grid of log-likelihoods lnL (bottom plot), as well as the {∆i,j , σi,j }i,j
transit depths and errors inferred linearly using Equation 3.8.

To prepare for the next step, the corresponding depths ∆i,j linearly solved for any (Ti, Dj)
are stored, as well as their associated uncertainties σi,j , corresponding to

∆i,j = wM and σi,j = σMM ,

M denoting the index of the last column of the design matrix X, where the transit signal is
contained.

3.2.2 The periodic search

We then need to combine the likelihoods computed from the linear search to obtain

p(f |P, T0, D,∆),

4The expression of { ln Li,j }i,j omits the vector wi,j (except its last value ∆i,j) as it is also linearly
solved for any given value of (Ti, Dj) and irrelevant in what follows.
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i.e. the probability of a periodic transit of period P , epoch T0, duration D and depth ∆ given
the data f .

For a given transit duration D, any combination of (P, T0) leads to K transits, for which
it is tempting to write

p(f |P, T0, D,∆) =
K∏
k

p(f |Tk, D,∆k), (3.9)

where {Tk }k are the epochs matching (T0, P ) and {∆k }k the corresponding depths. So that

ln p(f |P, T0, D,∆) =
K∑
k

lnLk.

This is the joint likelihood of transits belonging to the same periodic signal but with varying
depths {∆k }k. However, individual transits from a periodic signal cannot be considered
independent, and should instead be found periodically and share a common transit depth ∆.
Let demonstrate that there is an analytical expression for the joint likelihood of K individual
transits with depths and errors {∆k, σk }k assuming a common depth ∆, corresponding to

ln p(f |P, T0, D,∆) =
K∑
k

lnLk −
1
2

K∑
k

(
ln(σ2

k)− ln(σ2 + σ2
k) + (∆k −∆)2

σ2
k + σ2

)

with 1
σ2 =

K∑
k

1
σ2
k

and ∆ = σ2
K∑
k

∆k

σ2
k

.

(3.10)

Proof

From the linear search, we retain and index by k the parameters of the K individual transits
whose epochs {Tk}k are compatible with a periodic signal of period P and epoch T0. From
the likelihoods of these transits (computed in subsection 3.2.1), we want an expression for

p(f |P, T0, D,∆) =
∏
k∈T

p(f |Tk, D,∆),

i.e., given a depth D, the likelihood of the data given a periodic transit signal of period P ,
epoch T0 and a common depth ∆. Since only {p(f |Tk, D,∆k)}k is known (i.e. transits with
different depths), we decompose

p(f |Tk, D,∆) =
ˆ
p(f |Tk, D, ∆̃)p(∆̃|∆) d∆̃, (3.11)

where p(f |Tk, D, ∆̃) is the probability of the k-th transit to have a depth ∆̃ and p(∆̃|∆) the
probability to observe the depth ∆̃ knowing the existence of a common depth ∆. In other
words, Equation 3.11 involves the likelihood of the non-periodic transit k to be part of a
periodic transit signal with a common depth ∆.

Since each depth ∆k is found through generalized least square, each follow a normal dis-
tribution N (∆k, σ

2
k), centered on ∆k with variance σ2

k and an amplitude Lk, leading to the
likelihood function

p(f |Tk, D, ∆̃) = Lk exp
(
− (∆̃−∆k)2

2σ2
k

)
.
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As for the common transit depth ∆, it can be estimated through the joint probability of all
other transit depths than ∆k, such that

∆ ∼
K∏
i6=k
N (∆i, σ

2
i ),

with
1
σ2 =

K∑
i 6=k

1
σ2
i

and ∆ = σ2
K∑
i 6=k

∆i

σ2
i

. (3.12)

Hence

p(∆̃|∆) = 1√
2πσ2

exp
(
− (∆̃−∆)2

2σ2

)
.

We can now rewrite Equation 3.11 as

p(f |Tk, D,∆) = Lk√
2πσ2

ˆ
exp

(
− (∆̃−∆k)2

2σ2
k

)
exp

(
− (∆̃−∆)2

2σ2

)
d∆̃.

The integral in this equation is a product of gaussian integrals that can be obtained analyt-
ically, leading to

p(f |Tk, D,∆) = Lk

√
σ2
k

σ2 + σ2
k

exp
(
−1

2
(∆k −∆)2

σ2
k + σ2

)
.

Finally,

ln p(f |P, T0, D,∆) =
K∑
k

lnLk −
1
2

K∑
k

(
ln(σ2

k)− ln(σ2 + σ2
k) + (∆k −∆)2

σ2
k + σ2

)
, (3.13)

the log-likelihood of the data given a periodic transit signal of period P , epoch T0, duration
D and common depth ∆. In order to reduce the number of times Equation 3.12 is computed,
we adopt the biased estimates

1
σ2 =

K∑
k

1
σ2
i

and ∆ = σ2
K∑
k

∆i

σ2
i

, (3.14)

so that ∆ and σ are independent of k in the last sum of Equation 3.13.

* * *

While Equation 3.13 takes a closed form, the individual epochs matching T0 and P are not
necessarily available in the grid of epochs {Tk }k. In Foreman-Mackey et al. (2015), a similar
issue is solved by using the nearest neighbors in the epochs grid. Instead, to allow the efficient
matrix computation of Equation 3.13, the likelihood grid is linearly interpolated from {Ti }i
to a common grid of transit phases {φi }i, leading to the periodic search log-likelihood

lnP(P ) = { ln p(f |P, φ,D) }i,j

shown for few periods in Figure 3.7 (b). In the latter equation, ∆i,j is omitted since being
interpolated from the linear search using φi, Dj and T0 = 0.
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Figure 3.7: Applied to the dataset shown Figure 3.6, this figure shows how the periodic
search works at different periods P (including the true period P = 0.7 days). Given different
periods P and T0 = 0, the likelihood lnL shown in (a) is phase-folded and interpolated onto
a common grid of phases shown in (b). As an example, the white lines in (a) mark the edges
of each fold for a period of P = 0.5 days, and the white crosses show the epochs {Tk }k∈K
matching a particular phase in the grid (reported in (a) and (b)) on which the corresponding
{ lnLk }k∈K are interpolated and combined using Equation 3.13. To allow the use of efficient
matrix computations, this is done for all durations {Di }i so that P is computed on the
full grid {Di, φi }i,j at once. We understand from the folded likelihoods plots in (b) that a
different choice of epoch T0 may only shift the results in phase but do not affect the values of
P. For this reason, computing P for T0 = 0 is sufficient. We also notice how the maximum
value of P(P = 0.7/2) (left plot of (b)) is lower than for P = 0.7 days, a result of combining
the log-likelihoods using Equation 3.13 instead of Equation 3.9, in favor of individual transits
matching a common depth ∆.

3.2.3 The transit search periodogram

Using Equation 3.13, we can now compute lnP for a range of periods and build a transit
search periodogram using Equation 3.6. But a final issue emerges, one that is fundamentally
linked to our strategy. Each likelihood p(f |T,D,∆) estimated during the linear search is
computed using N measurements. Hence, combining transits in the periodic search, through
∆k, σk and the product of K likelihoods {Lk }k (see Equation 3.13), artificially leads to a
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likelihood involving N ×K measurements. This lead to a normalization issue when trying
to compare the joint log-likelihoods P(P ) from one period to another, as the number of
observed transits differs from one period to another. This motivates a final step to produce
the transit search periodogram Q. For any period P, instead of taking Q(P ) as the maximum
value of lnP, the maximum likelihood parameters

(φ0, D) = arg max
φi,Dj

{ ln p(f |P, φi, Dj) }i,j (3.15)

are retrieved, and Q(P ) is defined as the SNR of the transit of period P , epoch T0 = φ0P ,
duration D and depth ∆, i.e.

Q(P ) = ∆
σ
,

where ∆ and σ are obtained using Equation 3.14 with the last column of X containing a
periodic transit signal of period P , epoch T0, duration D and depth 1. This process and the
resulting periodogram Q are shown in Figure 3.8.
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Figure 3.8: For each period P , the joint likelihood P(P ) is computed using Equation 3.13,
and the value of the maximum likelihood transit SNR retained as Q(P ).

The periodic transit of period P with the maximum SNR, i.e. maximizing Q, is adopted as
the best candidate, basing the confidence in this signal through its SNR. The parameters of
this transit are the period P , the epoch T0 = φ0P and duration D (Equation 3.15), and the
depth ∆ with error σ (given by Equation 3.14).

63



3.2.4 An open-source python package

The methods described in this chapter are implemented in the nuance open-source Python
package, hosted on Github5 and released on the Python Package Index (PyPI)6.

To instantiate a search, a user can start by creating a Nuance object with

from nuance import Nuance

nu = Nuance(time, flux, gp=gp, X=X)

where gp is a tinygp GP instance and X the design matrix of the linear model. nuance
exploits the use of tinygp7, a Python package powered by JAX8, allowing for custom kernels
to be built and highly tractable computations. We can then define a set of epochs t0s and
durations Ds and run the linear search with

import numpy as np

t0s = time.copy()
# a range of 10 durations
Ds = np.linspace(0.01, 0.2, 10)
nu.linear search(t0s, Ds)

Finally, the periodic search is run with

# a wide range of periods
periods = np.linspace(0.1, 5, 2000)
search = nu.periodic search(periods)

From this search object, the best transiting candidate parameters can be computed (search.best),
or the Q periodogram retrieved (search.Q snr), together with valuable information about the
transit search. The Nuance object also provides methods to perform transit search on light
curves from multi-planetary systems, the advantage of nuance being that the linear search
only needs to be performed ones, and reused for the search of several transiting candidates.
An extensive and maintained online documentation is provided at nuance.readthedocs.io.

3.3 Control test against BLS and TLS
To start testing nuance against existing methods, a simple light curve is simulated, consisting
in pure white noise with a standard deviation of 5 × 10−4 (relative flux), observed for a
duration of 6 days with a cadence of 2 minutes. In this signal, transits with periods ranging
from 0.3 to 2.5 days are injected, with a unique transit duration of 50 minutes and depths
ranging from 2.6× 10−4 to 6.8× 10−4 (using the simple model from Protopapas et al. (2005)
presented in the introduction). By design, these injected signals have an SNR ranging from
5 to 30 (with σr = 0 in Equation 3.3). For each light curve, transits are searched using three
different methods:

5https://github.com/lgrcia/nuance
6https://pypi.org/project/nuance/
7https://github.com/dfm/tinygp
8https://github.com/google/jax
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• nuance, using its implementation from the Python package described in the previous
section.

• BLS, the box-least-square algorithm (Kovács et al., 2002), using the astropy BoxLeast-
Squares implementation9.

• TLS, the transit-least-square algorithm (Hippke & Heller, 2019), an optimized version
of the BLS algorithm implemented in the transitleastsquares Python package10. For this
study, a modified version of the transitleastsquares package is employed, allowing to
search for transits using a custom range of periods and durations.

For all of these methods, 3000 trial periods from 0.2 to 2.6 days are searched, with a single
trial duration fixed to the unique known duration of 50 minutes. A transit signal is considered
detected if the absolute difference between the injected and the recovered period is less than
0.01 day. To ease the detection criteria, transit periods recovered at half or twice the injected
period (aka aliases) are considered as being detected. For this reason, detected transit epochs
are not considered. Results from this injection-recovery procedure are shown in Figure 3.9.
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Figure 3.9: Injection-recovery of 20 × 20 individual transit signals in a flat light curve with
only white noise (whose characteristics are described in the main text), using TLS, BLS and
nuance. Transits recovered with the correct injected period correspond to the white area
of the plot, while transits recovered at half or twice the injected period are shown in gray
(aliases). Transit signals that were not detected are shown in black. Note that for each period
and depth, a single transit epoch is used, explaining the sharp edges and discontinuities in
the plot.

These results show that there is no perfect match between the detection capabilities of nuance
compared to BLS and TLS. However, nuance and BLS seems to have comparable performances,
compared to TLS that is less performant for lower SNR transits and more sensitive to period
aliases (i.e. half or twice the injected periods). At periods lower than 0.5 days, there seem
to be an advantage for nuance to detect transits with correct periods, compared to BLS and
TLS detecting periods aliases.

Explaining why such differences are observed, especially between BLS and TLS is beyond the
scope of this chapter, especially since BLS compares particularly well with nuance. Hence, in
the following sections, nuance will be compared to methods employing BLS on light curves
featuring correlated noise.

9https://docs.astropy.org/en/stable/api/astropy.timeseries.BoxLeastSquares.html
10https://transitleastsquares.readthedocs.io
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3.4 nuance vs. biweight+BLS on simulated light curves
The subsection 3.1.2 highlighted that nuance’s full-fledged modeling capabilities may not al-
ways be necessary and may only be beneficial for certain noise characteristics, relative to the
searched transit parameters. As a result, this section focuses on evaluating the performance
of nuance in the relative parameter space (τ, δ) described in Equation 3.5 and see when it
becomes necessary.

In this section, nuance is compared to the approach that involves removing stellar vari-
ability from the light curves before performing the search on the detrended datasets. Similar
to subsection 3.1.2, an optimal bi-weight filter implemented in the wõtan Python package11 is
used with a window size three times that of the injected transit duration. The transit search
is then performed using the BLS algorithm, like in section 3.3 using the astropy BoxLeast-
Squares implementation12. This transit search strategy is widely used in the community and
is denoted biweight+BLS. In what follows, the transit detection criteria are the same as the
ones used in section 3.3, i.e. that a transit is considered recovered if the absolute difference
between the injected and recovered period is less than 0.01 days, including periods found at
half or twice the injected ones (aliases).

3.4.1 Dataset

The dataset consists in 4000 light curves simulated using the model described in the intro-
duction of this chapter. We simulate a common periodic transit added to all light curves,
of period P = 1.1 days, epoch T0 = 0.2 days, duration D = 0.04 days and depth ∆ = 1%.
Each light curve consist in a 4 days observation with an exposure time of 2 minutes, leading
to N = 2880 data points with a normal error of 0.1%.

For a given pair of (τ, δ), we simulate stellar variability using a GP with an SHO kernel
of hyperparameters defined by Equation 3.5 (except for Q, described below), computed with
respect to the injected transit parameters D and ∆. The same kernel is used for the search
with nuance, an optimal choice on equal footing with the optimal 3×D window size of the
bi-weight filter employed in the biweight+BLS search. 4000 pairs of (τ, δ) are generated such
that

τ ∼ U(0.1, 10), δ ∼ U(0.1, 25) and Q ∼ U(10, 100)

where U(a, b) denotes a uniform distribution of lower bound a and upper bound b.

3.4.2 Results

The results of this injection-recovery procedure are shown in Figure 3.10 and highlight partic-
ularly well the benefit of nuance against the biweight+BLS strategy on transits with relatively
low depth compared to the stellar variability amplitude, and a relatively small duration com-
pared to the stellar variability period. This empirical statement only concerns light curves
with a given amount of white noise, and may vary depending on the length of the observing
window or the number of transits. For this reason, quantifying for which values of (τ, δ)
nuance outperforms biweight+BLS would only apply to this specific example. While more

11https://github.com/hippke/wotan
12https://docs.astropy.org/en/stable/api/astropy.timeseries.BoxLeastSquares.html
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examples are considered in the following section 3.5, proper guidelines on when to use nuance
instead of more classic detrending techniques are currently being developed.
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Figure 3.10: Injection-recovery results on 4000 simulated light curves described in subsec-
tion 3.4.1. The color scale represents the fraction of recovered transits.

This injection-recovery was done in a particularly optimal setup, on light curves not all physi-
cally realistic, hence demonstrating the performance of nuance only on a purely experimental
basis. In the next section, we perform transits injection-recovery on real space-based light
curves.

3.5 Validation on TESS light curves
The parameter space (τ , δ) introduced in subsection 3.1.2 is very convenient from a signal
processing point of view, but lacks physical reality. Very low values of τ and δ often translate
into non-physical exoplanets properties as well as unrealistic stellar variability, with a strong
dependence on the host star properties.

In order to assess the performance of nuance on real light curves, its transit recovery ca-
pabilities are rather evaluated in the planetary (period, radius) parameter space, more often
encountered in the literature (e.g. Figure 12 of Delrez et al. 2022b). In what follows, transits
described by the simple model of Protopapas et al. (2005) are injected into light curves from
the Transiting Exoplanet Survey Satellite (TESS, Ricker et al. 2015). The TESS mission,
currently in its 5th year of operation, is a space-based all-sky survey searching for transiting
exoplanets around more than 9 million stars13. As this chapter focuses on the detection of
planets transiting variable M-dwarfs, targets are chosen from a list of ∼600 M-dwarfs found
to have detectable rotation signals with periods lower than one day (Ramsay et al., 2020).
For each of the studied target, transits are injected and recovered in the TESS 2 min ca-
dence SPOC Simple Aperture Photometry and Pre-search Data Conditioning light curves
(PDCSAP, Caldwell et al. 2020) on a single sector (the first being observed for each target)
spanning an average of 27 days.

13https://exofop.ipac.caltech.edu/tess/search.php
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In the following sections, nuance is compared to other transit search strategies employing the
BLS algorithm, each time after detrending the light curves with three different techniques:

• bspline+BLS employs a B-spline14 detrending, fitted using the scipy.interpolate.splrep
function15, followed by a search with the BLS algorithm.

• biweight+BLS employs an optimal bi-weight filter implemented in the wõtan Python
package (Hippke et al., 2019) with an optimal window size of 3 ×D (i.e. three times
the transit duration), followed by a search with the BLS algorithm.

• harmonics+BLS employs a linear harmonic detrending, where the light curve is modeled
as a Fourier series including four harmonics of the stellar rotation period found by
Ramsay et al. (2020), with coefficients found through ordinary least square. This
detrending is followed by a search with the BLS algorithm.

Stellar variability kernel

A GP kernel with a single SHO kernel is not representative of realistic stellar variability.
Instead, a mixture of two SHO kernels of period P? and P?/2 (with P? the rotation period of
the star), being representative of a wide range of stochastic variability in stellar time series
from rotation to pulsations16, is adopted, with the addition of one short scale and one long
term exponential term. This full rotation kernel is expressed as

k = k1 + k2 + k3 + k4

with

• k1 a SHO kernel with hyperparameters

Q1 = 1/2 +Q0 + δQ , ω1 = 4πQ1

P
√

4Q2
1 − 1

and S1 = σ2

(1 + f)ω1 Q1
.

• k2 a SHO kernel with hyperparameters

Q2 = 1/2 +Q0 , ω2 = 2ω1 and S2 = f σ2

(1 + f)ω2 Q2
,

where Q0 is the quality factor for the secondary oscillation, δQ is the difference between
the quality factors of the first and the second modes, f is the fractional amplitude of the
secondary mode compared to the primary and σ is the standard deviation of the process.
The kernels k3 and k4 are expressed as

k(t, t′) = σ2 exp
(
−|t− t

′|
`

)
,

with ` and σ the scale and standard deviation of the process. In total, the rotation kernel k
has 8 hyperparameters.

14https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BSpline.html
15https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splrep.html
16https://celerite2.readthedocs.io/en/latest/api/python
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Light curve cleaning

As the described light curve model does not account for stellar flares, the light curve of
each target is cleaned using an iterative sigma clipping approach. For each iteration, points
4 times above the standard deviation of the full light curve (previously subtracted by its
median) are identified. Then, the 30 adjacent points on each side of the found outliers are
masked. This way, large flare signals and their expected ingress and egress are masked, using
a total of 3 iterations. As PDCSAP light curves often start with a ramp-like signal, the first
300 points (as well as the last 300 points) of each continuous observation are masked. Finally,
each light curve is normalized by its median value. Such a cleaned light curve is shown in
Figure 3.11.

Figure 3.11: Cleaned single-sector light curve of the target TIC 153193474. The light curve
is normalized by its median value.

GP hyperparameters optimization

The hyperparameters of the employed rotation kernel are optimized on cleaned light curves,
using the scipy.optimize.minimize17 wrapper provided by the jaxopt Python package, taking
advantage of the JAX implementation of tinygp. As red noise is expected to bias the light
curve uncertainty estimates performed by SPOC, the diagonal of the full covariance matrix
of the data (i.e. their uncertainty, assuming homoscedasticity) is held free, increasing the
number of optimized parameters to 9. The optimization is performed using the BFGS al-
gorithm (Fletcher, 1987), minimizing the negative log-likelihood of the data as expressed in
Equation 3.7 (without transit), i.e. accounting for a linear systematic model of the data in
addition of stellar variability. For simplicity, and to adopt a uniform treatment for all target
light curves, a design matrix X with a single constant column is adopted, such that the
systematic model only consists in a single parameter corresponding to the mean value of the
differential flux (expected to be close to 1) solved linearly.

Injected transits

For a given orbital period and planetary radius, the corresponding transit duration and depth
are computed and a random transit epoch is generated. These parameters are then used to
generate a periodic transit signal using the simple model of Protopapas et al. (2005), finally
added to the cleaned target light curve. For each target light curve, 10 unique orbital periods
combined with 10 unique planetary radii are individually considered, for a total of 100 transit
light curves. Orbital periods P are sampled on a regular grid between 0.4 and 10 days, and
planetary radii Rp are sampled on a regular grid designed to lead a minimum transit SNR of
4 and a maximum of 30, using Equation 3.3 with σr = 0, σw equal to the mean uncertainty

17https://jax.readthedocs.io/en/latest/_autosummary/jax.scipy.optimize.minimize.html
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estimated by the SPOC pipeline and the depth δ found using the radius of the star reported
by Ramsay et al. (2020).

Detection criteria

Because we also consider planets recovered with half or twice the real period, we ease the
detection criteria by ignoring the match of the recovered transit epoch with the real epoch.
Note that a visual vetting ensured that the found epochs were consistent with the ones
injected for cases where the planet was considered detected.

3.5.1 Injection-recovery studies

TIC 140212114: fast sinusoidal variability

TIC 140212114 has an effective temperature of 3595 ± 157 K18 (M1.5-type star, Rajpurohit
et al. 2013) with a rotation period of 0.14 days (Ramsay et al., 2020). For each technique, the
left plot of Figure 3.12 shows a portion of TIC 140212114 cleaned light curve with an injected
transit signal (hardly distinguishable due to correlated noise of the light curve compared to
the transit depth). On the left plots, the black lines correspond to the trends computed for
this injected light curve subtracted from it before being searched for transits. This detrend-
ing only applies to techniques other than nuance, where instead the black line corresponds
to the mean of the GP model. For each technique, the right plot of Figure 3.12 shows the
results of the transit search for each of the 10 × 10 injected light curves, reported in the
planetary (period, radius) parameter space. A black square denotes that the transit signal
has not been detected, a gray square denotes a signal detected at an alias period (P/2 or
2P ), and a white square denotes a transit signal detected with the correct period. On the
right plots of Figure 3.12, secondary axes show the values of the injected transits in the (τ, δ)
relative parameter space.

Results from Figure 3.12 are discussed in subsection 3.5.2.

18https://exofop.ipac.caltech.edu/tess/target.php?id=140212114
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Figure 3.12: Results of the transits injection-recovery on TIC 140212114 single-sector light
curve. Left: cleaned light curve with computed trend overplotted in black (except for nuance
where it corresponds to the mean of the GP model). Right: Results of the transit search
where a black square denotes a transit signal not detected, gray a signal detected at an alias
period (P/2 or 2P ), and white a signal detected with the correct period. On the right plots,
secondary axes show the (τ, δ) relative parameter space. For each method, the upper right
legend on the left plot indicates its ranking based on the percent of recovered transit signals
(where a transit with an aliased period counts as being detected). The harmonics+TLS
method is the best after nuance, but with 35% less transits detected in total.
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TIC 452793374: high-amplitude red noise

TIC 452793374 has an effective temperature of 3377 ± 157 K19 (M2.5-type star, Rajpurohit
et al. 2013) with a rotation period of 0.33 days (Ramsay et al., 2020). Injection-recovery
results are shown in Figure 3.13 and discussed in subsection 3.5.2.

TIC 153193474: non-sinusoidal variability

TIC 153193474 has an effective temperature of 3351 ± 157 K20 (M2.5-type star, Rajpurohit
et al. 2013) with a rotation period of 0.11 days (Ramsay et al., 2020). Injection-recovery
results are shown in Figure 3.14 and discussed in subsection 3.5.2.

TIC 306331621: slow sinusoidal variability

TIC 306331621 has an effective temperature of 3067 ± 157 K21 (M5-type star, Rajpurohit
et al. 2013) with a rotation period of 1.00 days (Ramsay et al., 2020). It was chosen for its
relatively slow rotation (compared to the three other targets) and higher white noise com-
pared to the amplitude of its variability. Injection-recovery results are shown in Figure 3.15
and discussed in subsection 3.5.2.

3.5.2 Results

From the injection-recovery conducted on TIC 140212114, TIC 452793374, TIC 153193474
and TIC 306331621, it can be concluded that searching for transits directly with nuance
offers a clear advantage over any of the presented detrending methods combined with BLS.
While not fully described in this dissertation, injection-recovery on additional targets lead
to same conclusion.

Targets with light curves featuring stable sinusoidal stellar variability, i.e. with a high quality
factor Q (see the SHO kernel), are the ones that benefit less from nuance, as a set of harmonic
signals can be combined linearly to robustly model and detrend the periodic signal. In the
cases of TIC 452793374 and TIC 306331621, an additional ∼6% of planets are detected by
nuance over the probed planetary (period, radius) parameter space. From these two exam-
ples, it cannot be concluded if this difference is solely due to the difference observed between
nuance and BLS in section 3.3 . While red noise was properly detrended by a bi-weight filter
in the case of TIC 452793374, additional tests must be done to show that nuance clearly out-
performs this method when any red noise is present in the light curve (as partially observed
in section 3.4).

Finally, targets with non-sinusoidal or short scale variability are the ones that benefit the
most from nuance, as no other method is able to robustly detrend their light curves without
removing transit signals. This is well illustrated by the study of TIC 140212114 (Figure 3.12)
and TIC 153193474 (Figure 3.14).

19https://exofop.ipac.caltech.edu/tess/target.php?id=452793374
20https://exofop.ipac.caltech.edu/tess/target.php?id=27734884
21https://exofop.ipac.caltech.edu/tess/target.php?id=306331621
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Figure 3.13: Results of the transits injection-recovery on TIC 452793374 single-sector light
curve. See section 3.5.1 and legend of Figure 3.12 for a detailed description of this figure.
The biweight+TLS method is the best after nuance, with 6% less transits detected in total
that could be due to the sole difference between nuance and BLS discussed in section 3.3. It
indicates that a more flexible filter is necessary for this light curve with significantly higher
red noise, making nuance not necessary.
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Figure 3.14: Results of the transits injection-recovery on TIC 153193474 single-sector light
curve. See section 3.5.1 and legend of Figure 3.12 for a detailed description of this figure.
The harmonics+TLS method is the best after nuance, with 62% less transits detected in
total, indicating that all presented methods are unable to detrend without removing many of
the injected transit signals (which is not surprising when considering the trend being built,
except in the case of bspline+TLS, but being apparently too flexible).
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Figure 3.15: Results of the transits injection-recovery on TIC 306331621 single-sector light
curve. See section 3.5.1 and legend of Figure 3.12 for a detailed description of this figure. The
harmonics+TLS method is the best after nuance, with 7% less transits detected in total that
could, again, be due to the sole difference between nuance and BLS discussed in section 3.3.
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3.6 Discussion
The results from section 3.5 show that nuance always outperforms other methods when
searching for transit signals in light curves containing correlated noise. While performances
with other methods can be very comparable, nuance alleviates the need to choose for a spe-
cific detrending technique and rather exploit the complete modeling of the light curve using
a physically interpretable GP.

In few cases, nuance offers a clear advantage in comparison with other methods, in particular
for low SNR transit signals in light curves containing fast or non-sinusoidal stellar variabil-
ity. In these cases, nuance is able to robustly detect transits, and provide a unique option in
comparison with techniques that likely degrade the searched signals through detrending.

Processing time

As of June 2023, nuance is very much a work in progress and a full assessment of its per-
formances is still ongoing. Figure 3.16 is a preliminary study of the computational cost
of nuance against BLS. For reasons described in the next section, the linear search is first
considered separately from the periodic search.
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Figure 3.16: Preliminary study of nuance processing time against BLS. The lighter blue
curve shows the performance of nuance when applied to chunks of 10 000 points continuous
observations, instead of considering these observations all together (the only option when
using BLS).

In Figure 3.16, the processing time of the linear search from nuance is recorded against the
number of points in the light curve. One advantage of nuance is that the linear search can be
performed separately on different continuous observations, and then combined in the periodic
search. Hence, if searching for transits in separate observations with similar durations (such
as different TESS sectors or different ground-based nightly observations), the computational
cost of nuance grows linearly with the number of observations. Such a parallel cannot be
made with BLS, as the algorithm considers all observations as a single one. This way, after
assuming that 10 000 points observations can be combined into the periodic search (roughly
corresponding to the number of data points in continuous TESS observations for example),
nuance will constantly perform a single order of magnitude slower than BLS, only considering
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the linear search. For this reason, nuance must not be employed in the general case, but
rather used when light curves contain correlated noise with characteristics described in this
chapter. Proper guidelines and metrics to assess the presence of such noise, which would
indicate if nuance is required, are currently being developed.

For reference, the complete search (including the periodic search) of a single TESS sec-
tor for TIC 140212114 (15992 points partly shown in Figure 3.12) took a total of 30 seconds,
executed on a 10 core Apple M1 Pro chip. The latter processing time would grow linearly
with the number of sectors being processed.

Periodic search

The periodic search of nuance can be done separately from the linear search. For a given
light curve, a single linear search can be performed then masked and combined iteratively
to search for multiple transiting exoplanets. Hence, Figure 3.16 only shows the processing
time of the linear search, assuming that a single planet is searched for. As of June 2023,
the periodic search in the current implementation of nuance is the least optimized part.
But recent developments indicate that the periodic search can be performed in a time equal
to the complete processing time of the BLS algorithm. Hence, as the BLS algorithm grows
linearly with the number of planets being searched (because reran every time on masked light
curves), the increased computing time for nuance would be equal, bridging the gap between
the computing time of BLS and nuance when searching for multiplanetary transiting systems.

Design matrix

In this chapter, starting from subsection 3.1.2, it was assumed that systematic signals (as op-
posed to astrophysical signals) were completely corrected for without affecting the searched
transit signals. For this reason, all analyses in this chapter were done with a single column
design matrix X, corresponding to the mean, constant, differential flux (ideally 1) of a light
curve. In practice, nuance has been developed to linearly model systematic signals through
more complex design matrices, in addition with its capability to model correlated noise while
searching for transits. This aspect is completely unexploited in the previous comparisons,
and would require to search for transits in completely raw light curves, which comes with few
challenges. Given a light curve, this approach involves choosing a design matrix containing
specific explanatory measurements, hence requiring a proper model comparison. In addition,
large design matrices are expected to increase nuance processing time, something that needs
to be accounted for in its performance assessment.

Used in the context of the SPECULOOS survey, nuance is currently being tested on light
curves containing systematic signals that can be modeled linearly using polynomials of com-
mon explanatory variables (such as airmass, background flux, pointing error or PSF full-width
at half-maximum). On light curves spanning only few hours, with less than a thousand pho-
tometric measurements, the use of a linear model to detrend the light curve ignoring the
presence of transits is highly susceptible to remove the signals of interest, giving a clear
advantage to a full-fledge method like nuance. The same applies for filter-based detrending
algorithms. Proving the later empirical statement is out of the scope of this chapter and will
be treated in a following publication. However, nuance might be particularly well suited to
search for transits in ground-based observations, where the detrending of sparse observations
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is believed to remove the lowest SNR transit signals.

Overall, nuance is a powerful tool to search for transits in light curves containing systematic
signals and correlated noise, characteristic of late M-dwarfs light curves. Due to several ad-
vances in computational methods, as well as its analytical formalism, nuance remains highly
tractable, and may already be applied to space-based continuous observations. nuance is
currently being tested on sparse observations, offering a unique tool to search for transiting
exoplanet in the light curves of SPECULOOS and other ground-based surveys.
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Chapter 4

Atmospheric reconnaissance of
TRAPPIST-1h
A chapter based on the work published in Garcia et al. 2022a with Sarah E. Moran, Benjamin
V. Rackham, Hannah R. Wakeford, Michaël Gillon, Julien de Wit and Nikole K. Lewis. In
this chapter, my personal contributions have been distinctly emphasized and clearly differen-
tiated from those made by co-authors.

Starting in 2011, the TRAPPIST-South telescope monitored the fluxes of 50 of the near-
est and brightest southern very-late M-dwarfs, each for a total of 50 hours in the search for
transiting exoplanets. Doing so, its mission was to assess the typical photometric precision
that can be reached for these cool objects, and to estimate the feasibility of the fully dedicated
and optimized SPECULOOS transit survey (Gillon et al., 2013). On September 16th 2015,
the TRAPPIST telescope, focusing on target 2MASS J23062928-0502285, was interrupted
at the beginning of the night by a magnitude 6 earthquake1, but was luckily restarted by a
conscientious remote operator2. Following this restart was the first ever observation of one
of the seven earth-sized exoplanets transiting TRAPPIST-1, planet c.

Following up on this first transit observation, the TRAPPIST-South telescope monitored
the star for more than 250 hours, unveiling transits from the inner planets TRAPPIST-1b, c
and d (Gillon et al., 2016). In a continuous follow-up effort, observations from other ground-
based facilities unveiled four additional planets (Gillon et al., 2017), with the orbit of the
seventh planet fully characterized using the Kepler Telescope during the K2 mission (Luger
et al., 2017). TRAPPIST-1 planets have radii ranging from 0.76 to 1.13 R⊕, and masses
ranging from 0.3 to 1.3 M⊕ (Agol et al., 2021). They are all rocky and likely to be tidally
locked, with equilibrium temperatures (assuming null albedo) ranging from 173 to 400 K
(Gillon et al., 2017).

TRAPPIST-1 is an M8-type star with an effective temperature of 2566 ± 26 K, and a
radius only 12% that of the Sun (Agol et al., 2021). In addition to its high infrared lu-
minosity (magnitude of 10.3 in the K band), these properties makes TRAPPIST-1 a truly

1Magnitude 8.3 at epicenter, one of the strongest earthquake in the last 100 years in the region
(https://earthquake.usgs.gov/earthquakes/eventpage/us20003k7a/executive).

2Laetitia Delrez, a member of the TRAPPIST team located in Europe.
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unique candidate for the detailed atmospheric characterization of rocky exoplanets with the
James Webb Space Telescope (JWST) (e.g. Morley et al. 2017; Lustig-Yaeger et al. 2019). As
of 2022, spectroscopic observations from the Hubble Space Telescope Wide Field Camera 3
(HST WFC3) have been able to rule out the presence of clear primary hydrogen-dominated
atmospheres for all planets (de Wit et al., 2016, 2018; Wakeford et al., 2019) except for the
outermost planet TRAPPIST-1h, the most likely to have retained such an extended atmo-
sphere (Bourrier et al., 2017).

In this chapter, I present the transmission spectrum of TRAPPIST-1h obtained from HST
WFC3 observations in order to rule out the presence of an extended hydrogen-rich atmo-
sphere.

4.1 Observations
Three transits of TRAPPIST-1h were observed with the Hubble Space Telescope (HST) Wide
Field Camera 3 (WFC3) as part of HST GO program 15304 (PI: Julien de Wit) on UT 2018
July 19 (visit 1), 2019 September 24 (visit 2), and 2020 July 20 (visit 3)3. Each of the three
transits was observed over a five-hour window, each requiring four HST orbits, all consisting
in approximately 45 minutes of observation separated by 45 minutes gaps due to Earth
occultation. Time-series spectroscopy in the 1.12–1.65µm wavelength band were obtained
using the G141 grism in scanning mode, spreading the stellar spectrum perpendicularly to its
dispersion axis. The scan rate was set to 0.02 ”. s−1 with an exposure time of 112 s, resulting
in 17-pixel-wide scans acquired in the forward direction only. Each scan is composed of
six non-destructive readouts (including the zeroth-read) which were used in the reduction
process to remove part of the accumulated background over the complete exposures. A direct
image of the target was acquired using the F139M narrow-band filter, at the beginning of
each orbit in order to perform G141 wavelength calibration.

Data reduction

I extracted the time-resolved spectra from the three visits presented above following the
method presented in Kreidberg et al. (2014), implemented into a prose pipeline (Garcia
et al., 2022b) (see Chapter 2). As in Kreidberg et al. (2014), I started the reduction from the
ima pre-calibrated images, each processed through the same steps. During a full exposure,
nondestructive readouts are recorded such that a specific subexposure can be constructed
by subtracting its readout from the previous one, hence removing part of the accumulated
background. The pipeline started by forming subexposures out of nondestructive readouts.
For each of these subexposures:

1. bad pixels identified by the calcwfc3 pipeline are masked.
2. The wavelength trace is computed using a direct image of the source and the solution

from Pirzkal et al. (2016).
3. A wavelength-dependent flat-field calibration is applied, using Kuntschner et al. (2011).
4. All image rows are interpolated to the wavelength solution of the direct image so that

all values found in a given column correspond to photons from a common wavelength
bin.

3These three visits are respectively denoted 03, 02 and 04 in the observing plan

80



5. The subexposure background is estimated as the median pixel value within a spectrum-
free portion of the image, directly subtracted from the subexposure.

6. The spectrum is cut out of the image using a 40-pixel-tall aperture, centered in the
scanning direction on the spectrum center of light. This large aperture (compared to
the 17-pixel-tall spectrum) is manually set in order to include the tail of the WFC3/IR
point spread function.

7. The 1D spectrum is finally built from this cutout using an optimal spectrum extraction
algorithm (Horne, 1986). By using this technique, the fact that more background pixels
are contained in the wide aperture does not affect the noise of the extracted signal, as
these are optimally weighted.

Once these seven steps completed for all subexposures of an image, I interpolated and
summed each subexposure spectra over a common wavelength axis, yielding the final 1D
spectrum of the image.

To compare my results with results obtained from an independent pipeline, I performed
an additional processing of the data using iraclis4, an open-source Python package presented
in Tsiaras et al. (2016). This comparative reduction started from the raw observation prod-
ucts and went through the calibration steps of the calcwfc3 pipeline5. Then, for every image,
the wavelength-dependent photon trajectories along the scanned spectrum were computed,
so that fluxes could be extracted within accurately placed polygonal boxes along the wave-
length trace (see Tsiaras et al. (2016), Figure 6). By doing so, the method used in iraclis
properly accounts for the off-axis nature of the G141 slitless spectra and refines the wave-
length solution of every exposure.

I performed the spectra extraction with iraclis using the same wavelength bins as the ones
used in the prose pipeline: 12 bins from 1.1µm to 1.67µm, leading to bins of ∼0.04µm in
width. This sampling was chosen so that wavelength bins included entire pixels (in opposi-
tion with fractional ones) in the dispersion axis.

The raw data obtained this way featured ramp-like signals characteristic of WFC3 obser-
vations. In order to consistently model these signals over all orbits, I discarded the first orbit
of each visit, containing a higher-amplitude ramp, as well as the first and second exposures
of each orbit. The resulting white-light curves from the three visits are shown in Figure 4.1
(raw data are in light gray), obtained by summing the spectra over all wavelength bins.

4https://github.com/ucl-exoplanets/Iraclis
5https://hst-docs.stsci.edu/wfc3dhb/chapter-3-wfc3-data-calibration/

3-3-ir-data-calibration-steps
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Figure 4.1: White-light curves of visit 1, 2 and 3 of GO 15304 observations. The first orbit
is plotted as purple crosses and is not used in the analysis.

4.2 Light-curve modeling

4.2.1 Systematic models comparison

Spectroscopic light curves obtained with HST are known to display a high level of wavelength-
, visit-, and orbit-dependent systematic signals (Wakeford et al. 2016 and references therein).
As in previous studies, I modeled these signals using empirical functions of time t and HST
orbital phase φ, which can take a variety of forms. For this study, I chose a model of the
form:

F (t, φ) = T (t) + P (t, φ) + ε(t), (4.1)

where T is the transit light curve model, P is a polynomial systematic model of time t and
HST orbital phase φ, and ε is a Gaussian noise. As in Wakeford et al. (2016), I selected the
combination of polynomial orders of t and φ using model comparison, based on the minimiza-
tion of the Akaike information criterion (AIC, Akaike 1974), such that the selected models
were predictive enough while depending on a minimal number of parameters. By allowing
polynomials of up to order three and excluding cross terms, a set of 16 models have been
compared.

For a given visit and for each order combination, I inferred the best transit and system-
atic model parameters in a Bayesian framework using exoplanet (Foreman-Mackey et al.,
2021)6, making use of the inference framework PyMC37 (Salvatier et al., 2016) and the starry
transiting light curve model (Luger et al. 2019, see subsection 1.3.2). The priors I used for
the orbital parameters of TRAPPIST-1h are listed in Table 4.1, with T0 having a uniform
prior over the full time of the visit. This uninformative prior on the mid-transit time was
used to encompass the wide transit time variations (TTVs) observed for the TRAPPIST-1
planets, reaching more than 1 hour for TRAPPIST-1h (Agol et al., 2021, Figure 2). Finally,
I adopted a quadratic form to model the limb-darkening of the transit light curve, with pa-
rameters fixed to the values in Table 4.2, obtained from ExoCTK8 (Bourque et al., 2021)

6https://docs.exoplanet.codes/en/latest/
7https://docs.pymc.io/
8https://exoctk.stsci.edu/limb_darkening
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using the PHOENIX ACES stellar atmosphere model (Husser et al., 2013).

parameter unit value
R? R� N (0.1192, 0.0013)
M? M� N (0.0898, 0.0023)
P days N (18.7672745, 0.00001876)
b - N (0.448, 0.054)
T0 BJD tdb U(t0, tf )

Table 4.1: Priors on TRAPPIST-1 stellar parameters and TRAPPIST-1h orbital parameters.
R? and M? are respectively the stellar radius and mass whith prior distributions from Agol
et al. (2021). P and b are TRAPPIST-1h orbital period and impact parameters, taken
from Ducrot et al. (2020). T0 is the transit mid-time, and the transit depth is set to an
uninformative uniform prior. U(a, b) denotes a uniform distribution bounded by (a, b), and
N (µ, σ) a normal distribution of variance σ2 centered on µ. t0 and tf correspond to the
times of the first and last exposures of a given visit.

Bandpass (µm) u1 u2

1.101 - 1.119 0.167 ± 0.020 0.373 ± 0.029
1.140 - 1.159 0.168 ± 0.020 0.384 ± 0.030
1.180 - 1.200 0.175 ± 0.020 0.385 ± 0.029
1.222 - 1.242 0.150 ± 0.019 0.362 ± 0.028
1.265 - 1.286 0.146 ± 0.018 0.338 ± 0.026
1.310 - 1.332 0.177 ± 0.018 0.352 ± 0.026
1.355 - 1.379 0.230 ± 0.019 0.410 ± 0.028
1.403 - 1.428 0.326 ± 0.014 0.359 ± 0.021
1.453 - 1.479 0.289 ± 0.016 0.378 ± 0.023
1.504 - 1.530 0.224 ± 0.019 0.396 ± 0.027
1.558 - 1.585 0.178 ± 0.019 0.373 ± 0.027
1.612 - 1.641 0.135 ± 0.018 0.331 ± 0.026

Table 4.2: Quadratic limb darkening parameters obtained from ExoCTK (Bourque et al.,
2021).

Given the data, I found the maximum a posteriori model parameters using the BFGS algo-
rithm (Head & Zerner, 1985), as implemented in scipy9, and used the resulting likelihood to
compute the AIC for each order combination. Finally, for each visit, I retained the model
yielding the minimal AIC (Figure 4.2).

9https://docs.scipy.org/doc/scipy/reference/optimize.minimize-bfgs.html
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Figure 4.2: Model comparison for visit 1, 2 and 3. The x-axis represents systematics models
where 1 designates a constant, θn a polynomial order n of θ, and φm a polynomial order
m of φ. The best model is circled. For one model to be considered better than another, we
require that the AIC difference between it and the other must be greater than 20.

While each model was found by modeling the broadband white light curve, i.e. the integrated
fluxes time-series over all wavelengths, the systematics model parameters in the rest of the
analysis were allowed to vary from one wavelength bin to the other

4.2.2 Transmission spectra inference

I modeled the spectroscopic light curves from each visit using the systematic models found
in subsection 4.2.1, following the wavelength-dependent expression of the flux

Fλ(t, φ) = Tλ(t) + Pλ(t, φ) + ελ(t), (4.2)

using the same notation as in Equation 4.1 with λ denoting the wavelength bin. Since the
wavelength-dependent transit depth of TRAPPIST-1h is the parameter of interest, I adopted
an uninformative prior for the wavelength-dependent apparent planet’s radius Rp,λ, following

Rp,λ ∼ U(0.5, 2)R⊕, (4.3)

where U(a, b) is a uniform distribution bounded by a and b. Again, the orbital parameters
and priors I used are listed in Table 4.1. Like in subsection 4.2.1, I chose to model stellar limb-
darkening using a quadratic model, the coefficients of which were fixed to the values found in
Table 4.2 (a comparative analysis using free limb-darkening coefficients was performed and
yielded comparable results). For each visit, I estimated the wavelength-dependent transit
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depths and their uncertainties by sampling the data likelihood with a Hamiltonian Monte
Carlo (see subsection 1.4.2), using the PyMC3 implementation (Salvatier et al., 2016).

Once this was done on individual visits (see the transmission spectra in the left plot of
Figure 4.3), I performed a global analysis of all visits using the priors listed in Table 4.1,
yielding a global transmission spectrum shown in the right plot of Figure 4.3 (associated to
the spectroscopic light curves shown in Figure 4.4).
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Figure 4.3: Transmission spectra obtained for each visit individually (left) as well as the one
obtained through a joint analysis (right). The fact that error bars of the global spectrum
(right) seems smaller than the combined errors from the individual transits (left) is due to
the fact that the 3 visits combined allow to model a full transit in phase, while visits 2 and 3
do not contain the midpoint of the transit signal leading to larger uncertainties when being
taken individually (see also Figure 4.11)

I modeled each spectroscopic light curve with a separate systematic model (shown in Ta-
ble 4.3), held to the polynomial form found in the previous section but with wavelength-
dependent parameters.

visit transit time systematics model
1 2458319.4206 ± 0.0030 1 + φ

2 2458751.0660 ± 0.0003 1 + θ + φ2

3 2459051.3365 ± 0.0008 1 + θ + φ

Table 4.3: Transit times inferred individually from each visit as well as the selected systematic
model.

As TTVs are important for TRAPPIST-1h, I performed a similar analysis with a non-periodic
transit model, leading to the same transmission spectrum. The transit times obtained by
considering each visit individually are reported in Table 4.3.
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Finally, fluxes obtained from iraclis were modeled using the same approach, and led to similar
transmission spectra. To further validate these results, I compared these transmission spec-
tra to spectra obtained from an independent extraction and modeling provided by co-author
Hannah Wakeford, following the approach from Wakeford et al. (2019). To conclude, the
inferred transmission spectra were consistent across the three separate analyses, prose, iraclis
and those produced by Hannah Wakeford.

Figure 4.3 highlights variations of the transmission spectra from one visit to another, which
seemed more pronounced at shorter wavelengths. To study the possible astrophysical origin
of these variations, I conducted a careful assessment of stellar contamination, presented in
the next section.
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4.3 Stellar Contamination

4.3.1 Photosphere model

To properly interpret the global transmission spectrum inferred in section 4.2, as well as
understanding its variations between visits, the possible impact of stellar contamination
must be studied. To do that, I employed an approach similar to Wakeford et al. (2019),
which consists in modeling the median out-of-transit spectrum of TRAPPIST-1 accounting
for a non-uniform surface, one potentially covered in spots and faculae. Having a model of
the stellar disk alone then allows to correct the measured transmission spectrum from the
stellar one, given which portion of the photosphere is occulted. Like in previous studies
(e.g., Rackham et al. 2018, 2019), I modeled the complete photosphere as a combination of
portions of cooler and hotter areas so that the spectrum of the star could be expressed as

F = (1− s− f)Fphot + sFspot + fFfac, (4.4)

where s and f are the covering fractions of spots and faculae (here simply denoting the cooler
and hotter portions of the photosphere) and Fphot, Fspot, and Ffac are the intrinsic spectra
of the quiescent photosphere, spots, and faculae, respectively,

i.e. F = + +

This simple model assumed that surface heterogeneities have spectra similar to that of a
global photosphere with the same temperature. In this model, covering fractions f and s can
be zero, so that the model reduces to only one or two temperature components. To model the
individual components of the TRAPPIST-1 photosphere, I used the BT-Settl stellar atmo-
sphere models (Allard et al., 2012), allowing to probe stellar components with temperatures
down to 1500K.

Before inferring the parameters of this model against the data, one may wonder why the
model described in Equation 4.4 was used instead of the full stellar surface model provided
by starry (presented in subsection 1.3.2). The main reason is simplicity. Because no spot
occultation was featured in the data (or observed at a very low SNR), there was a very low
advantage to model the full surface of the star, especially because of the higher number of
parameters it required in comparison with the simpler model described in Equation 4.4. The
point of Garcia et al. (2022a) was to reproduce the approach of Wakeford et al. (2019) and
show its limitations. Additional data, such as full rotational light curves of TRAPPIST-1 or
spot occultations (if any), would be required to properly model the full stellar surface and
may then justify the use of starry as a unified model to represent the surface. This point is
further discussed in Chapter 5.

4.3.2 Models and data preparation

Fitting Equation 4.4 to the data required some preliminary steps. Indeed, BT-Settl the-
oretical spectra were provided on a grid of stellar metallicities, log-gravity, and effective
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temperatures. From this grid, only spectra corresponding to [Fe/H] = 0 were kept, close to
the inferred value of [Fe/H] = 0.04 (Van Grootel et al., 2018). I linearly interpolated these
models along the log-gravity parameter, in order to produce spectra with log10(g) = 5.22
(Van Grootel et al., 2018). By fixing these values, only the effective temperature of the
models was varied during their inference (except for the case discussed in subsection 4.3.3),
ranging from 1500K to 5000K in steps of 100K. Then, I converted these models to flux
density at Earth, accounting for TRAPPIST-1’s angular diameter, i.e., α = (R?/d)2 using
the stellar radius R? = 0.119R� (Agol et al., 2021) and the distance d = 40.54 ly (Gaia
Collaboration et al., 2018, DR2). Finally, I convolved these higher resolution fluxes with the
WFC3 point-spread-function10, before being sampled accordingly to the WFC3 IR detector
(50Å pixels).

Figure 4.5: Conversion of visit 2 out-of-transit stellar spectrum. I used the trimmed portion
to perform the model fit.

The modeled dataset consisted in three out-of-transit spectra of TRAPPIST-1, one for each
visit, that were fitted to a theoretical model. For each visit, I built a median spectrum over
time, from which I corrected systematic signals (as they strongly affected the variations of
the mean flux value modeled in subsection 4.2.1 and shown in Figure 4.4). To be compared
with the models, I converted these spectra from e−1 s−1 Å−1 to erg s−1 cm−2 Å−1 by correct-
ing for the WFC3 IR detector sensitivity11 and accounting for the 112 s exposure time and
wavelength passband. WFC3 sensitivity quickly drops to zero outside of the band it covers,
so that correcting for it (through division) led to large errors on the tails of the spectra.

10https://hst-docs.stsci.edu/wfc3ihb/chapter-7-ir-imaging-with-wfc3/
7-6-ir-optical-performance

11http://www.stsci.edu/hst/instrumentation/wfc3/documentation/grism-resources/
wfc3-g141-calibrations
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While it could be accounted for in the fitting procedure, I obtained a better convergence by
trimming the measured spectra to the 1.15–1.63µm band (see Figure 4.5).

Finally, I added to the data the g, r, i, and z filter photometry from TRAPPIST-1 Pan-
STARSS observations (Chambers et al., 2016), in order to better constrain the visible por-
tion of the stellar spectrum. The addition of these data was motivated by the discrepancy
observed when comparing the multi-component model from Wakeford et al. (2019) to broad
band observations of TRAPPIST-1 in the visible (Figure 4.6)
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Figure 4.6: Wakeford et al.
(2019) three-component
model against our HST
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g, r, i, and z wide-band
photometry

4.3.3 Fitting the out-of-transit spectra

I inferred the parameters of Equation 4.4 from the dataset previously described, for each
visit individually accounting for three distinct cases: a quiescent photosphere (1T), a photo-
sphere with either spots or faculae (2T), and a photosphere with both spots and faculae (3T).

For each visit and for each model, I found the best maximum a posteriori model param-
eters following a brute force approach, that consisted in estimating the likelihood of the
model in a grid of discrete temperatures combinations with 100 K steps (see Table 4.4).

model components min-max (K)
1T Fphot 1500-5000

2T Fspot 1500-5000
Fphot 1500-5000

3T
Fspot 1500-2300
Fphot 2300-2700
Ffac 2700-5000

Table 4.4: Temperature grids where cover-
ing fractions and model likelihoods were es-
timated, sampled in steps of 100K. The cover-
ing fractions for all components are allowed to
vary from 0 to 1.
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For each point in the grid, i.e., for each temperature combination, I found the best covering
fractions (between 0 and 1) using the BFGS optimization algorithm. This led to a complete
sampling of the likelihood function over all possible temperatures, and allowed me to explore
the multi-modal nature of the likelihood distribution over the components’ temperatures. In
this grid, I retained the maximum likelihood parameters, that I refined with a parallelized
Markov Chain Monte Carlo using emcee (Foreman-Mackey et al., 2013), this time in a contin-
uous parameter space, from which I estimated the parameters uncertainties. The 2T model
likelihood shown in Figure 4.7 has a well-defined maximum (Figure 4.7) while the 3T model
is bi-modal (see Figure 4.8).

Figure 4.9 shows the fitted out-of-transit spectrum for model 1T, 2T and 3T, obtained by
following the brute force procedure on the visit 2 data. As the theoretical stellar spectra are
produced in 100K steps, I used the step size as the uncertainty on the inferred temperatures
for each component (see for example the temperature distributions in Figure 4.8)

90



2300 2400 2500 2600

1500

1600

1700

1800

1900

2000

2100

2200

T s

Marginal Likelihoods -log10( ) 0.1

(colormap normalized to max likelihood)

visit 02
visit 03
visit 04

2300 2400 2500 2600
T0

3000

3500

4000

4500

T f

1600 1800 2000 2200
Ts

3000

3500

4000

4500

Figure 4.8: 3T model likelihood sampled on the temperature grids described in Table 4.4
and marginalized over the photospheric heterogeneities’ covering fractions, as well as each
component’s temperatures. For each visit, colored crosses correspond to the global maximum
likelihood parameters. The black circle shows a local maximum of the likelihood distribution,
highlighting the bi-modal nature of the model.
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Figure 4.9: 1T, 2T, and 3T models of the visit 2 out-of-transit stellar spectrum.

Like in Wakeford et al. (2019), chi-squared statistics indicated that none of the multi-
component models provided a good fit to the data from any visit. Moreover, the 1T
model showed a larger discrepancy, also observed by Wakeford et al. (2019) when model-
ing HST/WFC3 TRAPPIST-1g out-of-transit spectrum against PHOENIX ACES models
(Husser et al., 2013). In their study, this discrepancy was associated to a poor constraint on
the stellar radius R?. This led the authors to introduce a scaling parameter to the stellar
radius with the overall motivation that it would account for theoretical models underesti-
mating the radii of low-mass stars. However, introducing such a factor not only affects α but
also the log surface gravity log10(g) = GM?/R

2
? involved in the stellar model parameters.

Using such a radius scaling, varying the value of α and the log surface gravity, did provide a
better fit to the data but led to R? = 0.1134 ± 0.0013R�, which was >3σ discrepant from
the radius inferred in Agol et al. (2021). For this reason, I preferred to adopt the unscaled
radius found in Agol et al. (2021).

In order to understand the differences of the model parameters between visits, the inferred
temperatures and covering fractions found for each visit are shown in Figure 4.10.
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Figure 4.10: Inferred temperatures and coverings fraction for the 1T, 2T, and 3T models on
each visit.

Using the transmission spectrum correction described in the next section, none of these
models were able to explain the differences observed between the transmission spectra of the
three visits. However, it should be noted that only visit 1 contained the bottom of the transit
signal and resulted in a transmission spectrum very similar to the one obtained through a
joint analysis of all three visits. For this reason, the observed variability was probably not
astrophysical but instead due to the partial coverage of two of the three transits observed,
combined with the systematics effects due to the instrument (see Figure 4.11 for an empirical
evidence).

With this conclusion, I assumed that the photospheric structure of TRAPPIST-1 was con-
sistent over the three visits. The model from Equation 4.4 was then compared to the median
visits-combined out-of-transit spectrum, leading to the temperature components reported in
Table 4.5 for the 1T, 2T, and 3T models. The hotter component of model 3T (∼5000K)
corresponded to the maximum effective temperature in the model’s parameter space. Hence,
this inferred temperature was considered as a lower limit to the hot-spot temperature.
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Figure 4.11: Correlation between systematics model slope in time and transit depth. This
figure has been produced by sampling the likelihood distribution of the data against the
model using a Markov Chain Monte Carlo (see section 1.4). It showed that, apart from
visit 1 where the transit mid-time was observed, the transit depth was correlated with the
slope in time θ used to model visit-long systematics effects (a shallower slope is compensated
by a deeper transit). As only the ingress and egress were observed in visit 2 and 3, it is
assumed that the spectrum-to-spectrum differences in this study was partially due to this
effect. However, as the visits-combined analysis contained a complete transit (in phase), the
systematics slope should have been less correlated with the transit depth, as in visit 1, which
was confirmed by the similarity observed between visit 1 and the global spectrum (Figure 4.3)

model covering fractions temperatures configuration
1T 100% 2400 ± 100 K 1T

2T 55.5 ± 0.1 % 2600 ± 100 K 2Tm
44.5 ± 0.1 % 2200 ± 100 K 2Tc

3T
85.1 ± 0.1 % 2500 ± 100 K 3Tm
14.9 ± 0.1 % 2000 ± 100 K 3Tc

185.2 ± 8.8 ppm 4876 ± 100 K 3Th

Table 4.5: Multi-temperatures models parameters inferred from the visits-combined out-
of-transit spectrum. For each of the T1, T2, and T3 models, we consider a configuration
where the stellar disk is occulted across a unique temperature component. The name of the
configuration associated to each component is reported in the last column.

It is interesting to note that the inferred 3T model, which includes bright spots covering a very
small fraction of the stellar disk, was compatible (in order of magnitude) with the findings
of Morris et al. (2018). In that study, the authors found that 32 ppm of 5300± 200 K bright
spots were able to explain why the 3.3-day variability observed in the TRAPPIST-1 K2 light
curve was undetectable in the Spitzer 4.5µm band. To date, there is no direct evidence, nor
theoretical support, for the presence of such hot spots on TRAPPIST-1 or any other M-dwarf.

In order to compare this analysis to the one of Wakeford et al. (2019), I repeated the same
modeling procedure but using the PHOENIX ACES models (used in the former study) that
let to a poorer fit to the data. While the inferred stellar components temperatures were
different from the ones found using the PHOENIX BT-Settl models, a bi-modal likelihood
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distribution was also observed with these alternative models. For this reason, I adopted the
results based on PHOENIX BT-Settle theoretical spectra in the rest of the analysis.

4.3.4 Corrected transit depths

Using the models found in the previous section, I was able to correct the measured trans-
mission spectra for the effect of stellar contamination. I made corrections for 5 different
configurations, corresponding to the 1T, 2T, and 3T models with the transit chords either
passing completely over the base (Fphot) or cooler (Fspot) portion of the photosphere. Due
to its very small coverage, I discarded the configuration where only the hotter component
(Ffac) is occulted. For each configuration and wavelength bin, the corrected transit depth
was expressed as

δc = δ × F

Focc
, (4.5)

where δ is the measured transit depth, Focc is the flux of the stellar disk occulted by the
planet over the complete transit chord, and F is the overall flux of the stellar disk. As noted
in Wakeford et al. (2019), the planet could pass on top of both components (with a light
curve SNR low enough for the occultations not to be detectable), resulting in Focc being a
linear combination of both photosphere components’ fluxes. However, my study focused on
the cases where the occulted portion of the photosphere was made of a single temperature
component. Applying this model to the 5 configurations outlined in Table 4.5 led to the
corrected transmission spectra plotted in Figure 4.12. Under the assumptions described
above, these spectra should be of planetary origin, the star’s contribution being modeled and
corrected out. 2Tm and 3Tm denote the two-component and three-component photosphere
models with the transit chord being respectively over the 2600K and 2500K component. On
the other hand, notations 2Tc and 3Tc correspond to transit configurations where the chord
is over the cooler component, respectively 2200K and 2000K. Finally, 1T denotes a quiescent
photosphere at 2400K for which no spectrum correction is required.
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Figure 4.12: Corrected transmission spectra under the 5 configurations reported in Table 4.5.
Colored solid lines correspond to the two-temperatures model corrected spectra (2T) and dot-
ted lines denote the three-temperatures model corrected spectra (3T). Purple lines represent
spectra of planet h transiting the quiescent component of the stellar photosphere (2T and
3T) while blue lines indicate spectra of planet h transiting the cooler component of the stellar
photosphere (2Tc and 3Tc).

4.4 Planetary spectrum
While modeling planetary atmospheres is out of the scope of this dissertation, this section syn-
thesizes the findings of Garcia et al. (2022a) concerning the interpretation of TRAPPIST-1h
corrected transmission spectra (an analysis led by co-author Sarah Moran). As in Wakeford
et al. (2019), the forward model framework CHIMERA (Line et al., 2013) was used, previously
adapted to the inner TRAPPIST-1 planets (Batalha et al., 2018; Moran et al., 2018). These
models included Rayleigh scattering due to H2/He while any other form of scattering or
absorption from clouds or hazes were neglected. Given the precision of the HST observa-
tions, simple aerosol-free atmospheric models were produced. For each model atmosphere, a
planetary mass of 0.755 M⊕ and a solid body radius of 0.326 R⊕ was adopted (Agol et al.,
2021).

The following planetary atmospheres were considered:

• A 1× solar metallicity atmosphere, which for an equilibrium temperature of 170 K cor-
responds to a scale height of 100 km. Opacities from water, methane, carbon monoxide,
carbon dioxide, ammonia, molecular nitrogen, and H2/He collision-induced-absorption
(CIA) (Freedman et al., 2008, 2014) are included.

• A 10× solar metallicity atmosphere including only opacities from water, methane, and
H2/He-CIA, in order to produce the largest molecular features in the WFC3 G141
band-pass.

• A 200× solar metallicity CO2-rich atmosphere, including opacities from CO2, CH4,
and CO.
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• A pure N2 atmosphere without Rayleigh scattering, which in the near-infrared region of
WFC3 G141 is also representative of an airless body, as well as potentially representing
a heavily aerosol-laden atmosphere.

4.4.1 Model Results with HST

Accounting for all planetary, stellar atmosphere models and transit configurations, Table 4.6
presents the scenarios compatible with the HST observations (see also Figure 4.13).

Photospheric configuration Plausible? Explanation
1T Yes Cannot be ruled out beyond 1.4σ with any at-

mospheric model
2Tm Yes Cannot be ruled out beyond 1σ with any at-

mospheric model
2Tc Unlikely Can be ruled out beyond 3.5σ with any H2-

rich model;
Can be ruled out to ∼1σ with flat model

3Tm Yes Cannot be ruled out beyond 1.3σ with any at-
mospheric model

3Tc No Can be ruled out beyond 2.5σ with every at-
mospheric model

3Th No Hot spot coverage too small for planet to tran-
sit

Table 4.6: Summary of which stellar photospheric configurations remain plausible when
including the interpretation of planetary atmospheric models.
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Figure 4.13: Model atmospheres produced using CHIMERA compared to the five potential plan-
etary spectrum scenarios. Left: In addition to the mean-subtracted models (solid, dashed,
and dotted lines) are included the 1σ, 2σ, and 3σ errors of the flat “no atmosphere” model
as blue shaded regions. The confidence to which the solar metallicity scenario can be ruled
out is reported after each scenario. The cold spot scenarios, 3Tc and 2Tc, was clearly ruled
out at high confidence. Of the remaining models and scenarios, no model could be confi-
dently excluded at ≥3σ. However, a featureless infrared spectrum (solid line) either due to
an airless body or an atmosphere without infrared features (e.g., a molecular nitrogen atmo-
sphere) was statistically preferred over a 1× solar metallicity atmosphere (dashed line) or a
10× solar, water and methane-rich atmosphere (dotted line). Right: The scenarios with the
best goodness of fit (1T, 2Tm, 3Tm) against the three model atmospheres (1× solar, light
orange; 10× solar, dark orange; no atmosphere, blue). The χ2

ν of the flat line are reported
after the three scenarios in the legend.

4.4.2 Model Results with Full Wavelength Coverage

Figure 4.14 shows the results of the previously modeled planetary atmospheres but including
an extended wavelength coverage from 0.8 µm to 4.5 µm of all existing transits of TRAPPIST-
1 h, using data from the space-based K2 campaign (Grimm et al., 2018), the SPECULOOS-
South Observatory (SSO) and the Liverpool Telescope (LT) on the ground (Ducrot et al.,
2018), and Spitzer/IRAC data at 3.6 µm and 4.5 µm (Ducrot et al., 2020).
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here corrected for stellar contamination scenario 3Tm, the “best fit” configuration. We also
included a carbon dioxide-rich atmospheric model to compare against the data, though in all
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the legend. Note that we have applied offsets to the K2, SSO, LT, and Spitzer data, as
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Given these additional data, final implications for TRAPPIST-1h planetary atmosphere are
described in Table 4.7

Atmosphere Description Plausible? Explanation
1× solar Chemical equilibrium

Rayleigh scattering
H2, He, H2O, CH4,
CO, CO2, NH3, N2

Strongly
unlikely

Poor fit to data, though not
ruled out to 1σ

10× solar Chemical equilibrium
Rayleigh scattering
H2, H2O, CH4

Strongly
unlikely

Poor fit to data, but only
ruled out to 1σ

200× solar Chemical equilibrium
Rayleigh scattering
CH4, CO, CO2

Unlikely Fits data with χ2
ν of ∼4 or

better

No atmosphere or
Flat model or
Aerosol-laden or
N2

No Rayleigh scattering Yes Fits data with χ2
ν of ∼1.4 or

better

Table 4.7: Summary of atmospheric models considered and their plausibility given the data
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4.5 Conclusion
I presented an analysis of the infrared transmission spectrum of TRAPPIST-1h, from 1.12
to 1.65 µm, obtained with the Hubble Space Telescope Wide Field Camera 3 and using the
G141 grism. I extracted the spectra from the ima images with a pipeline based on prose,
and modeled the resulting spectroscopic light curves within a Bayesian framework, with
systematics model selected through the minimization of the Aikake Information Criteria. In
order to address the effect of stellar contamination, I modeled the median out-of-transit spec-
trum of TRAPPIST-1 against a multi-temperature combination of the PHOENIX BT-Settl
theoretical models, following the approach of Wakeford et al. (2019). While the retrieved
transmission spectra from each visit treated individually varied, none of the single-, two-,
nor three-component photospheric models (each component having a different temperature)
was able to explain this variability. Despite that, the three-component model suggested the
possibility that TRAPPIST-1 surface may be covered by 14.9% ± 0.1% of cold spots (2000K
± 100K) and by a very small fraction (185.2 ± 8.8 ppm) of hot spots (hotter than 5000K).
This result was compatible with the results of Morris et al. (2018) that reported the varying
amplitude of the photometric variability of TRAPPIST-1 observed between K2 and Spitzer.

With the potential stellar photospheric scenarios in hand, my colleague Sarah Moran studied
a number of potential planetary atmospheres using the forward model CHIMERA, includ-
ing various H2-dominated atmospheres, a carbon dioxide-rich atmosphere, and a featureless
“flat” line model. While the data quality combined with the cold, small (likely rocky) na-
ture of the planet was not sufficient to exclude any atmospheric scenario to high statistical
significance, this study concluded that TRAPPIST-1 h is not likely to possess a hydrogen-
dominated atmosphere. The likeliest scenario for this planet was that it possesses a very
high mean molecular weight (≥1000× solar metallicity) atmosphere, is enshrouded by an
opaque aerosol layer, or is devoid of atmosphere entirely. Determination of the true nature
of TRAPPIST-1 h’s atmosphere, or lack thereof, awaits upcoming measurements by JWST.

Overall, none of the photosphere models considered, including a homogeneous photosphere,
provided a good fit to the data. While it might come from the accuracy of the PHOENIX
models being used, this discrepancy is inherent to any M-dwarf photosphere model (as of
early 2023, Iyer et al. 2023). Modeling the photosphere of late M-dwarfs during transit (es-
sential to tackle the effect of stellar contamination) will require some prior knowledge about
the structure of their photospheres. This prior knowledge is currently not available, but
will certainly be essential for the atmospheric characterizations to come. The next chapter
presents some avenues to achieve this goal, by developing methods and observations to better
understand the surface of late M-dwarfs.
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Chapter 5

Prospects in studying the
photosphere of late M-dwarfs

In Chapter 4, the lack of knowledge about the photosphere of TRAPPIST-1 affected what we
could infer about the atmosphere of TRAPPIST-1h. While the latter transmission spectra
were obtained at low SNR, this problem is expected to have similar impacts on the interpre-
tation of higher SNR transmission spectra obtained with any instrument, including those of
the James Webb Space Telescope (Rackham et al., 2018). As of June 2023, our incapacity
to tackle the effect of stellar contamination hinders our plan to characterize the atmosphere
of any transiting rocky exoplanet, a plan envisioned for the next two decades using major
flagship missions.

To tackle the effect of stellar contamination, I propose to consider two different avenues:
having a deterministic representation of the stellar surface during every transit, or having
statistical information about the surface that can be combined with complementary measure-
ments to constrain the photosphere of a star during any transit1. Given current technologies,
having a precise snapshot of the surface of a star as cold as TRAPPIST-1 will probably not
be possible in the next decade, and even then, would only represent a single picture of a
potentially dynamic object. On the other hand, statistical information about the surface of
late M-dwarfs, grouped in populations of stars with similar properties, can be obtained, and
can be used to constrain the photosphere of a given star during any transit.

In 2021, a study from one of NASA’s Exoplanet Exploration Program Analysis Group
(SAG21) published 14 important findings (Rackham et al., 2023), ”contextualized statements
of what we understand to be the current research needs that can be addressed to further our
understanding of stellar photospheres and make the best use of precise space-based trans-
mission spectra of exoplanets”. In this chapter, I present some technical and observational
avenues to better understand the surface of late M-dwarfs, and relate them to the findings
of the SAG21.

1A third avenue could consist in measuring transmission spectra at wavebands where active regions have
a negligible effect.
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5.1 Making every transit count
JWST already conducted secondary eclipse observations of TRAPPIST-1b (Greene et al.,
2023) and more observations are expected to revolutionize our understanding of the rocky
exoplanets orbiting TRAPPIST-1. But secondary eclipse spectroscopy may require a signifi-
cantly greater JWST time commitment than transmission spectroscopy to achieve compara-
ble constraints on the detection of the TRAPPIST-1 planet atmospheres (Lustig-Yaeger et al.,
2019). Nonetheless, a detailed characterization of the atmosphere of any of the TRAPPIST-
1 planets will require numerous transits to be observed (see Figure 5.1 from Lustig-Yaeger
et al. 2019).

Figure 5.1: Figure 10 from Lustig-Yaeger et al. (2019): Number of transits for each
TRAPPIST-1 planet necessary to rule out a featureless spectrum with SNR = 5 for dif-
ferent self-consistent atmospheric compositions using JWST NIRSpec Prism.

For transmission spectroscopy to deliver on its promises, the effect of stellar contamination
must be tackled. The less is known about the surface of late M dwarfs, the less powerful
transmission spectroscopy become, independently of the number of transits observed.
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5.2 Ensemble light curves analysis
Before the discovery of exoplanets, the impact of active regions on the study of celestial
bodies was already a concern, especially present in the 1980s literature about the study of
eclipsing binaries. As its origin, the hypothesis that starspots could cause stellar photometric
variability dates back more than 300 years ago. In 1667, when talking about the variability
of the Mira star (Omicron Ceti), Ismaël Boulliau wrote:

”[...] one part of the spherical mass of that star should be bright on one hemi-
sphere and the other part should be dark on the other hemisphere, and the body
of the star should revolve and rotate around its own center and around one axis,
in such a way that a straight line drawn from the Earth to the star forms right
angles with it.”

More than two centuries later, Heinrich Bruns (1882) formulated this hypothesis mathemat-
ically, highlighting a cumbersome issue: while appealing to the scientific community, the
problem of inferring the surface map of a body based on an unresolved light curve is highly
degenerate and involves an infinite number of solutions. In a more seminal study, Russell
(1906) independently reached the same conclusion, by expanding the surface intensity of a
spherical body as a sum of spherical harmonics (cf. Introduction)2.

More recently, Luger et al. (2021b) highlighted that the surface inversion problem arises
partly from uncertainties in stellar inclinations. To break these degeneracies, Morris (2020)
and Luger et al. (2021a) employed ensemble analyses of light curves, and demonstrated both
theoretically and empirically that unique constraints on the surface maps of stars with similar
statistical properties can be obtained (related to the finding 3.1 of the SAG21).
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Figure 5.2: Number of observation hours per spectral type by the SPECULOOS survey as
of June 2023. On top of each bar is the number of stars of a certain spectral type observed
by the survey. This figure contains rough non-exhaustive estimates with missing targets.

As of June 2023, the SPECULOOS survey observed a considerable number of late M-dwarfs
(see Figure 5.2), resulting in a unique sample of high-precision light curves featuring stellar
variability (some examples given in Figure 5.3).

2An historical account of the starspot hypothesis can be found in Kopal (1982).
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Figure 5.3: Example of SPECULOOS rotational light curves.

Linking these observations to populations of stars likely to exhibit similar surface properties
(e.g. using their age and other activity indicators) is a challenge, but may open the door
to a statistical understanding of the surface of late M-dwarfs. While this applies to TESS
ligh-cuves, the SPECULOOS survey is uniquely positioned thanks to the precision of its
observations, allowing to probe the variability of the coolest M-dwarfs (e.g. Figure 5.3).

The distribution of surface properties obtained from such an ensemble analysis will be di-
rectly exploitable as priors for analyses similar to the one conducted in Chapter 4, breaking
several of the degeneracies observed when trying to account for the surface properties of the
star in future atmospheric retrievals. The extent to which such priors will indeed allow to
break the aforementioned degeneracies is still unknown, and should be carefully studied.

5.3 Spots occultations
A lot of the degeneracies inherent to the light curve inversion problem break when a spot
is occulted by another celestial body. This phenomenon is denoted spot occultation and
can be used to directly probe the physical and spectroscopic properties of an active region
(Silva, 2003). Recently, a 6 R⊕ companion to the M4-type star TOI-3884 was discovered
to transit a large and static polar spot (Almenara et al. 2022, Libby-Roberts et al. 2023b).
Using the SPECULOOS telescopes, this repeated event was observed in several broad-band
filters, allowing to constrain the temperature of the spot (albeit the choice and accuracy
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of the stellar atmosphere model used). This intensive follow-up is shown in Figure 5.4 and
illustrates the powerful capabilities of ground-based observations for such events, that can
be conducted at smaller cost than space-based follow-up using low-resolution spectrographs
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Figure 5.4: SPECULOOS broad-band observations of TOI-3884 polar spot occultation. Mod-
eling of these multi-color observations employed the starry model (Luger et al., 2019) using
spherical harmonics up to degree 12. Due to an absence of variability in the continuous
TESS observations, the spot was assumed to be polar so that only the spot contrasts and
size were free. The spot is modeled on the surface using a Gaussian function expanded over
the spherical harmonics maps. The best-fit model is shown in solid lines and the inferred
contrasts and spot radius are reported in Figure 5.5.

A full description of the modeling of TOI-3384 polar spot using SPECULOOS observations
will be addressed in an upcoming publication. In the meantime, already published analyses
raise several questions:

• In Almenara et al. (2022) and Libby-Roberts et al. (2023b), the spot occultations from
TOI-3884 were modeled separately from the transit light curve, potentially due to the
difficulty of sampling the posterior likelihood of a complete model. How much bias is
introduced by this two-step modeling, both in terms of orbital parameters and spot
properties?

• More generally, what can be theoretically inferred about spot properties from a single
spot occultation?

• Beyond these observations, what can be theoretically inferred about spot properties
from a combination of measurements (such as rotational light curves and spectroscopic
observations). And must these measurements be modeled simultaneously? (related to
finding 2.1 and 2.2 of the SAG21)

• What are the biases introduced by the use of inaccurate stellar atmosphere models?
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Spot contrast forward models (using BT-Setll)
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Figure 5.5: (Left) Characterization of TOI-3884 polar spot using BT-Settl models (Allard
et al., 2012). The inferred spot temperature is 200 K lower than the 3192 K quiescent
photosphere. (Top) Transmission of each filter. Error bars are not shown, as sampling the
posterior distribution of the spot contrast was one of the important issue I encountered when
modeling these observations using a complete modeling of this event (potentially leading to
the two-step modeling employed in previous studies).

This questioning call for a theoretical study of the information content of such combined
observations, and would be facilitated by the existence of a unified model. The formalism of
starry, i.e. modeling the photometric and spectroscopic observations of a star with a surface
represented by a sum of spherical harmonics, could act as such, and might provide a natural
framework to address these questions (related to the finding 2.3 of the SAG21).

5.4 Open-source tools
Something equally important to the modeling of transmission spectra, to the analysis of
stellar variability and to the detection of transit signals in light curves of late M-dwarfs, is
the availability, maintenance and reproducibility of data processing tools.

Reduction of spectroscopic images

As the signals of interest are obtained at low SNR, reduction of space-based transmission
spectra from raw images are very sensitive to data processing choices. To avoid hidden biases,
an option is to maintain good practices, and develop open-source and documented reduction
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tools that foster the reproducibility of published results. Tools like Eureka3, Iraclis (Tsiaras
et al., 2016) or PACMAN (Zieba & Kreidberg, 2022) are going in that direction, and should
be carefully accompanied by an extensive documentation to avoid their use as black-boxes.
While it is solely an engineering issue, it will be key to disentangle biosignatures from data
processing or modeling artifacts. In that respect, the analysis presented in Chapter 4 failed at
delivering an open-source prose pipeline to reduce HST/WFC3 images, but a similar project
targeting both HST and JWST instruments images is ongoing (by external collaborators).

Image processing of ground-based observations

Ground-based photometric time-series are imprinted by numerous instrumental signals. While
it is true for all stars, it is particularly true for late M-dwarfs observations conducted in the
near-infrared, where thermal and atmospheric effects increase spurious signals. A way to
tackle this effect is to record as much explanatory measurements as possible when processing
raw images, and to allow pipelines to adapt to the specificities of each instrument. These ca-
pabilities are at the core of prose development, a tool that keep being maintained through an
increasing number of contributors, and applied to an increasing number of projects. Future
developments will include:

• Fast PSF photometry using JAX.

• Difference imaging

• Better background extraction techniques

• Image objects adapted to spectroscopic observations

Overall, prose entertains the idea that improvement of methods in a single field of astronomy
can benefit all other fields, at no cost for the community.

Detection of transiting exoplanets around active stars

Further development of nuance (section 3.2) will enable its application to sparse ground-
based observations. Whether from space or from the ground, detecting planets transiting
active stars using nuance will not only allow a better estimate of the occurrence rate of
planets around M-dwarfs (Dressing & Charbonneau, 2015; Ment & Charbonneau, 2023), but
will uncover systems that likely yield spot occultations, a powerful way to understand the
active regions and photosphere of late M-dwarfs. nuance is also maintained as an open-source
Python package4, allowing the community to perform more informed transit searches.

3https://github.com/kevin218/Eureka
4https://github.com/lgrcia/nuance
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Conclusion

Astrobiology is a relatively young field. Given current technologies, late M-dwarfs repre-
sent a unique opportunity to search for biosignatures on rocky exoplanets, that must be
seized while more powerful instrumentation and techniques are being developed. However,
although being the most numerous stars in our solar neighborhood, M-dwarfs are challeng-
ing to observe, resulting in unknowns that affect what we can learn about their transiting
companions. During my PhD, I studied several challenges associated with this issue, and
developed improved tools whose benefits extend the study of exoplanets around M-dwarfs.

I led the development of prose5, an instrument-agnostic Python package to process astronom-
ical images in a modular way. Using this framework, I developed fast and robust software,
among which is a photometric reduction pipeline widely used among my collaborators, as
well as by external teams. With this tool, ground-based observations from the TRAPPIST
telescopes are processed on a nearly-daily basis, in response to the major follow-up needs of
the Transiting Exoplanet Survey Satellite (TESS) mission. In parallel of this development,
I made several contributions to the SPECULOOS survey, by performing maintenance mis-
sions, developing a web-based interface to allow its consortium to better explore the survey’s
scientific products, and by performing remote operations of the Northern telescope Artemis.

Light curves of late M-dwarfs show enhanced stellar variability and correlated noise that
act as nuissance signals when searching for planetary transits. As of June 2023, common
techniques consist in detrending a light curve from correlated noise (including stellar vari-
ability) before searching for transits. During my PhD I have shown the impact of this
approach on transit detectability and the extent to which it degrades the searched signals.
Needing an alternative, I developed nuance, an algorithm using linear models and Gaussian
processes to search for transits while modelling correlated noise in a tractable way6. On
TESS light curves, I have shown that nuance always outperforms common two-step transit
search strategies, doing so approximately one order of magnitude slower than commonly used
techniques. Despite this figure, nuance remains highly tractable, with unique performances
on light curves featuring short-scale or non-sinusoidal variability. This work is still ongoing,
and good practices about how and when to use nuance will be presented in an upcoming
publication.

In 2022, I led the atmospheric reconnaissance of TRAPPIST-1h, the outermost planet of
the TRAPPIST-1 system. Using observations from the Hubble Space Telescope Wide Field
Camera 3, I extracted spectroscopic light curves from three separate transits, and modeled

5https://github.com/lgrcia/prose
6Featured in the open source Python package of the same name (https://github.com/lgrcia/nuance).
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the wavelength-dependent apparent radius of the planet to derive its transmission spectrum.
As the transmission spectra of the three visits featured variations that could not be of plan-
etary origin, I investigated the potential contribution of stellar contamination. Using the
out-of-transit spectrum of the star, I showed that our lack of knowledge about TRAPPIST-1
photosphere lead to degeneracies in the interpretation of the resulting transmission spectra.
By assuming five separate scenarios, I produced corrected spectra that were compared to
forward models produced by colleague Sarah Moran, overall showing that TRAPPIST-1h is
unlikely to possess a hydrogen-dominated atmosphere.

Finally, using the knowledge acquired during my PhD, I started building a multidisciplinary
project that will help in better understanding the surface of late M-dwarfs, a key ingredi-
ent in tackling the effect of stellar contamination. This project will highly benefit from the
SPECULOOS survey and its unique capabilities, as well as the expertise of a community
that recently learned about the impact of stellar contamination.

To conclude, the various studies conducted during my PhD allowed me to gather a multi-
faceted expertise on a growing issue impacting the field of Astrobiology, and develop ideas
pushing towards the detailed atmospheric characterization of terrestrial exoplanets around
late M-dwarfs, in the search for life.
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Kovács, G., Zucker, S., & Mazeh, T. 2002, A&A, 391, 369, doi: 10.1051/0004-6361:
2002080210.48550/arXiv.astro-ph/0206099

Kreidberg, L., Bean, J. L., Désert, J.-M., et al. 2014, Nature, 505, 69, doi: 10.1038/
nature12888

Kreidberg, L., Line, M. R., Parmentier, V., et al. 2018, AJ, 156, 17, doi: 10.3847/1538-3881/
aac3df
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