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Abstract: Background: Thoracic aortic dissection (TAD) is a life-threatening condition which usually
occurs on an aneurysmal aortic wall. Although increasing data have shown that inflammation and
oxidative stress play an important role in the patho-physiology of dissection, systemic oxidative stress
status (OSS) has not been clearly determined in patients suffering from TAD. Methods: A cohort
of 115 patients presenting type A or B TAD were admitted to our center from 2013 to 2017. Out of
this cohort, 46 patients were included in a study on dissected aorta (LIege study on DIssected Aorta:
LIDIA). In 18 out of the 46 patients, systemic OSS parameters were evaluated after TAD diagnosis
by determination of eight different antioxidants, four trace elements, two markers of oxidative lipid
damage and two inflammatory markers. Results: The 18 TAD patients included 10 men and 8 women
(median age: 62 years; interquartile range: 55–68) diagnosed with type A (N = 8) or B (N = 10) TAD.
Low plasma levels of vitamin C, β-carotene, γ-tocopherol, thiol proteins, paraoxonase and selenium
were observed in these 18 patients. By contrast, the concentration of copper and total hydroperoxides,
copper/zinc ratio, as well as inflammatory markers, were higher than the reference intervals. No
difference was observed in oxidative stress biomarker concentrations between type A and B TAD
patients. Conclusions: This pilot study, limited to 18 TAD patients, revealed a heightened systemic
OSS, determined at 15.5 days (median) after the initial diagnosis, in those TAD patients without
complications (malperfusion syndrome and aneurysm formation). Larger studies on biological fluids
are needed to better characterize the oxidative stress and interpret its consequence in TAD disease.

Keywords: human thoracic aortic dissection; oxidative stress; inflammation; antioxidants;
blood biomarkers

1. Introduction

Thoracic aortic dissection (TAD) is a serious and potentially life-threatening condition
characterized by the presence of an “intimal flap” which results from the separation of the
true lumen from the false one [1]. Depending on the location of the tear within the aorta,
dissections are classified as type A, when the tear occurs at the ascending aorta, or type B,
whenever the tear is in the descending aorta, according to the Stanford classification [2].
The progression of blood flow within the aortic wall leads to an anterograde and retrograde
extension of the intimal flap which can lead into static or dynamic malperfusion of some
organs, acute aortic valve defect and tamponade. Population-based studies suggest the
incidence of TAD to be around 35 cases per 100,000 people per year in the population aged
65 to 75 years [3]. Despite substantial improvement in the diagnosis and the management
of acute aortic diseases, the underlying pathological mechanism leading to TAD has not
been fully elucidated.
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Whether due to the inherent instability of the aortic wall or an acquired condition,
compromised aortic integrity is a fundamental component of the underlying dissection
pathology [4]. Increased inflammation processes, contributing to extracellular matrix
destruction as evidenced by accumulation of macrophages and neutrophils [5], appears to
be an important molecular mechanism involved in the pathogenesis of aortic dissection [6].
Upon activation, neutrophils release proteases (elastase) and metalloproteases (MMP9) into
the extracellular matrix that contribute to wall degradation [7].

An increasing number of studies have highlighted the key role of oxidative stress
(OS) in the progression of cardiovascular diseases including abdominal aortic aneurysm
(AAA) [8] and TAD [9,10].

OS has been defined as an imbalance between reactive oxygen species (ROS) and
antioxidants in favor of the former, leading to a disruption of signaling as a consequence of
irreversible oxidative damage to lipids, DNA or proteins [11]. This definition takes into
account both the physiological effects of ROS in the regulation of cellular homeostasis and
their pathological incidence in the development of human pathologies.

As recently reviewed, the main enzymatic sources of increased ROS production in
TAD are mitochondrial and endothelial dysfunctions, xanthine oxidase, myeloperoxi-
dase, NADPH oxidase and the endoplasmic reticulum [12,13]. In order to regulate ROS
production and combat their deleterious effect, the organism has a vast network of antiox-
idants [14] including enzymes (superoxide dismutase, catalase, glutathione peroxidase,
etc.) and low-molecular-weight molecules (vitamins C and E, glutathione, ubiquinone,
carotenoids, polyphenols), with the latter being provided by the diet.

Some studies have evidenced the presence of increased OS in the aortic segments of
patients with congenital bicuspid aortic valve, and Loeys–Dietz and Marfan syndromes, which
all contribute to the development of TAD [15–20]. Such observations in dissected thoracic
aortic segments are based on an accumulation of superoxide anions and lipid peroxidation
products as well as a reduced amounts of both enzymic and non-enzymic antioxidants.

Besides data on aortic tissues, only scarce information is available about an alteration
in the systemic oxidative stress status (OSS) in TAD patients and it involves only a small
number of OS biomarkers [21,22]. By contrast, there is no information about the OSS of
TAD patients a few days after their diagnosis.

In order to fill in this gap, the present study has the goal to determine the presence
of OS in the systemic circulation of TAD patients using a large battery of tests (N = 16)
available in routine practice. This includes the analysis of both enzymic and non-enzymic
antioxidants, trace elements, markers of oxidative damage to lipids and finally inflamma-
tion biomarkers.

In the past we have used such analyses to highlight an increased OS in patients
with AAA, COVID-19, chronic obstructive pulmonary disease and facioscapulohumeral
dystrophy [8,23–26].

2. Materials and Methods
2.1. Patients and Study Design

In an attempt to predict morphological and functional evolution of TAD, 115 patients
diagnosed with type A or type B TAD who were admitted to our center from 2013 to 2017
were invited to participate in a study on dissected aorta in Liege (Liege study on dissected
aorta, LIDIA). The exclusion criteria of the LIDIA study were aneurysm development;
complications due to malperfusion, such as stroke, gastrointestinal ischemia, acute kidney
insufficiency, liver insufficiency, acute limb ischemia and hemodynamic instability, making
the patients unable to sign the informed consent form; or patient refused to participate.
Out of the 115 TAD patients, 46 were included in the LIDIA study. This prospective study
combined functional positron emission tomography (PET) computed tomography (CT)
imaging of 18-fluorodeoxyglucose (18F-FDG) uptake and measurements of circulating
biomarkers of coagulation/fibrinolysis. In addition, genetic analyses were also performed
on patients’ blood genomic DNA in order to identify potential connective tissue disorders
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associated with TAD. Throughout the LIDIA study, therapeutic decisions were based
on current clinical and morphological guidelines. In particular, for type A TAD, open
ascending aorta surgery was performed in all cases, and for type B TAD a medical treatment
(beta-blockers, antihypertension, pain killers) and/or thoracic endovascular aortic repair
(TEVAR) was performed. Patient characteristics such as age, height, weight, arterial blood
pressure, smoking habits, past medical history, and medications were collected the day of
the admission.

During the course of the LIDIA study, we received a special grant for evaluating the
systemic OSS of the last eighteen consecutive patients (8 with type A and 10 with type B
dissection) 15.5 days (median value, IQR: 11.5–25.75 days) after the initial diagnosis of TAD,
leading either to an emergency operation or a medical treatment. The study protocol was
approved by the University Hospital Ethics Committee for Medical Research (2014/175,
Nr Eudra CT 2014-002614-23). All the participants were instructed on the study objectives
and signed an informed consent.

2.2. Blood Sample for OSS Analysis

The day before sampling, subjects were asked to fast for at least 12 h and not to drink
fruit juice. Between 8:00 and 9:00 a.m., blood samples were drawn from the antecubital
vein in tubes containing EDTA or Na-heparin as the anticoagulant or clot activating gel
according to the investigated parameter. Blood samples were immediately centrifuged
on site. Plasma or sera were then frozen as aliquots at −80 ◦C until analysis, which was
performed within four days after blood collection.

2.3. Determination of OS Biomarkers

Analysis protocols for antioxidants (vitamins C and E, thiol proteins (PSH), β-carotene,
glutathione peroxidase (GPx)), trace elements (selenium (Se), copper (Cu), zinc (Zn)),
biomarkers of lipid peroxidation (total hydroperoxides (tROOH), oxidized LDL (ox-LDL))
have been previously described in detail by our group [8,23–26]. Plasma paraoxonase
(PON) activity was determined by spectrophotometry using the hydrolysis of paraoxon
as described earlier [27]. Interleukin 6 (IL-6) was detected in plasma EDTA using a High
Sensitivity Human IL-6 Quantikine Elisa kit purchased from R&D, Abingdon, UK. C-
reactive protein (CRP) concentration was determined using a COBAS®8000 analyzer (Roche
Diagnostics, Machelen, Belgium).

All OS analyses were performed in a routine clinical setting at the Laboratory of
Medical Chemistry of the University Hospital of Liège (CHU) according to the International
Federation of Clinical Chemistry and Laboratory Medicine (IFCC) guidelines. All analyses
were ISO certified (ISO15189).

2.4. Reference Population

In medical chemistry laboratories, a minimum of 100 healthy subjects is required to
validate the analytical performance of methods (some of the parameters that are determined
include precision, linearity, carry-over and reference intervals) in agreement with the CLSI
EP23A3c guidelines. In the particular case of OS biomarkers, analyzed in the clinical routine
in our center, we established our own reference intervals (regularly updated) using the
ELAN (Etude Liègeoise sur les Antioxydants) cohort of 897 healthy subjects (349 men and
548 women aged 40–60 years) [28] following such guidelines. Furthermore, we performed
another small study on 18 healthy older subjects (>65 years) and showed that their OS
biomarkers were within our previously established reference intervals [29]. We have
already used such reference intervals in previous studies on patients with AAA [8] and in
two recent studies on COVID-19 patients [23,24]. Concentrations of each OS biomarker in
TAD patients were compared to the concentrations obtained in this reference population
(see statistical analysis).
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2.5. Statistical Analysis

Quantitative data were expressed as median and interquartile range (IQR). The Spear-
man correlation coefficient was calculated to measure the association between biological
parameters. The distribution of each biological parameter of the TAD cohort (N = 18) was
compared to the laboratory reference interval from healthy individuals, using the sign test
based on the binomial distribution [30,31]. Based on this test, in the case where all the
biomarker values of the 18 TAD patients fall below or above the middle of the reference
interval for the same biomarker, it can be concluded that the difference in concentration
between TAD patients and healthy subjects is statistically relevant with a p-value < 0.0001.
In the case where 17 of the 18 TAD patients (17/18) are below or above the middle of
the reference interval, the probability is <0.001. The probabilities are p < 0.002 for 16/18
patients and p = 0.008 for 15/18 patients. The results are considered significant at the 5%
critical level (p < 0.05).

Correlation between biological factors was established using the Spearman test for
nonparametric values. A p-value < 0.05 was considered significant. Mann–Whitney U
test for non-parametric values or the Wilcoxon signed-rank test were used to compare the
median values between smokers and hypertensive patients.

3. Results
3.1. Characteristics and Risk Factors of the TAD Cohort

The present study included 10 men and 8 women (median age: 62 years; IQR: 55–68)
diagnosed with Stanford type A (N = 8) or B (N = 10) TAD (Table 1). Only four patients
(22%) never smoked and the majority had hypertension (78%). All the patients with type A
TAD underwent urgent open surgery (supracoronary ascending aorta replacement (N = 4);
supracorononary ascending aorta replacement + coronary artery bypass (N = 1); root
replacement Bentall (N = 3)). Among the patients with type B TAD, eight were treated
medically, while two required TEVAR. There was no in-hospital death in our cohort.

Table 1. Demographic, biometric and medical characteristics of TAD patients. Age and BMI were
expressed as median (IQR). BMI, Body Mass Index; HT, hypertension; CAD, Coronary Artery Disease;
PAD, Peripheral Arterial Disease; RI, Renal Insufficiency; COPD, Chronic Obstructive Pulmonary
Disease; NSAID, Non-Steroidal Anti-Inflammatory Drug.

Variable Total, N = 18 (%)

Age (years) 62 (55–68)
Gender (M/W) 10/8 (56/44)
BMI (kg/m2) 27.0 (23.7–28.4)
Smoking Status
Never 4 (22)
Former 5 (28)
Current 9 (50)
Diabetes 3 (17)
HT 14 (78)
Dyslipidemia 7 (39)
CAD 1 (5)
PAD 2 (11)
RI 6 (33)
COPD 3 (17)
Other Aneurysms 2 (11)
NSAID 7 (39)
β-blockers 4 (22)

3.2. OS Biomarkers in the TAD Cohort

For each OS parameter, Table 2 displays the reference intervals, the median (IQR)
for all 18 TAD patients, the number of blood values (K) below (or above) the middle of
the reference interval. Using the sign test, analysis of the data evidenced significantly
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low plasma levels for vitamins C and E, β-carotene, PSH, PON and Se when compared
to the reference intervals. By contrast, concentrations of GPx, tROOH, Cu, CRP and IL-6,
as well as Cu/Zn ratio were higher than the reference interval. All other OS biomarkers
were unaffected in TAD patients. Supplementary Figure S1 shows that 66.6% patients had
plasma values for vitamin C, PSH and Se below the low reference value (LRV) while 99%
and 88% patients had higher levels of tROOH and Cu/Zn ratio, respectively, than the upper
reference value (URV).

Table 2. Comparison of OS biomarkers in TAD patients (N = 18) with reference intervals. Statistical
significance was determined using the binomial sign test (see Statistical analysis paragraph in
Section 2 for details). K is the number of TAD patients whose values fall below (L) or above (H) the
middle of the reference interval.

Parameters Reference
Interval

Median (IQR)
(N = 18) K p-Value

Vitamin C (µg/mL) 6.21–18.00 3.23 (1.84–7.35) 16 (L) <0.002
Vitamin E as α-tocopherol

(µg/mL) 8.60–19.24 12.03 (9.91–13.22) 16 (L) <0.002

Vitamin E as γ-tocopherol
(µg/mL) 0.39–2.42 <0.39 16 (L) <0.002

Vitamin C (µM)/Vitamin E (µM) 1.3–1.5 * 0.69 (0.5–1.80) 10 (L) 1
β-carotene (µg/mL) 0.06–0.68 0.15 (0.08–0.31) 18 (L) <0.0001

PSH (µM) 314–516 246 (216–330) 17 (L) <0.001
GPx (IU/g Hb) 20–58 61 (55.5–84) 18 (H) <0.0001

PON (IU/L) 39–408 62.7 (42.4–134.6) 17 (L) <0.001
Se (µg/L) 73–110 64.8 (53.8–83.1) 15 (L) 0.008

Cu (mg/L) 0.70–1.1 1.36 (1.14–1.58) 17 (H) <0.001
Zn (mg/L) 0.70–1.20 0.87 (0.67–0.97) 9 (L) 1

Cu/Zn 1–1.17 1.63 (1.44–2.00) 17 (H) <0.001
tROOH (µM) 0–432 1439 (785–1901) 18 (H) <0.0001

Ox-LDL (ng/mL) 28–70 36.5 (31–49.75) 4 (H) 1
CRP (mg/L) 0–5 67.6 (12.05–124.6) 18 (H) <0.0001
IL-6 (pg/mL) 0–1 ** 14.07 (7.49–26.88) 18 (H) <0.0001

* Normal value proposed by the High Sensitivity Human IL-6 Quantikine Elisa kit purchased from R&D, Abingdon,
UK. ** Reference interval proposed by Gey et al. [32].

Significant correlations were observed between OS biomarkers (Table 3). The Cu/Zn
ratio positively correlated with Cu, CRP, tROOH and IL-6 levels. Positive correlations were
also observed between CRP and tROOH or IL-6. By contrast, CRP negatively correlated
with Se and vitamin E and in the same way, IL-6 was also significantly negatively correlated
with vitamin E, Se and PON.

Table 3. Correlation between all investigated OS biomarkers observed in TAD patients (N = 18). Correla-
tion between biological factors was established using the Spearman test for nonparametric data.

Association Correlation p-Value

Cu/Zn Copper 0.58 0.010
Cu/Zn CRP 0.90 <0.0001
Cu/Zn tROOH 0.65 0.0032
Cu/Zn IL-6 0.66 0.002

CRP tROOH 0.59 0.009
CRP IL-6 0.75 0.0003
CRP Selenium −0.47 0.049
CRP Vitamin E −0.48 0.04
IL-6 Vitamin E −0.54 0.026
IL-6 Selenium −0.53 0.022
IL-6 PON −0.49 0.037
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3.3. Effect of Risk Factors on OSS

Smoking habits resulted in a vitamin C median value largely below the LRV and signifi-
cantly lower compared to non-smokers (Table 4). However, the vitamin C median value in
non-smokers only exceeded the LRV by 0.29 µg/mL. PON concentration was significantly
lower in smokers compared to non-smokers and CRP levels were 8.64-fold higher in smokers
than in non-smokers. The presence of hypertension led to median values of Cu, Cu/Zn and
tROOH that were significantly higher than in the absence of this TAD risk factor. However,
the median values in non-hypertensive patients were in the upper range of the reference
interval (for Cu) or above the reference interval (for Cu/Zn and tROOH).

Table 4. Influence of TAD risk factors such as smoking and hypertension on several markers of OS.
Values for the two groups, smokers versus non-smokers, are expressed as median (IQR).

Parameters Reference
Interval

Smoking Habits p-Value
No (N = 9) Yes (N = 9)

Vitamin C (µg/mL) 6.21–18.00 6.5 (2.6–9.3) 2.6 (1.5–3.5) 0.05
PON (IU/L) 39.5–408.2 132.6 (72.6–141) 43 (32–54) 0.0008

PSH (µM) 314–516 283 (246–359) 227 (212–246) 0.070
CRP (mg/L) 0–5 12.8 (8.4–56.3) 110.6 (87.3–159) 0.011

Hypertension

No (N = 4) Yes (N = 14)

Cu (mg/L) 0.70–1.1 1.00 (0.91–1.10) 1.47 (1.27–1.67) 0.011
Cu/Zn 1–1.17 1.28 (0.99–1.50) 1.78 (1.60–2.05) 0.025

tROOH (µM) 0–432 689 (514–828) 1630 (1353–2023) 0.012

4. Discussion

The systemic OSS in TAD has been poorly investigated. In a recent study on 36 thoracic
aortic aneurysm (TAA) patients, Irace et al. [22] evidenced a significant increase in serum
hydrogen peroxide as a marker of ROS production when compared to a control group of
23 patients undergoing an aortic valve surgery. To the best of our knowledge, the systemic
OSS determination in TAD patients in the early period following the diagnosis using a
large number of OS biomarkers [23,33] has never been reported before our study.

4.1. Antioxidants

The low median value of vitamin C observed in TAD patients corresponds to the
definition of a hypovitaminosis C (≤6 µg/mL) [34] known to be associated with a higher
risk of developing cardiovascular events as reported by Gey [32]. The same author also
concluded that the ideal vitamin C/vitamin E ratio, offering a maximal cardio-protective
effect, must be higher than 1.3–1.5 when the concentrations of both vitamins are expressed
in µM [32]. In our study, this ratio was lower (0.69) than the reference interval, although
not significant.

Even if the median concentration of plasma β-carotene (0.15 µg/mL) was in the normal
range (0.06–0.68 µg/mL), such a value is not to be considered as being an optimal one. In
fact, Gey reported that β-carotene levels < 0.22 mg/L were associated with an increased
risk of developing cardiovascular diseases [32].

The PSH pool was highly impacted downwards in our TAD patients. The PSH pool
consists of ~70% of the single thiols of human serum albumin (HSA-SH), whose oxidation
has been shown to occur in human diseases associated with increased oxidative stress [35].

GPx is an antioxidant enzyme requiring glutathione (GSH) and selenium as co-factors
to reduce tROOH [36]. Even if the GPx median concentration was above the URV (Table 2),
it is probably not sufficient given the elevated concentration of tROOH and the low levels
of Se. Elevated GPx levels in the blood are in contradiction with observations made on
aorta segments, in which a significant decrease in GPx activity was determined in patients
with different aortopathies [15,18].
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Linked to high-density lipoprotein (HDL), the main role of PON is to protect LDL
from oxidative stress by hydrolyzing oxidized phospholipids and thus preventing the
formation of atherogenic ox-LDL molecules [37]. Furthermore, PON also suppresses the
differentiation of monocytes into macrophages in the subendothelial space, thereby limiting
the process of foam cell formation and thereby reducing the formation of atherosclerotic
plaques. Therefore, a reduced PON activity could be also associated with an increased
risk of cardiovascular diseases [38]. Even if in the normal range, the serum PON activity
measured in both type A and B patients was close to the LRV (Table 2).

As shown in Supplementary Table S1, a similar decrease in antioxidant concentrations
was observed in both type A and B groups, except for vitamin C. In fact, the median concentra-
tion (2.58 µg/mL) in type A patients was significantly lower than the reference interval, while
for type B patients the median value (6.54 µg/mL) was at the lower limit of the reference
interval. Such a difference could be due to the major cardiac surgery that the type A TAD
patients underwent, which involves a cardiopulmonary bypass (CPB) procedure.

In a recent paper, Hill et al. [39] reported that perioperative vitamin C concentrations
after such surgery may drop to values below 3 µg/mL up to 24 h after surgery. Rodemesiter
et al. [40] also described that there was no recovery in plasma vitamin C concentrations until
discharge of the patient 1 week post-surgery. In our study, the blood sample was drawn
14.5 days (median) and 15.5 days (median) after the surgery and diagnosis, respectively.
No information about the vitamin C status is available for such a long period. In cardiac
surgery, papers reported the use of a single dose of 2 g vitamin C through an intravenous
route prior to surgery or a supplementation with 1 g to 10 g of vitamin C per day in the
postoperative phase [41]. All the observations presented in our work allow us to potentially
ask to what extent a supplementation of antioxidants, and more particularly vitamin C,
would be useful in TAD patients after diagnosis.

4.2. Trace Elements

It is well known that copper in excess exhibits pro-oxidant activities by inducing
free radical formation (Fenton reaction), resulting in increased lipid peroxidation [42]. By
contrast, on one hand, zinc is known to exhibit antioxidant properties as the main co-
factor of superoxide dismutase (SOD) and, on the other hand, it acts as an inhibitor of free
radical reactions induced by copper [43]. Therefore, the copper/zinc ratio is considered
an excellent indicator of OS. The higher the Cu/Zn ratio, the higher the oxidative damage
to lipids, as evidenced by elevated values of tROOH (Table 2) [44]. In 89% of patients,
we found high Cu/Zn ratios (Supplementary Figure S1), which were significantly and
positively correlated with tROOH levels (0.65, p = 0.0032) (Table 3). This is in accordance
with observations described in other clinical situations associated with increased OS [45].

In 78% TAD patients, we observed a Se deficiency with levels being largely below the
cutoff value of 73 µg/mL (Table 2 and Supplementary Figure S1). Selenium is an essential
micronutrient and plays a crucial role in immune and antioxidant responses, regulation of
inflammation and thyroid hormone metabolism [46].

4.3. Biomarkers of Lipid Peroxidation

Lipid peroxidation is a well-established molecular mechanism that plays a key role in
the development of atherosclerosis, diabetes, cardiovascular diseases and chronic inflam-
mation [47]. One of the major findings of our paper was that 17/18 TAD patients exhibited
tROOH levels significantly higher (up to 3.3 fold) than the URV of 432 µM (Table 2 and
Supplementary Figure S1). By contrast, ox-LDL concentrations, considered as another
index of lipid peroxidation, surprisingly remained within the norms in all TAD patients.
Recently it has been suggested that the use of statins may be associated with improved
outcomes in patients with thoracic aortic aneurysms [48]. A recent systematic review and
meta-analysis performed by Jamialahmadi et al. [49] concluded that statins were able to
inhibit the formation of ox-LDL. Such an association was, however, not determined in our
pilot study since only 4 out 18 patients were on statin therapy. A similar increase (over the
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upper value of the reference interval) for tROOH, but not for ox-LDL, was observed in both
type A and B TAD patients (Supplementary Table S1).

4.4. Inflammatory Markers

In agreement with Ye et al. [50], we found high plasma values for both CRP (>5 mg/L)
and IL-6 (>1 pg/mL) in all TAD patients, indicating the presence of a severe acute or chronic
inflammatory process. Inflammatory processes are known to be closely related to OS, with
one process being easily induced by the other [51]. In our study, such a synergy is suggested
by the highly negative correlation between inflammation and antioxidants (Table 3). In
particular, CRP negatively correlated with vitamin E and Se, while IL-6 with vitamin E, Se
and PON [52]. In both TAD groups, inflammatory biomarker levels were largely higher and
to the same extent for both groups than the reference interval (Supplementary Table S1).

4.5. OSS in Genetically Triggered TAD

In a recent systematic review, Portelli et al. [12] explored the contribution of OS to the
pathogenesis of genetically triggered TAA in aorta segments but not in blood samples. The
authors showed the occurrence of OS in genetically triggered TAA, but were not able to
explain the precise contribution of ROS to the pathogenesis of the disease. Due to our small
sample size, we did not compare the systemic OSS of the group with genetically triggered
TAA to patients who tested negative in the genetic analysis.

4.6. Limitations of the Study

The drawbacks of our pilot study include the small sample size and the single time-
point measurement of systemic OSS parameters performed after the diagnosis of TAD
(median 15.5 days). Therefore, the potential variation of these parameters over time was
not evaluated. Moreover, many confounding factors might affect OSS, such as pre-existing
cardiovascular risk factors (overweight, hypertension, diabetes, smoking, etc.), occurrence
of TAD, open surgery or TEVAR, and intensive care unit or hospital stay, all of which were
not analyzed in our study.

The plasma concentration of vitamin C (3.23 µg/mL) was largely lower than those
reported in hypertensive (7.4 µg/mL) or diabetic (7.29 µg/mL) patients [53,54]. Moreover,
the smokers’ plasma vitamin C concentration (9.7 µg/mL) reported by Giraud et al. is
still within our reference interval [55]; therefore, smoking habits cannot explain the low
vitamin C values of our TAD patients. The present study highlighted that the median
plasma vitamin C concentration (3.23 µg/mL) in TAD patients was largely below those
associated with cardiovascular risks. However, the surgery procedure required in type A
TAD patients must be taken into consideration, since the vitamin C analysis was performed
after surgery [39].

We measured blood plasma levels of GPx and PON which belong to the antioxidant
enzyme family; however, in further studies SOD should be included as well. Having the
values for the three enzymes should allow a better comparison of the blood data with the
data described in aortic segments. Moreover, it would be interesting in future studies to
perform the OSS evaluation at the time of admission of the patient into the intensive care
unit, rather than 15 days post-diagnosis and eventually follow the evolution of the disease.

Given that our study was a pilot study, the current findings warranty further research.

5. Conclusions

For more than 30 years, our hospital center has acquired an extensive expertise in the
screening, diagnosis, surgical treatment and therapy of different aortopathies. Recently, we
initiated the local LIDIA study on TAD patients in order to better characterize its incidence
and prevalence in Liège Province, Belgium. Based on recent literature, there is increasing
evidence that oxidative stress could be involved in the development of this disease. In fact,
it has been observed that aortic segments, drawn during urgent surgical procedures in type
A TAD patients, show altered levels of antioxidant enzymatic activities [15–20].



Antioxidants 2023, 12, 1106 9 of 11

As part of the LIDIA study, this paper evaluated the systemic OSS in TAD patients after
TAD diagnosis by measuring a large panel of biomarkers routinely used in our hospital
center for many years. The present pilot study on TAD patients clearly revealed a significant
decrease in the concentration of low-molecular-weight antioxidants, specifically vitamin
C, thiol proteins, β-carotene, and increased lipid peroxidation in type A TAD patients
requiring urgent surgical procedures after their diagnosis. Interestingly, we noted a similar
altered OSS in type B TAD patients not requiring urgent surgery, which is an event that
could potentially have an influence on the OSS. Such results in both groups of TAD patients,
which need to be confirmed on a larger scale, should encourage clinicians to integrate some
OS analyses into routine biological assessments with, of course, great precautions in the
pre-analytical treatment of blood samples.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antiox12051106/s1. Figure S1: Individual plasma values of vitamin
C, thiol proteins, selenium, lipid peroxides and Cu/Zn ratio. Black circles: TAD A patients, grey
circles: TAD B patients; Table S1: Comparison of OS biomarkers between type A and B TAD patients.
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