

Development of history-dependent surrogate models in the context of stochastic multi-scale simulations for elasto-plastic composites

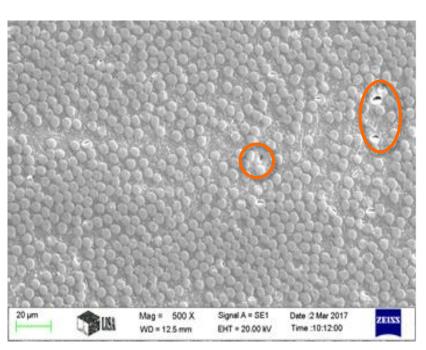
L. Wu, V.-D. Nguyen, M. Mustafa, J. Calleja & L. Noels
University of Liege
Computational & Multiscale Mechanics of Materials
http://www.ltas-cm3.ulg.ac.be

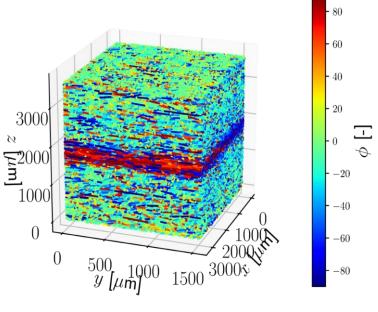
5th International Conference on Uncertainty Quantification in Computational Science and Engineering 12-14 June 2023

Stochastic multi-scale simulations

Motivations

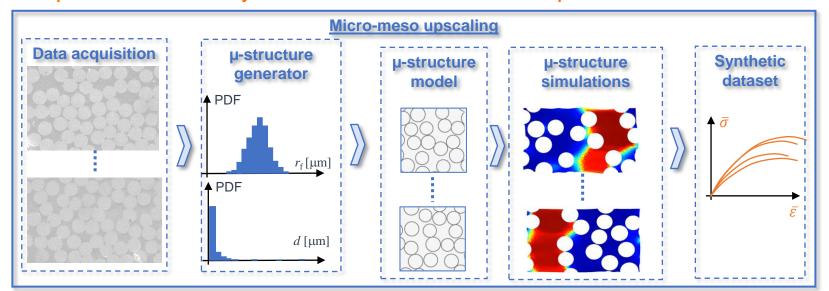
- Composites (and others) are inhomogeneous/aperiodic materials
- Inhomogeneities affect structural strength





Stochastic multi-scale simulations

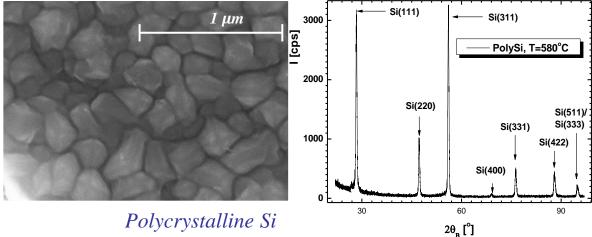
Step 1: Generate a synthetic data base of SVE responses



Case of linear elastic material: Polycrystalline Si

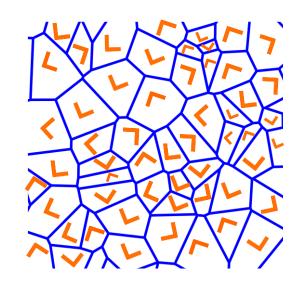
Micro-scale

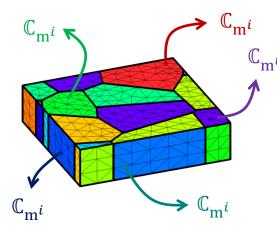
- Random grain orientation
 - Can be measured from **XRD**



XRD-measurements

- **Grain Material**
 - Anisotropic tensor \mathbb{C}_{m^i}
 - Same but for the orientation in each grain ω_i

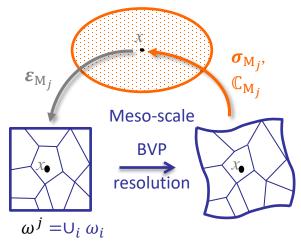




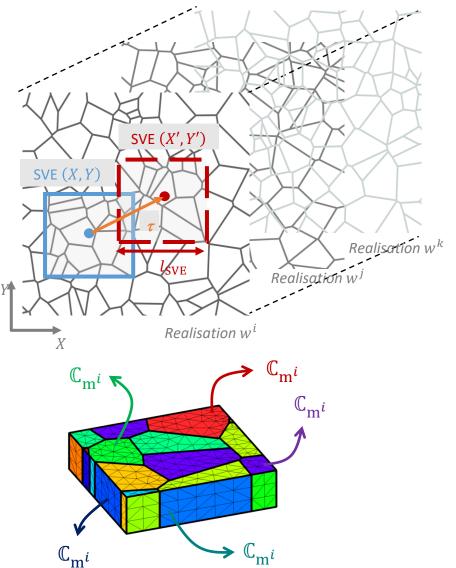
12-14 June 2023 **UNCECOMP 2023** 5

Case of linear elastic material: Polycrystalline Si

- Generation of random Stochastic Volume Elements (SVEs)
 - Extraction of SVEs $\omega^j = \bigcup_i \omega_i$
 - Large Voronoi tessellations
 - Window technic: SVEs are separated by vector τ
 - Each SVE ω^j has several grains ω_i of different orientations
 - Extraction of homogenised properties

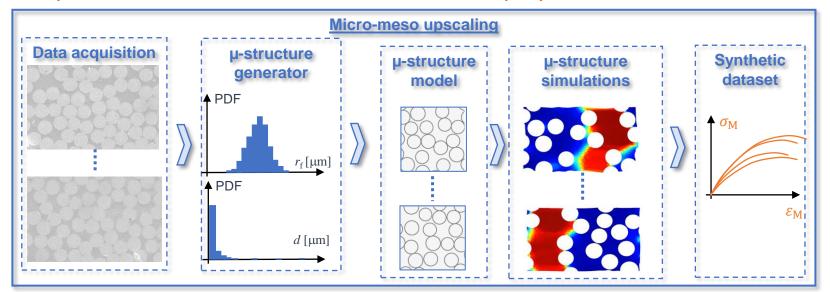


• For each SVE ω^j , we have a homogenised material tensor \mathbb{C}_{M}^{j}

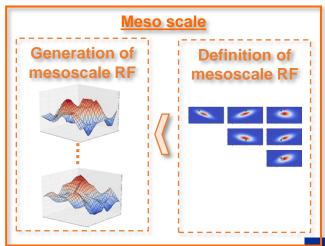


Stochastic multi-scale simulations

• Step 2: Generate random field of meso-scale properties



Stochastic meso-scale homogenised material model

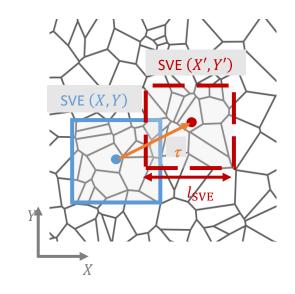


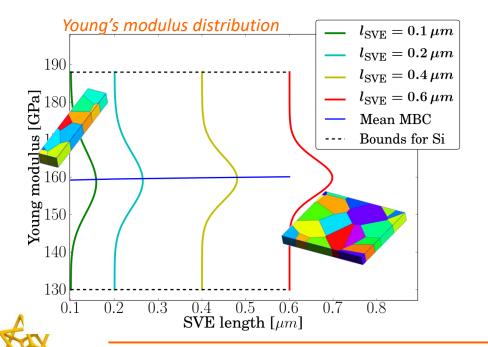
Case of linear elastic material: Polycrystalline Si

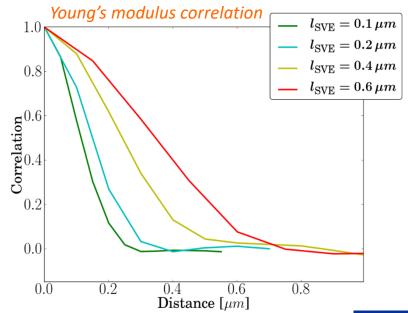
Meso-scale random field

- Of homogenised material tensor: $\mathbb{C}_M(\Omega)$
 - Extract probability distribution &
 - Spatial correlation

$$R_{E_x}(\tau) = \frac{\mathbb{E}\left[\left(E_x(x) - \mathbb{E}(E_x)\right)\left(E_x(x+\tau) - \mathbb{E}(E_x)\right)\right]}{\mathbb{E}\left[\left(E_x - \mathbb{E}(E_x)\right)^2\right]}$$



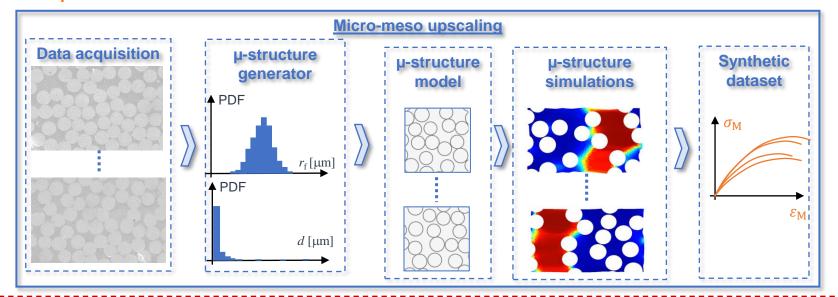




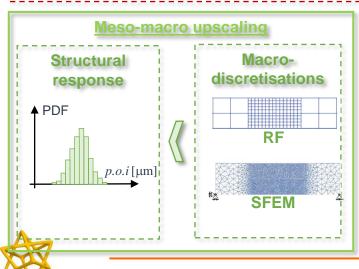
* * * * * * *

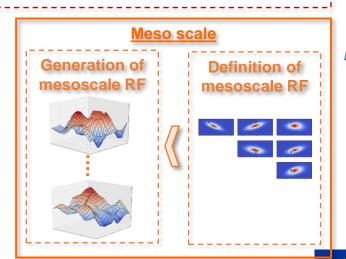
Stochastic multi-scale simulations

Step 3: Solve macro-scale stochastic finite elements



Stochastic meso-scale homogenised material model





Case of linear elastic material: Polycrystalline Si

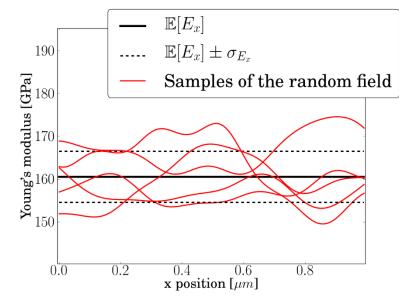
Meso-Macro upscaling: SFEM

- Discretisation of random field of material tensor: $\mathbb{C}_{M}(\Omega)$
 - And generation of realisations

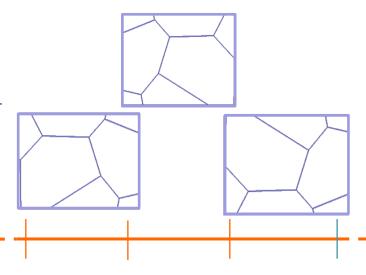
- Discretisation into finite-elements
 - Size smaller than correlation length

$$\begin{cases} L_{E_{x}} = \frac{\int_{-\infty}^{\infty} R_{E_{x}}(\tau) d\tau}{R_{E_{x}}(0)} \\ R_{E_{x}}(\tau) = \frac{\mathbb{E}\left[\left(E_{x}(x) - \mathbb{E}(E_{x})\right)\left(E_{x}(x+\tau) - \mathbb{E}(E_{x})\right)\right]}{\mathbb{E}\left[\left(E_{x} - \mathbb{E}(E_{x})\right)^{2}\right]} \end{cases}$$

· Allows spatial correlation to be accounted for



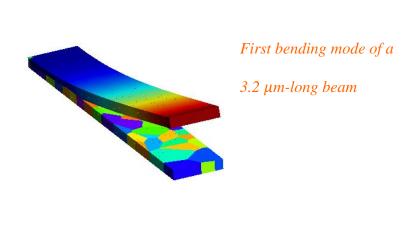
RF discretisation

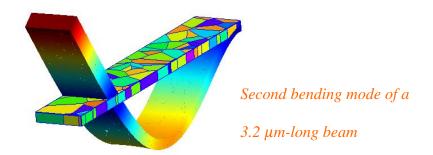


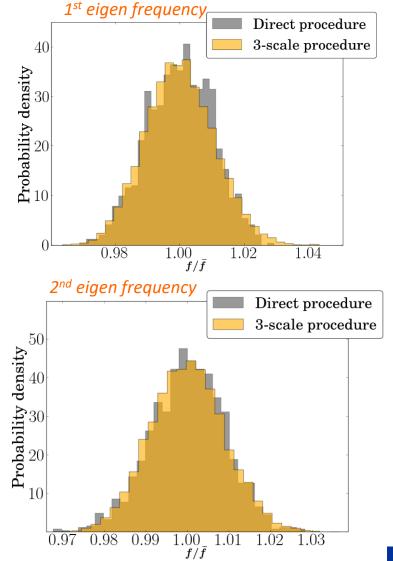
1D finite element discretisation

Case of linear elastic material: Polycrystalline Si

- Meso-Macro upscaling: Property of interest
 - Eigen-mode of MEMS resonator

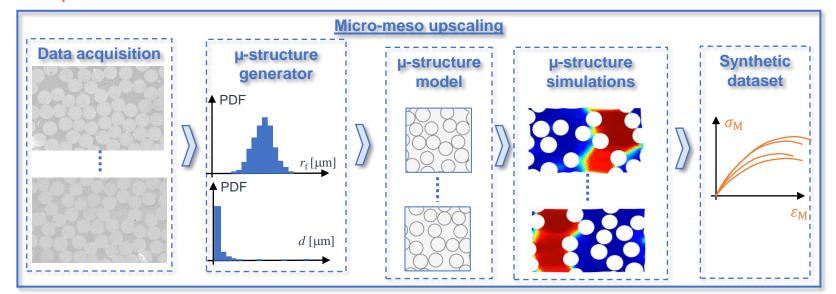




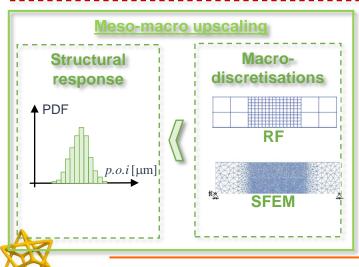


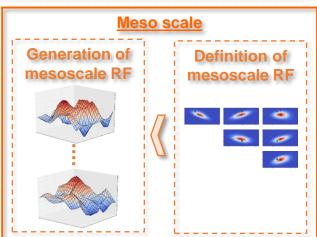
Stochastic multi-scale simulations

• Step 3: Solve macro-scale stochastic finite elements



Stochastic meso-scale model for history-dependent behaviours?





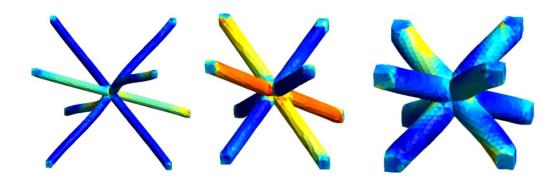
Difficulties in formulating the meso-scale surrogate

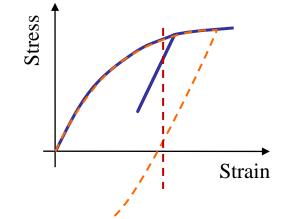
Input / output definition

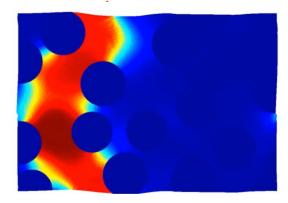
- Input:
 - Strain (history): **F**_M
 - Geometrical parameters: $\varphi_{\rm m}$
 - Material parameters: $\gamma_{
 m m}$
- Output:
 - Stress (history): P_M
- History dependent behaviour
 - \mathbf{F}_{M} \mathbf{P}_{M} is not a bijection
 - History should be tracked
 - Typical material model
 - **Z** are the internal/state variables

$$\mathbf{P}(t) = \mathbf{P}(\mathbf{F}(t), \mathbf{Z}(\tau \le t))$$

- In case of failure size objectivity is loss
 - F_{M} P_{M} relation depends on the SVE size
 - Need for another size objective value



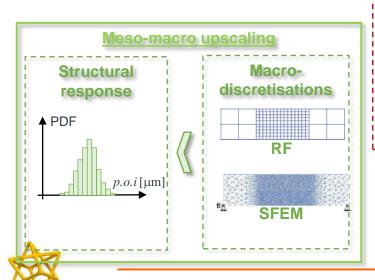


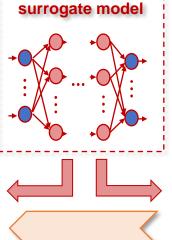


Stochastic multi-scale simulations

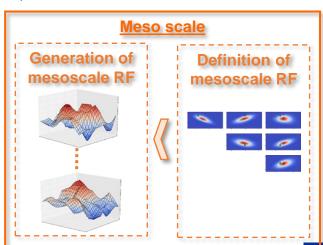
Challenge: meso-scale surrogate model for complex material systems







Adhoc meso-scale



Meso-scale surrogate model for complex material systems

Micro-mechanical models

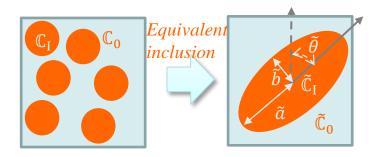
- General for a micro-structure kind
 - Geometrical parameters: $\varphi_{\rm m}$
 - Material parameters: $\gamma_{\rm m}$
- Based on thermodynamic consistency
 - Possesses extrapolation capabilities
- Delicate identification

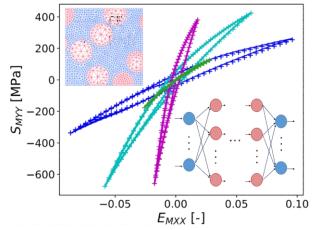
Neural networks

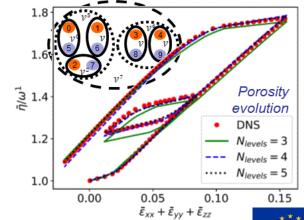
- Theoretically generic
 - Geometrical parameters: $\varphi_{\rm m}$
 - Material parameters: $\gamma_{\rm m}$
- No extrapolation capabilities
 - Requires extensive data

Deep material networks

- Based on thermodynamic consistency
 - Possesses extrapolation capabilities
- Fixed micro-structure?







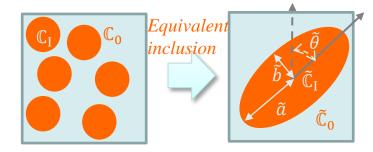
12-14 June 2023 16

Meso-scale surrogate model for complex material systems

Micro-mechanical models

- General for a micro-structure kind
 - Strain (history): F_M
 - Geometrical parameters: ϕ_{m}
 - Material parameters: γ_m
- Based on thermodynamic consistency
- Possesses extrapolation capabilities

- Based on a macro-scale model (including phase-field)
 - Yi, Chen, To, McVeigh, Liu (2008). Statistical volume element method for predicting micro-structure-constitutive property relations. CMAME
 - Hun, Guilleminot, Yvonnet, Bornert (2019). Stochastic multiscale modeling of crack propagation in random heterogeneous media. IJNME
- Based on Reduced-Order-Model
 - Fish, Wu (2011). A nonintrusive stochastic multiscale solver. IJNME
- Based on micro-mechanical Mean-Field Homogenisation (MFH)
 - Wu, Nguyen, Adam, Noels (2019), An inverse micro-mechanical analysis toward the stochastic homogenization of nonlinear random composites. CMAME
 - Calleja, Wu, Nguyen, Noels (Revised) A micromechanical Mean-Field Homogenization surrogate for the stochastic multiscale analysis of composite materials failure. IJNME

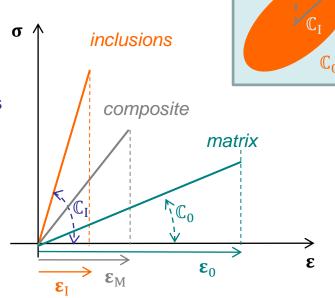


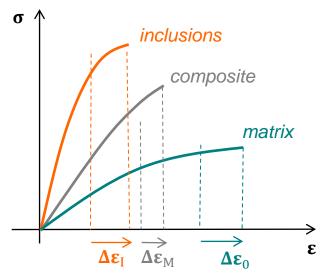
- Non-linear Mean-Field-Homogenisation (MFH)
 - Principle
 - Consider an embedded inclusion
 - Apply constitutive laws on the average phase fields
 - Linear composites

$$\begin{cases} \mathbf{\sigma}_{\mathrm{M}} = \overline{\mathbf{\sigma}} = v_{0}\mathbf{\sigma}_{0} + v_{\mathrm{I}}\mathbf{\sigma}_{\mathrm{I}} \\ \mathbf{\varepsilon}_{\mathrm{M}} = \overline{\mathbf{\varepsilon}} = v_{0}\mathbf{\varepsilon}_{0} + v_{\mathrm{I}}\mathbf{\varepsilon}_{\mathrm{I}} \\ \mathbf{\varepsilon}_{\mathrm{I}} = \mathbb{B}^{\varepsilon}(\mathrm{I}, \mathbb{C}_{0}, \mathbb{C}_{\mathrm{I}}) : \mathbf{\varepsilon}_{0} \end{cases}$$

Non-linear composites

$$\begin{cases} \boldsymbol{\sigma}_{\mathrm{M}} = \overline{\boldsymbol{\sigma}} = \boldsymbol{v}_{0}\boldsymbol{\sigma}_{0} + \boldsymbol{v}_{\mathrm{I}}\boldsymbol{\sigma}_{\mathrm{I}} \\ \boldsymbol{\Delta}\boldsymbol{\varepsilon}_{\mathrm{M}} = \overline{\boldsymbol{\Delta}}\overline{\boldsymbol{\varepsilon}} = \boldsymbol{v}_{0}\boldsymbol{\Delta}\boldsymbol{\varepsilon}_{0} + \boldsymbol{v}_{\mathrm{I}}\boldsymbol{\Delta}\boldsymbol{\varepsilon}_{\mathrm{I}} \\ \boldsymbol{\Delta}\boldsymbol{\varepsilon}_{\mathrm{I}} = \mathbb{B}^{\varepsilon}(\mathbf{I},\mathbb{C}_{0}^{\mathrm{LCC}}):\boldsymbol{\Delta}\boldsymbol{\varepsilon}_{0} \\ & \qquad \qquad Define a linear comparison composite material \end{cases}$$



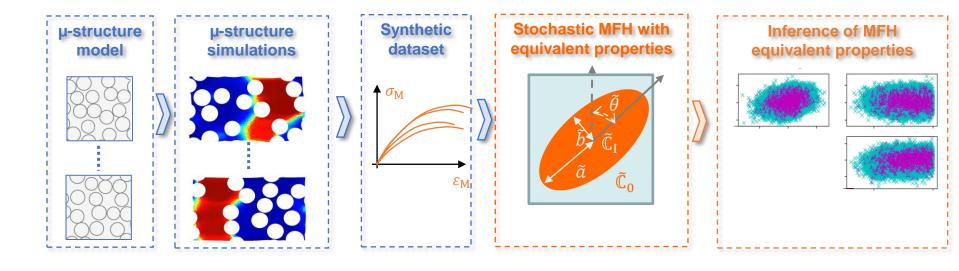


MFH

- Based on an embedded inclusion
- How to account for stochastic effects?

Stochastic MFH

Infer MFH equivalent properties distribution



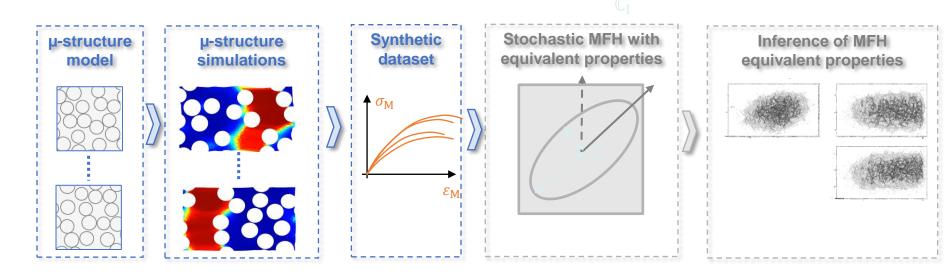
12-14 June 2023

MFH

- Based on an embedded inclusion
- How to account for stochastic effects?

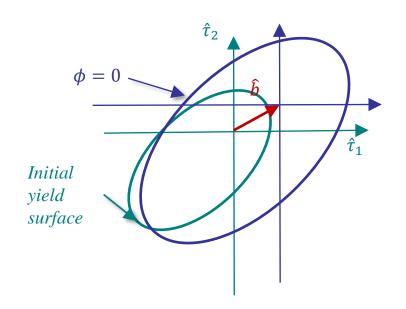
Stochastic MFH

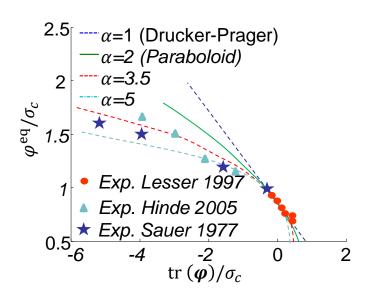
Infer MFH equivalent properties distribution



Material model

Pressure dependent elastic-plastic finite strain model

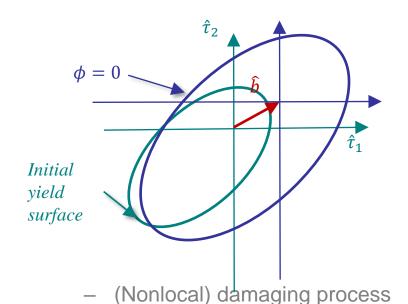


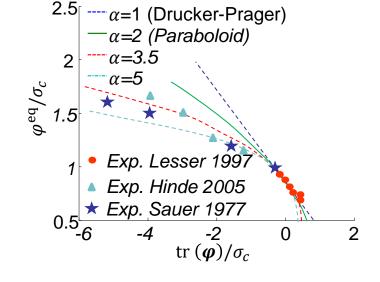


$$\begin{cases} \boldsymbol{\varphi} = \hat{\boldsymbol{\tau}} - \hat{\boldsymbol{b}} \\ \boldsymbol{\phi} = \left(\frac{\boldsymbol{\varphi}^{\text{eq}}}{\sigma_c}\right)^{\alpha} - \frac{m^{\alpha} - 1}{m + 1} \frac{\text{tr}\boldsymbol{\varphi}}{\sigma_c} - \frac{m^{\alpha} + m}{m + 1} \\ m = \frac{\sigma_t}{\sigma_c} \end{cases}$$

Material model

Pressure dependent elastic-plastic finite strain model





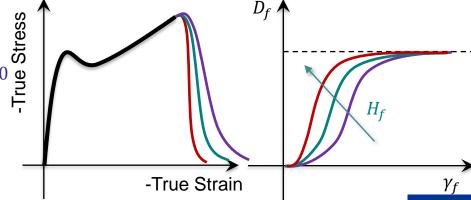
Triaxiality-dependent failure surface

$$\begin{cases} \phi_f = \bar{\varepsilon}^{\mathrm{pl}} - a \exp\left(-b\frac{\mathrm{tr}(\hat{\pmb{\tau}})}{3\hat{\tau}^{eq}}\right) - c & \text{solution} \\ \phi_f - \gamma_f \leq 0; \ \dot{\gamma}_f \geq 0; \ \mathrm{and} \ \dot{\gamma}_f \big(\phi_f - \gamma_f\big) = 0 \\ \text{Damage evolution} \end{cases}$$

Damage evolution

$$\bar{\gamma}_f - l_f^2 \, \Delta \bar{\gamma}_f = \gamma_f$$

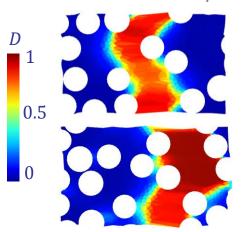
$$\dot{D}_f = H_f \left(\bar{\gamma}_f \right)^{\zeta_f} \left(1 - D_f \right)^{-\zeta_d} \dot{\bar{\gamma}}_f$$

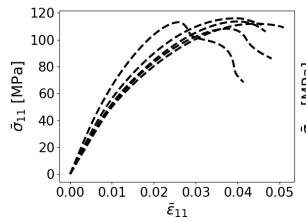


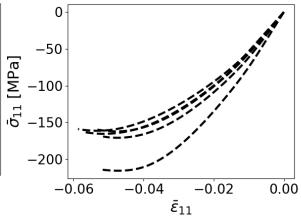
12-14 June 2023 **UNCECOMP 2023** 27

Responses set

Stress-strain responses



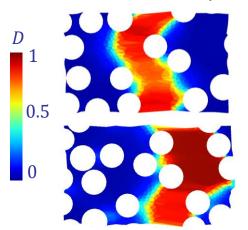


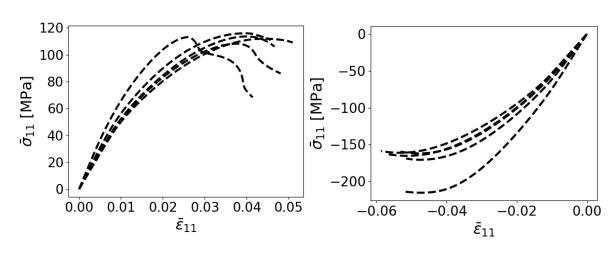


– Address loss of size objectivity?

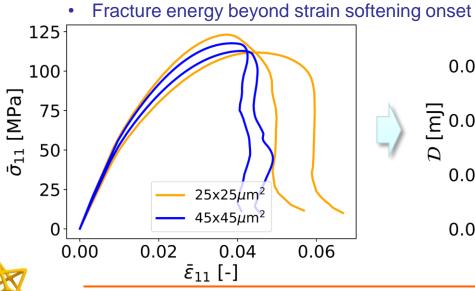
Responses set

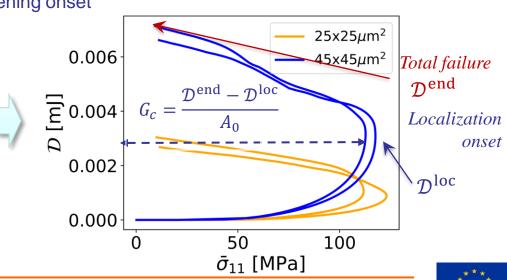
Stress-strain responses





Address loss of size objectivity:





NAME OF THE PROPERTY OF THE PR

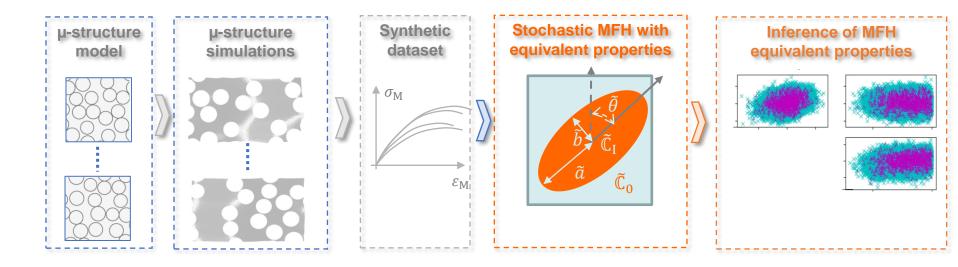
29

MFH

- Based on an embedded inclusion
- How to account for stochastic effects?

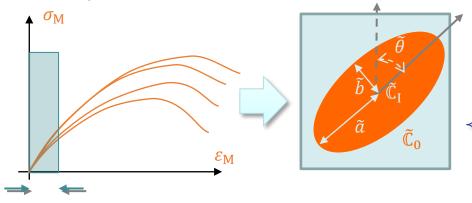
Stochastic MFH

Infer MFH equivalent properties distribution



12-14 June 2023

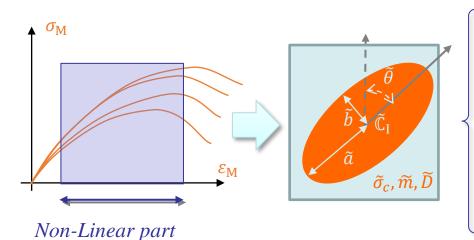
Determination of MFH equivalent properties



Equivalent inclusion: $\left[\tilde{\theta}, \tilde{v}_{\mathrm{I}}, \frac{\tilde{a}}{\tilde{b}}\right]$ Matrix elastic properties: $\left[\tilde{\mathbb{C}}_{0}\right]$

Linear part

Non-linear part



Matrix plastic flow: $\left[\widetilde{\sigma}_{c}\left(\overline{\varepsilon}^{\mathrm{pl}}\right), \widetilde{m}, \widetilde{\alpha}, \widetilde{\nu}_{p}\right]$

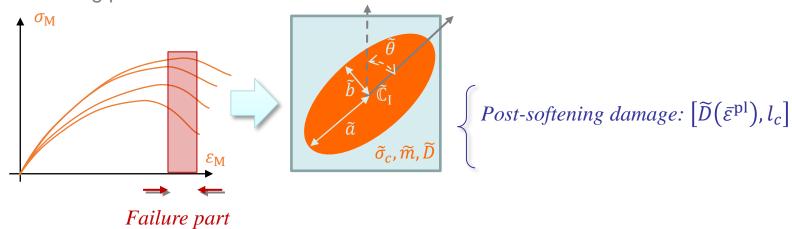
$$\phi = \left(\frac{\varphi^{\text{eq}}}{\widetilde{\sigma}_c}\right)^{\widetilde{\alpha}} - \frac{\widetilde{m}^{\widetilde{\alpha}} - 1}{\widetilde{m} + 1} \frac{\text{tr} \boldsymbol{\varphi}}{\widetilde{\sigma}_c} - \frac{\widetilde{m}^{\widetilde{\alpha}} + \widetilde{m}}{\widetilde{m} + 1}$$

$$\widetilde{m} = \frac{\widetilde{\sigma}_t}{\widetilde{\sigma}_c}$$

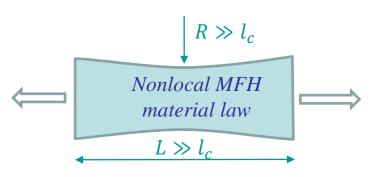
Pre-softening damage: $\left[\widetilde{D}\left(\bar{\varepsilon}^{\text{pl}}\right)\right]$

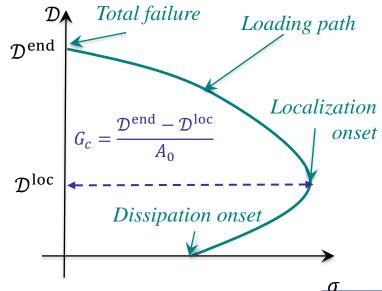
Determination of MFH equivalent properties

Softening part



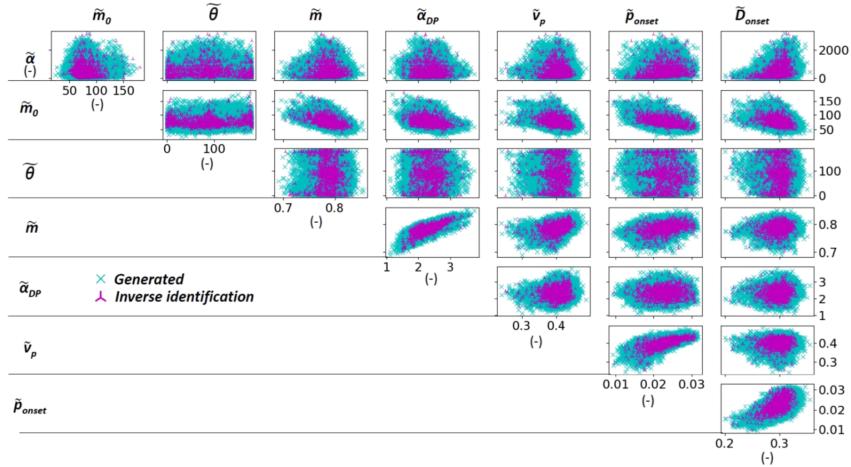
- Identified to recover the right energy release rate
- For a given macro-scale nonlocal length l_c





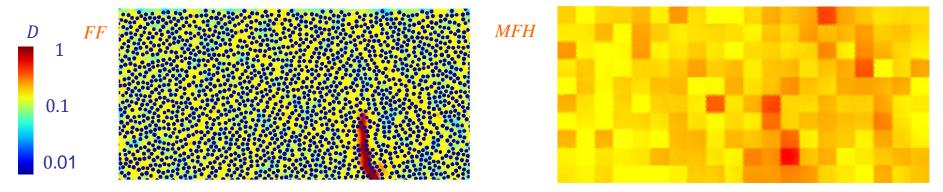
Generator of MFH parameters

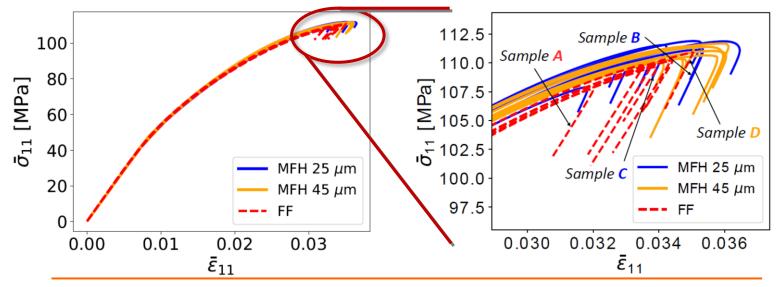
- Using data-driven sampling method
 - Soize, Ghanem (2016) Data-driven probability concentration and sampling on manifold. JCP



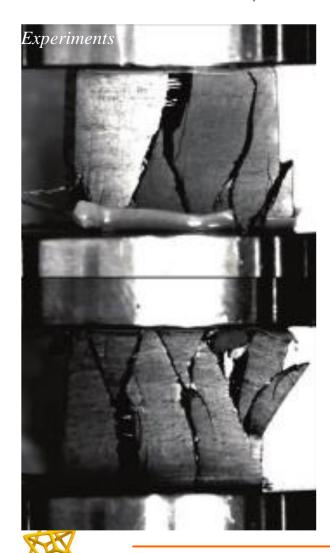
Verification on ply tensile tests

Stochastic Full-field simulations vs. Stochastic MF-ROM multi-scale simulations



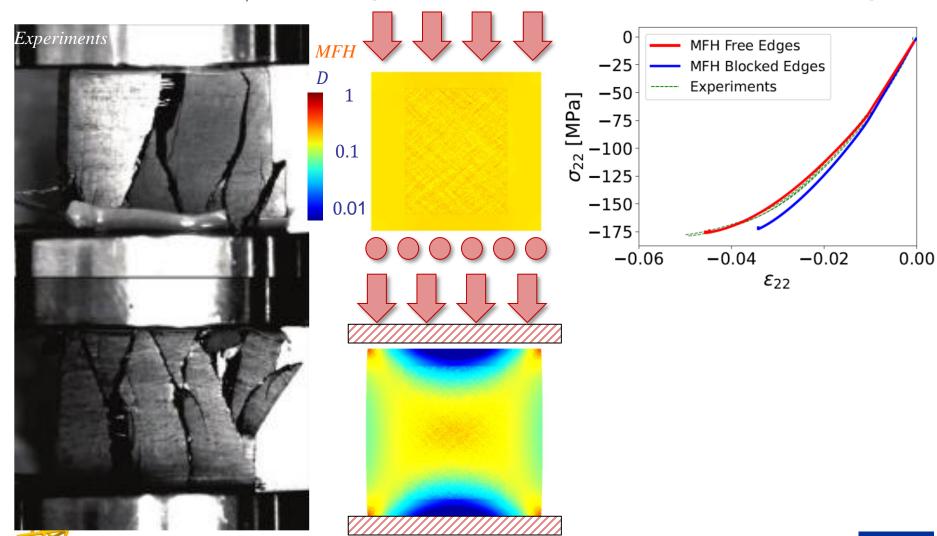


- Comparison with experimental test
 - Transverse compression test [J. Chevalier and P.P. Camanho and F. Lani and T. Pardoen, CS 2019]



Comparison with experimental test

Transverse compression test [J. Chevalier and P.P. Camanho and F. Lani and T. Pardoen, CS 2019]



Meso-scale surrogate model for complex material systems

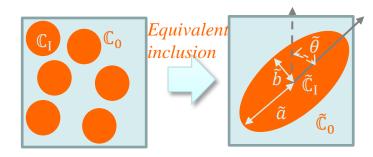
Micro-mechanical models

- General for a micro-structure kind
 - Strain (history): **F**_M
 - Geometrical parameters: ϕ_{m}
 - Material parameters: γ_{m}
- Based on thermodynamic consistency
- Possesses extrapolation capabilities

Limitations

- Composite should be represented by an equivalent inclusion
 - Possibility to extend to other geometries

- Needs to set up an identification process
 - Automatise with Bayesian inference



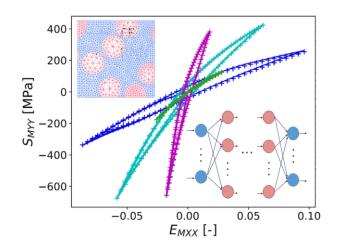
Meso-scale surrogate model for complex material systems

Neural networks

- Theoretically generic
 - Geometrical parameters: $\phi_{
 m m}$
 - Material parameters: $\gamma_{\rm m}$
- No extrapolation capabilities
 - · Requires extensive data

Field of growing interest (non-exhaustive list)

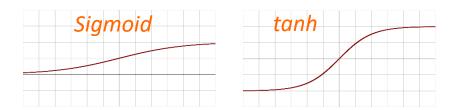
- History-dependent material behaviours
 - Mozaffar, Bostanabad, Chen, Ehmann, Cao, Bessa (2019). Deep learning predicts path-dependent plasticity.
 PNAS
 - Ghavamian, Simone (2019). Accelerating multiscale finite element simulations of history-dependent materials using a recurrent neural network. CMAME
 - Bonatti, Mohr (2021) On the importance of self-consistency in recurrent neural network models representing elasto-plastic solids, JMPS
- Surrogates for multi-scale simulations
 - Wu, Nguyen, Kilingar, Noels (2020). A recurrent neural network accelerated multi-scale model for elasto-plastic heterogeneous materials subjected to random cyclic and non-proportional loading paths. CMAME.
 - Masi, Stefanou (2022) Multiscale modeling of inelastic materials with Thermodynamics-based Artificial Neural Networks (TANN), CMAME
- Combined with PCA
 - Wu, Noels (2022) Recurrent Neural Networks (RNNs) with dimensionality reduction and break down in computational mechanics; application to multi-scale localization step, CMAME
- First step to stochastic-multi-scale
 - Lu, Yvonnet, Papadopoulos, Kalogeris, Papadopoulos (2021). A stochastic FE2 data-driven method for nonlinear multiscale modeling. Materials

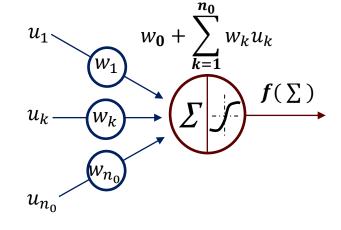


Artificial Neural Network

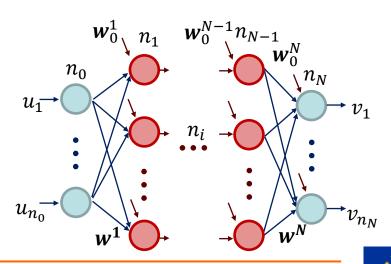
Definition of the surrogate model

- Artificial neuron
 - Non-linear function on n₀ inputs u_k
 - Requires evaluation of weights w_k
 - Requires definition of activation function f
- Activation functions f





- Feed-Forward Neuron Network
 - Simplest architecture
 - Layers of neurons
 - Input layer
 - -N-1 hidden layers
 - Output layers
 - Mapping $\mathfrak{R}^{n_0} \to \mathfrak{R}^{n_N}$: v = g(u)



Artificial Neural Network

Training

- Evaluate
 - The weights w_{kj}^{i} , $k = 1...n_{i-1}$, $j = 1...n_{i}$
 - The bias w_0^i
 - Minimise error prediction $m{v}$ vs. real $m{v}^{(p)}$

$$L_{\text{MSE}}(\mathbf{W}) = \frac{1}{n} \sum_{i}^{n} \left\| \boldsymbol{v}_{i}(\mathbf{W}) - \boldsymbol{v}_{i}^{(p)} \right\|^{2}$$

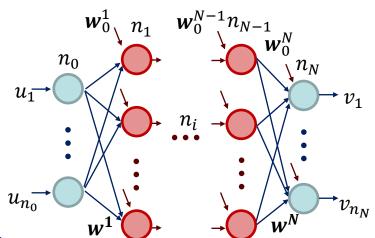
· Requires an optimiser: Stochastic Gradient Descent

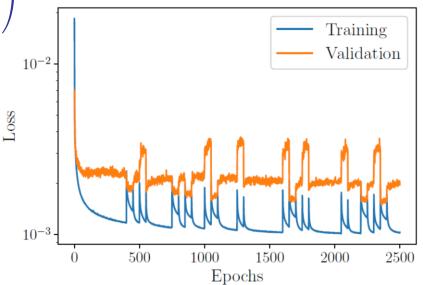
$$\Delta \mathbf{W} = -\mathcal{F} \left(\frac{\partial L_i(\mathbf{W})}{\partial \mathbf{W}}, \quad \left(\frac{\partial L_i(\mathbf{W})}{\partial \mathbf{W}} \right)^2, \right)$$
batch size, ...

• Input $u^{(p)}$ & Output $v^{(p)}$

Testing

- Use new data
 - Input $u^{(p)}$ & Output $v^{(p)}$
 - Verify prediction ${\pmb v}$ vs. real ${\pmb v}^{(p)}$





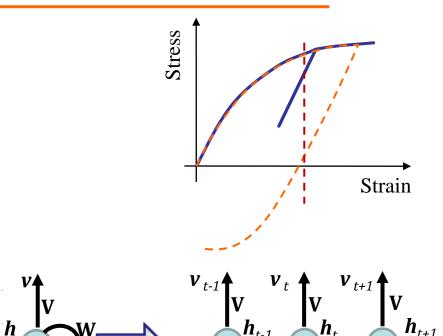
History dependency

Elasto-plastic material behaviour

- No bijective strain-stress relation
 - Feed-forward NNW cannot be used
 - · History should be accounted for

Recurrent neural network

- Allows a history dependent relation
 - Input u_t
 - Output $v_t = g(u_t, h_{t-1})$
 - Internal variables $h_t = g(u_t, h_{t-1})$
- Weights matrices U, W, V
 - Trained using sequences
 - Inputs $u_{t-n}^{(p)},...,u_t^{(p)}$
 - Output $v_{t-n}^{(p)}$, ..., $v_t^{(p)}$

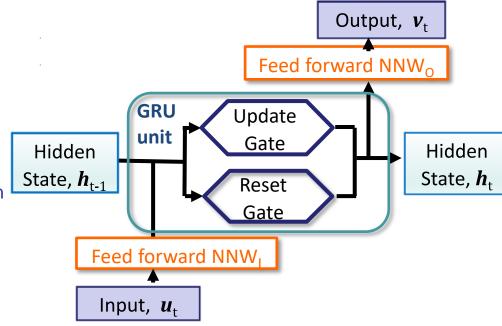


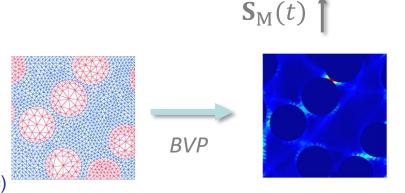
 \boldsymbol{u}_t

History dependency

Recurrent neural network design

- 1 Gated Recurrent Unit (GRU)
 - Reset gate: select past information to be forgotten
 - Update gate: select past information
 to be passed along
 - Need to define number of hidden variables h_t
- 2 feed-forward NNWs
 - NNW $_{\rm I}$ to treat inputs u_t
 - NNW $_{
 m O}$ to produce outputs v_t
- Input and Output
 - u_t: homogenised GL strain E_M (symmetric)
 - v_t : homogenised 2nd PK stress S_M (symmetric)



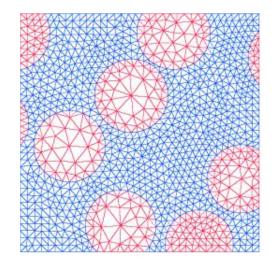


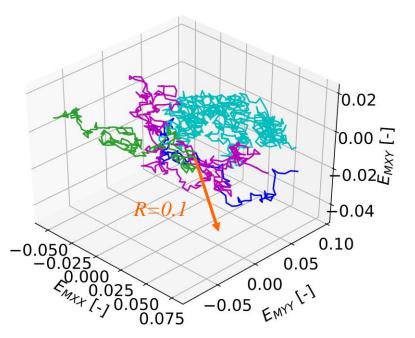
 $\mathbf{E}_{\mathsf{M}}(t)$

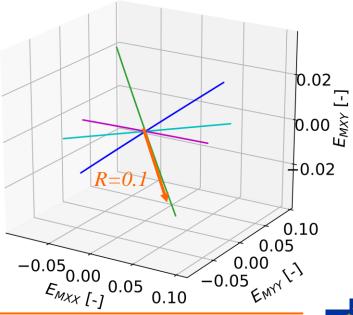
History dependency

Data generation

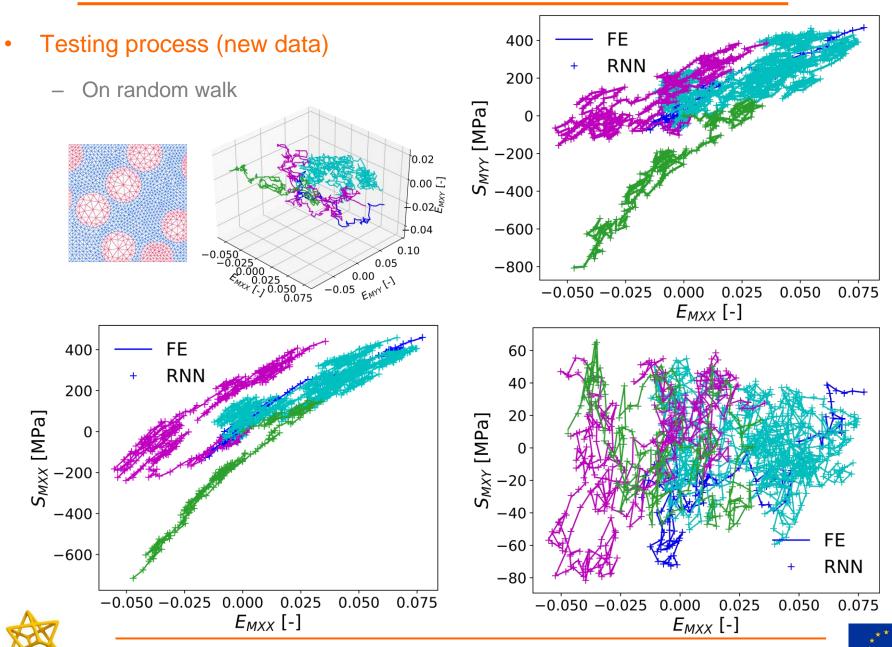
- Elasto-plastic composite RVE
- Training stage
 - Should cover full range of possible loading histories
 - Use random walking strategy (thousands)
 - Completed with random cyclic loading (tens)
 - Bounded by a sphere of 10% deformation







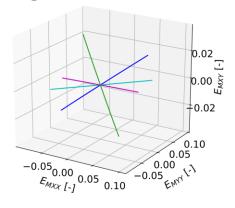
History dependency

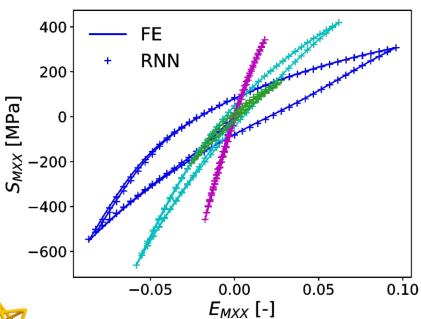


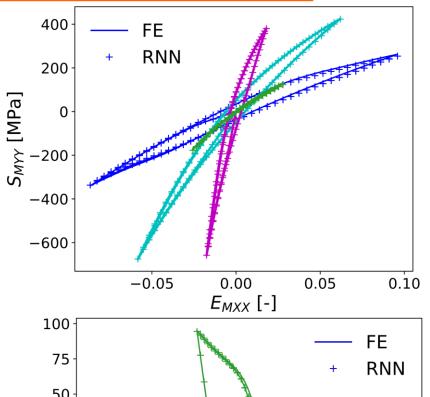
History dependency

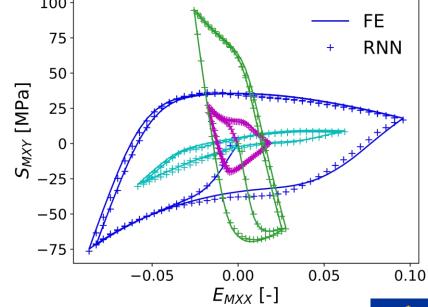
Testing process (new data)

On cyclic loading





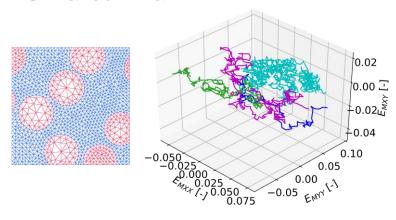


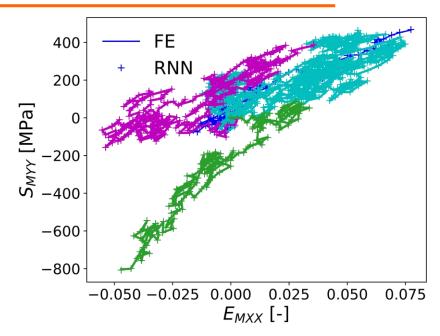


Localisation step

Only homogenised output is predicted

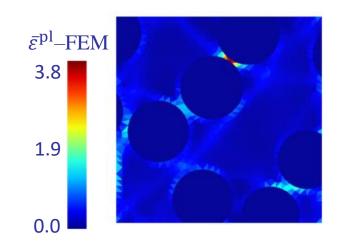
On random walk





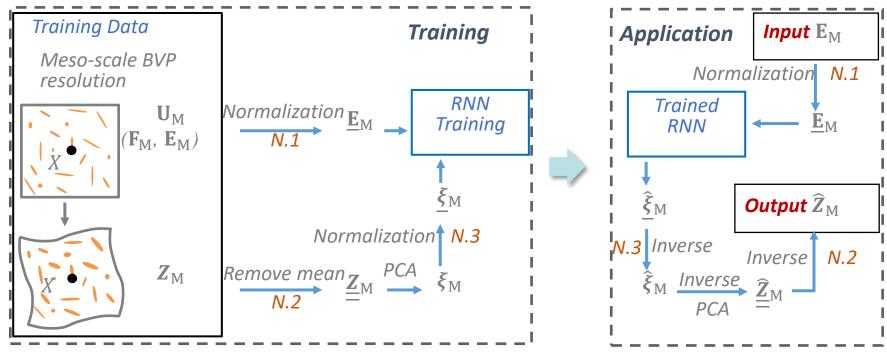
Quid of local fields?

- This is an advantage of multiscale methods
- Useful to predict failure, fatigue etc.
- Can we get it back at low cost?



Localisation step

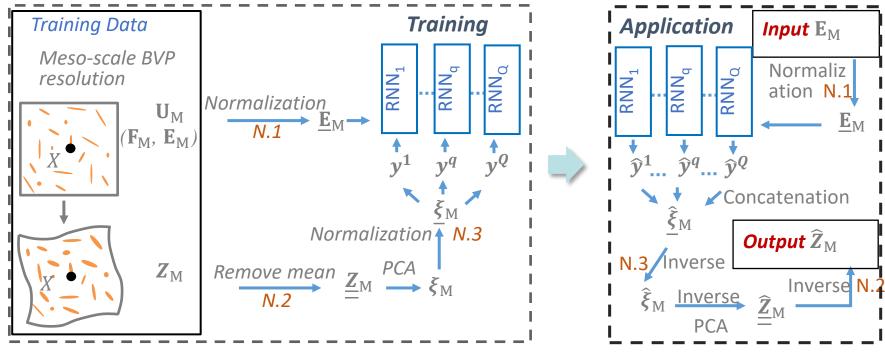
Optimise the method: reduce the size of the internal variables



- Principal Component Analysis (PCA) applied on Z_{M} to reduce the output of RNN
 - Construct matrix $\mathbf{Z}_{\mathbf{M}} = \left[\underline{\mathbf{Z}}_{\mathbf{M}_1} \ \underline{\mathbf{Z}}_{\mathbf{M}_2} \ \dots \underline{\mathbf{Z}}_{\mathbf{M}_n}\right]_{d \times n}$ from n observations (1% from all data)
 - Extract n ordered eigenvalues Λ_i and eigen vector \underline{v}_i of $\mathbf{Z}_{\mathrm{M}}^T\mathbf{Z}_{\mathrm{M}}$
 - Build reduced basis $\mathbf{V} = \begin{bmatrix} \underline{v}_1 & \underline{v}_2 & ... & \underline{v}_p \end{bmatrix}_{d \times p}$ and reduced data $\boldsymbol{\xi}_{\mathbf{M}} = \mathbf{V}^T \underline{\mathbf{Z}}_{\mathbf{M}}$ of size p < d
 - Reconstruction $\underline{\underline{\widehat{z}}}_{M} = V \xi_{M}$
 - But not enough

RNN with dimensionality reduction and break down

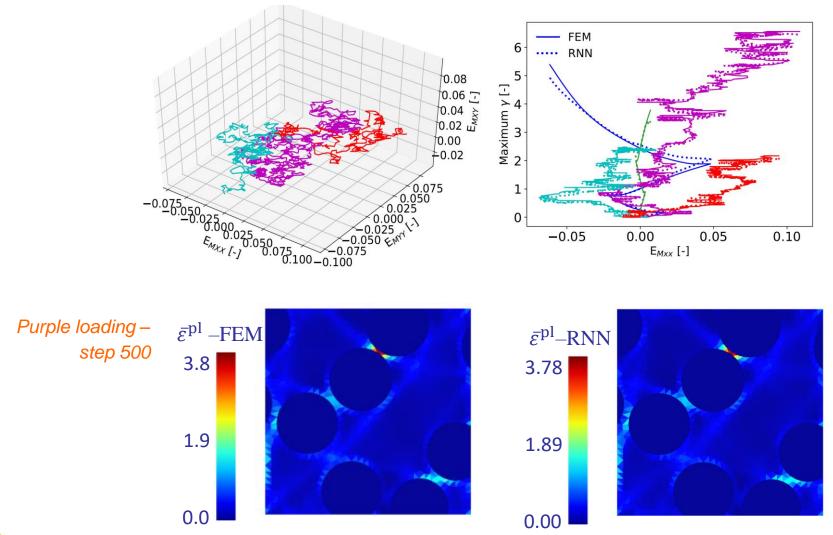
Dimensionality reduction & break down



- To further reduce the output dimension of RNN
 - The surrogate modelling is carried out by a few small RNNs, instead of one big RNN
 - The high dimension output is divided into Q groups, and each RNN is used to reproduce only
 a part of output
- PCA reduces $Z_{\rm M}$ to 180 outputs and we use Q=6

Localisation step

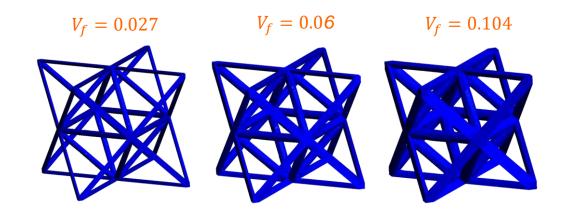
• Evaluation of equivalent plastic strain $\bar{\varepsilon}^{\rm pl}$: Random loading (testing data)



Geometrical parameters effect

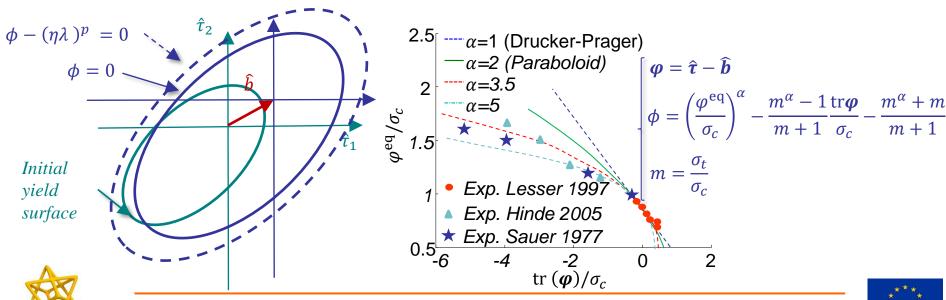
Study of PA lattices

- Input:
 - Strain (history): F_M
 - Geometrical parameters: $oldsymbol{arphi}_{
 m m}$
 - Material parameters: $\gamma_{\rm m}$
- Output:
 - Stress (history): P_M



Material model

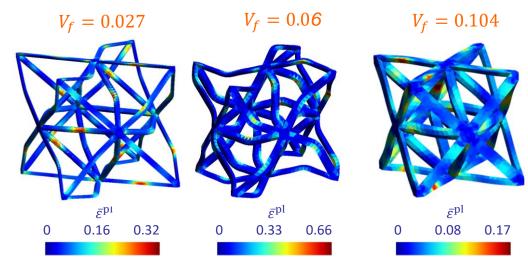
Viscoelastic-viscoplastic finite strain model

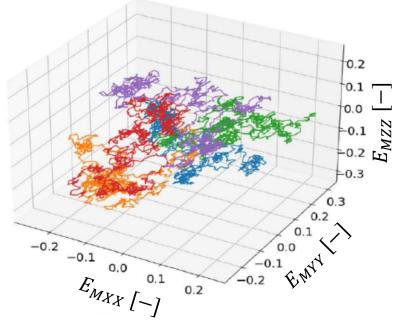


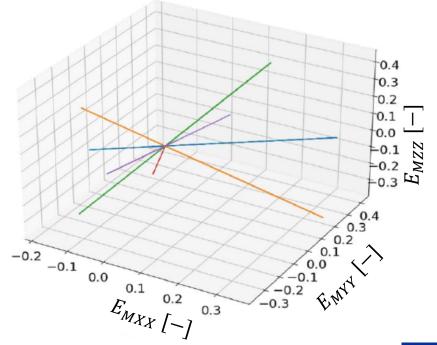
Geometrical parameters effect

Input / output Generation

- Input:
 - Random strain (history): F_M
 - Random geometrical parameters: φ_m
- Output:
 - Stress (history): P_M



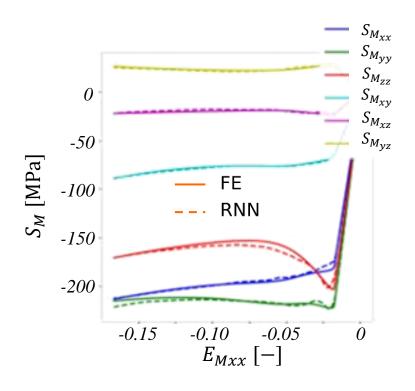


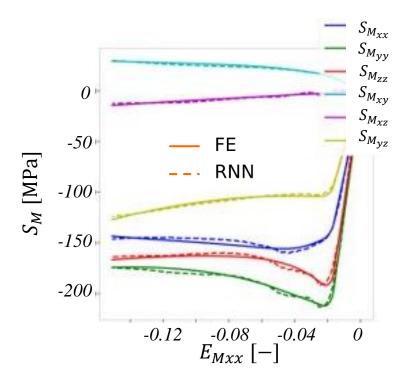


Geometrical parameters effect

Lattice cell

 Test on new cells of random volume fraction for new cyclic paths (per unit volume of polymer)





Meso-scale surrogate model for complex material systems

Neural networks can account for

- Strain (history): $\mathbf{F}_{\mathbf{M}}$

Geometrical parameters: ϕ_{m}

Material parameters: $\gamma_{\rm m}$

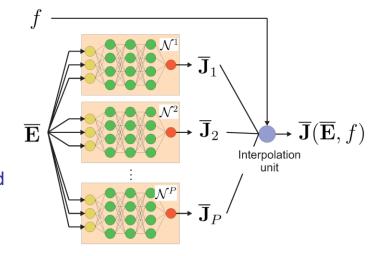
However, this requires

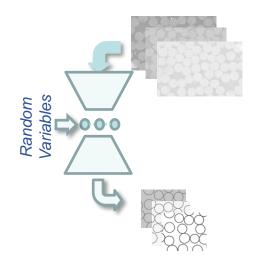
- Extensive training data
 - Interpolation of neural network trained for different inclusions volume fraction f is considered to reduced the number of training data

[Lu, Yvonnet, Papadopoulos, Kalogeris, Papadopoulos (2021). A stochastic FE2 data-driven method for nonlinear multiscale modeling. Materials]

- Quid for distribution effect?
- Possibility is to extract information from image analysis
- · e.g. using CNN

[Rao, C., & Liu, Y. (2020). Three-dimensional convolutional neural network (3D-CNN) for heterogeneous material homogenization. CMS]



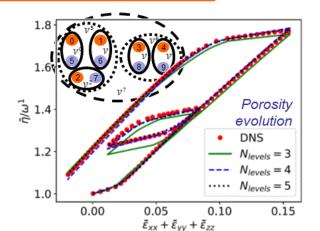


Meso-scale surrogate model for complex material systems

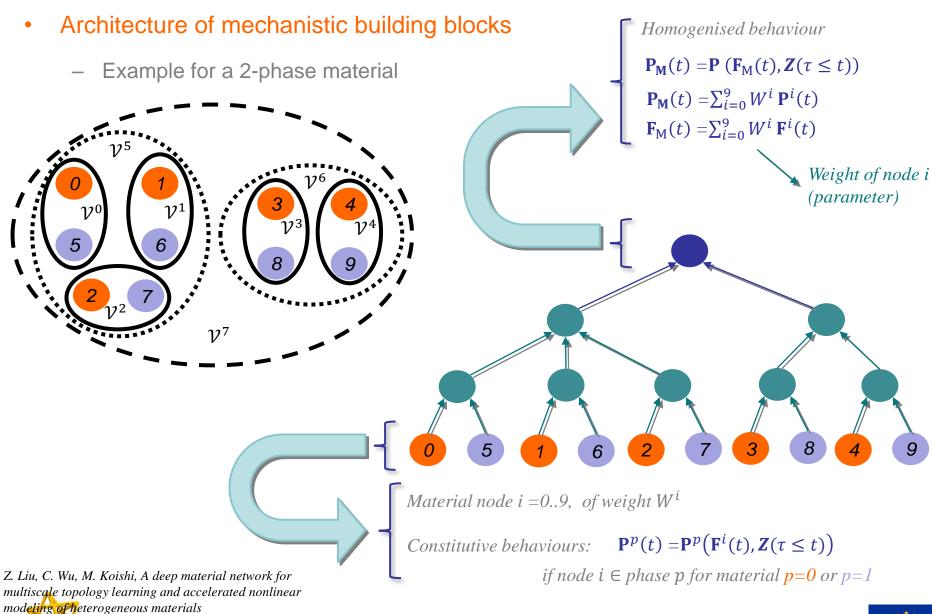
Deep material networks

- Based on thermodynamic consistency
- Possesses extrapolation capabilities in
 - Strain (history): F_M
 - Material parameters: γ_m

- Seminal work
 - Liu, Wu, Koishi, (2019). A deep material network for multiscale topology learning and accelerated nonlinear modeling of heterogeneous materials. CMAME
- Reformulation and use as surrogate for arbitrary material law
 - Gajek, Schneider, Böhlke, (2021). An FE–DMN method for the multiscale analysis of short fiber reinforced plastic components. CMAME
 - Nguyen, Noels, L. (2022). Interaction-based material network: A general framework for (porous)
 microstructured materials. CMAME
- Interpolate some geometrical features of micro-structure ϕ_{m}
 - Huang, Liu, Wu, Chen, Wei (2022). Microstructure-guided deep material network for rapid nonlinear material modeling and uncertainty quantification. CMAME



Deep Material Networks with laminate building blocks



* * * * * * * * *

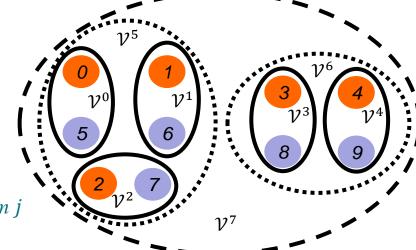
- Alternative to laminate (e.g. for porous material)
- Mechanism j=0..M-1 of interaction \mathcal{V}^j
 - Homogenised deformation gradient
 - Construction of a strain fluctuation field

$$\mathbf{F}_{\mathrm{M}} + \sum_{j:i \in \mathcal{V}^j} \alpha^{i,j} \, \boldsymbol{a}^j \otimes \boldsymbol{N}^j = \boldsymbol{F}^i$$
, $j = 0..M - 1$

Contribution of node i in mechanism j (parameter?)

Direction of mechanism j (parameter)

Degrees of freedom of mechanism j defining the strain fluctuation



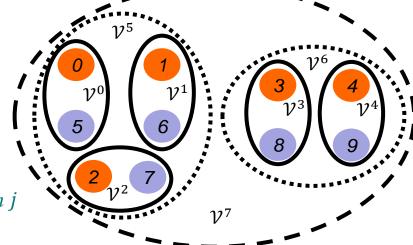
- Alternative to laminate (e.g. for porous material)
- Mechanism j = 0..M 1 of interaction \mathcal{V}^{j}
 - Homogenised deformation gradient
 - Construction of a strain fluctuation field

$$\mathbf{F}_{\mathrm{M}} + \sum_{j:i \in \mathcal{V}^j} \alpha^{i,j} \, \boldsymbol{a}^j \otimes \boldsymbol{N}^j = \boldsymbol{F}^i$$
, $j = 0..M - 1$

Contribution of node i in mechanism j (parameter?)

Tirection of mechanism j (parameter)

Degrees of freedom of mechanism j defining the strain fluctuation



Constraints from strain averaging

•
$$\mathbf{F}_{\mathbf{M}} = \sum_{i} W^{i} \mathbf{F}^{i}$$
 $\sum_{j} \left(\sum_{i \in \mathcal{V}^{j}} W^{i} \alpha^{i,j} \right) \mathbf{a}^{j} \otimes \mathbf{N}^{j} = 0$

Weak form from Hill-Mandel

•
$$\mathbf{P}_{\mathsf{M}}:\delta\mathbf{F}_{\mathsf{M}}=\sum_{i}W^{i}\mathbf{P}^{i}:\delta\mathbf{F}^{i}$$

$$\left[\sum_{i} \left(\sum_{i \in \mathcal{V}^{j}} W^{i} \mathbf{P}^{i} \alpha^{i,j}\right) \cdot \mathbf{N}^{j}\right] \cdot \delta \mathbf{a}^{j} = 0$$

Weight of node i

(parameter)

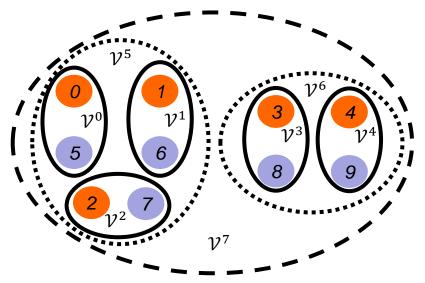
Offline stage on a p-phase RVE

- Topological parameters χ
 - Nodal weight: W^i , i = 0...9
 - Direction of interaction V^j : N^j , j = 0...7
 - Interaction weight: $\alpha^{i,j}$

$$\chi = [W^0, ..., W^9, N^0, ..., N^7, \alpha^{0,0}, ... \alpha^{9,7}]$$

$$\gamma_{\rm m} = [E_0, \nu_0, E_1, \nu_1 \dots E_p, \nu_p]$$

- Cost functions to minimise $L(\widehat{\mathbb{C}}_{\mathrm{M}}, \mathbb{C}_{\mathrm{M}}(\mathbf{\chi})) = \frac{1}{n} \sum_{s=1}^{n} \frac{\|\widehat{\mathbb{C}}_{\mathrm{M}}(\mathbf{\gamma}_{\mathrm{m}_{s}}) \mathbb{C}_{\mathrm{M}}(\mathbf{\chi}|\mathbf{\gamma}_{\mathrm{m}_{s}})\|}{\|\widehat{\mathbb{C}}_{\mathrm{M}}(\mathbf{\gamma}_{\mathrm{m}_{s}})\|}$
- By « stochastic gradient descent (SGD) » algorithm



Offline stage on a p-phase RVE

- Topological parameters χ
 - Nodal weight: W^i , i = 0...9
 - Direction of interaction V^j : N^j , j = 0...7
 - Interaction weight: $\alpha^{i,j}$

$$\chi = [W^0, ..., W^9, N^0, ..., N^7, \alpha^{0,0}, ... \alpha^{9,7}]$$

- Using elastic data
 - Random properties on RVE $\implies \widehat{\mathbb{C}}_{\mathrm{M}}(\gamma_{\mathrm{m}})$

$$\gamma_{\rm m} = [E_0, \nu_0, E_1, \nu_1 \dots E_p, \nu_p]$$

- Cost functions to minimise $L(\widehat{\mathbb{C}}_{\mathrm{M}}, \mathbb{C}_{\mathrm{M}}(\mathbf{\chi})) = \frac{1}{n} \sum_{s=1}^{n} \frac{\|\widehat{\mathbb{C}}_{\mathrm{M}}(\mathbf{\gamma}_{\mathrm{m}_{s}}) \mathbb{C}_{\mathrm{M}}(\mathbf{\chi}|\mathbf{\gamma}_{\mathrm{m}_{s}})\|}{\|\widehat{\mathbb{C}}_{\mathrm{M}}(\mathbf{\gamma}_{\mathrm{m}_{s}})\|}$
- Using non-linear response
 - Random loading on RVE (strain sequence F_{M_S})
 - Compare stress history $\mathbf{P}_{\mathrm{M}}(\mathbf{F}_{\mathrm{M}_{S}})$ and quantity of interest $Z(\mathbf{F}_{\mathrm{M}_{S}})$ (e.g. porosity)

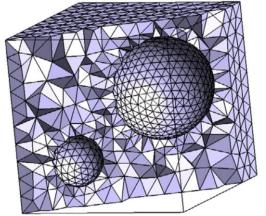
$$\text{- Cost function} \quad L\left(\widehat{\mathbf{P}}_{\mathrm{M}},\,\mathbf{P}_{\mathrm{M}}(\pmb{\chi})\right) = \frac{1}{n} \sum_{S=1}^{n} \frac{\left\|\widehat{\mathbf{P}}_{\mathrm{M}}(\mathbf{F}_{\mathrm{M}_{S}}) - \mathbf{P}_{\mathrm{M}}(\pmb{\chi}|\mathbf{F}_{\mathrm{M}_{S}})\right\|}{\left\|\widehat{\mathbf{P}}_{\mathrm{M}}(\mathbf{F}_{\mathrm{M}_{S}})\right\|} + \frac{1}{n} \sum_{S=1}^{n} \frac{\left\|\widehat{Z}(\mathbf{F}_{\mathrm{M}_{S}}) - \bar{Z}\left(\pmb{\chi}|\mathbf{F}_{\mathrm{M}_{S}}\right)\right\|}{\left\|\widehat{Z}(\mathbf{F}_{\mathrm{M}_{S}})\right\|}$$

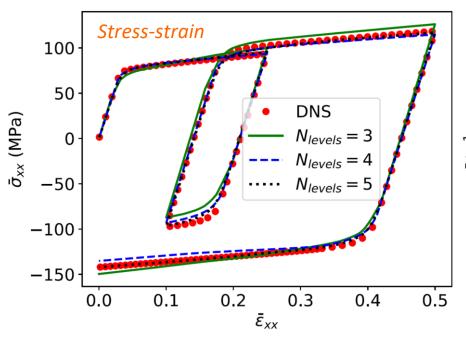
 \mathcal{V}^7

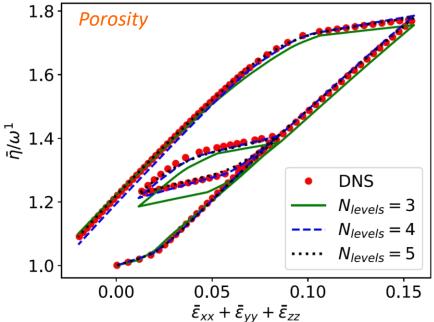
• By « stochastic gradient descent (SGD) » algorithm

Online stage on a porous material

- **Properties**
 - Elasto-plastic matrix
 - Small strain
- Non-linear training
- Uniaxial tension

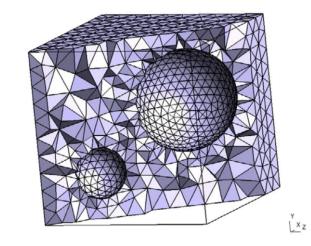


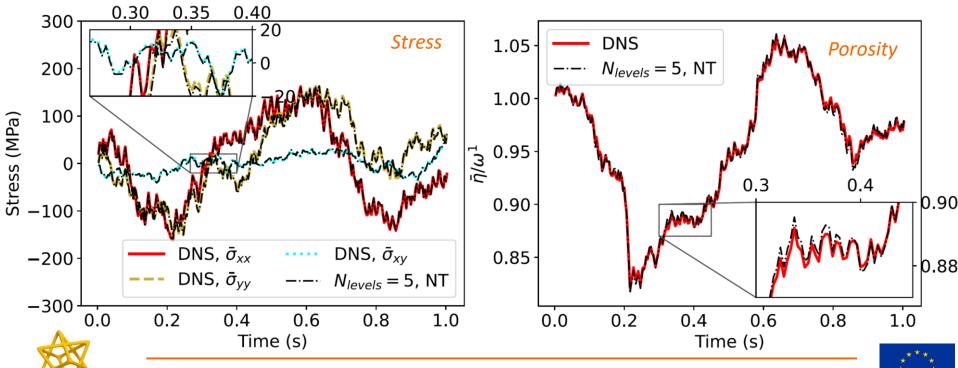




12-14 June 2023 **UNCECOMP 2023** 87

- Online stage on a porous material
 - Properties
 - Elasto-plastic matrix
 - Small strain
 - Extrapolation capabilities
 - Non-linear training with material parameters $\gamma_{\rm m1}$
 - On-line simulation with material parameters $\gamma_{
 m m2}$
 - Random loading



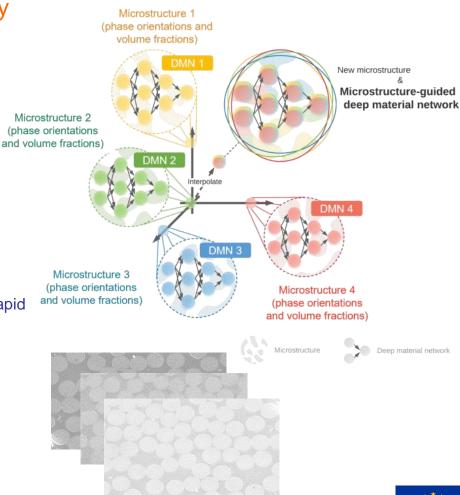


Meso-scale surrogate model for complex material systems

- Deep material networks can account for
 - Strain (history): F_M
 - Material parameters: $\gamma_{\rm m}$
- Because of thermodynamic consistency
 - Possesses extrapolation capabilities
 - Reduced training dataset
- However, interactions are defined for
 - Geometrical parameters: $\phi_{\rm m}$
 - For an identified geometrical features
 - Interpolation of DMNs for different inclusions volume fraction f and fibre orientation distribution tensor

[Huang, T., Liu, A., Wu, C.T., Chen, Wei (2022). Microstructure-guided deep material network for rapid nonlinear material modeling and uncertainty quantification, CMAME]

- Quid for distribution effect?
 - Possibility is to extract information from image analysis?



Conclusions

Micro-mechanical models

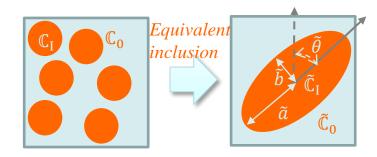
- General for a micro-structure kind
 - Geometrical parameters: $\varphi_{\rm m}$
 - Material parameters: $\gamma_{\rm m}$
- Based on thermodynamic consistency
 - Possesses extrapolation capabilities
- Delicate identification

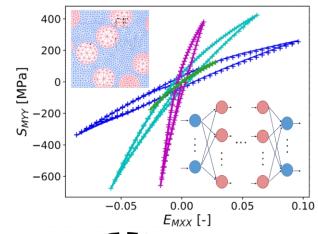
Neural networks

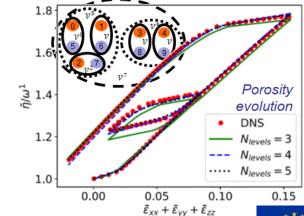
- Theoretically generic
 - Geometrical parameters: $\varphi_{\rm m}$
 - Material parameters: $\gamma_{\rm m}$
- No extrapolation capabilities
 - Requires extensive data

Deep material networks

- Based on thermodynamic consistency
 - Possesses extrapolation capabilities
- Fixed micro-structure?







12-14 June 2023 98