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ABSTRACT. Current evolutionary models suggest that the presence of heterogeneous habitats favours the evolu-
tion of polymorphisms. In such cases, alternative phenotypes can coexist because they use different resources. Fac-
ultative paedomorphosis is a heterochronic polymorphism in which a morph – the paedomorph – retains larval traits
during the adult stage while the other morph – the metamorph – is fully metamorphosed. The aim of this study was
to determine the microhabitat use and the diet of Alpine newt paedomorphs, metamorphs and immatures (

 

Triturus
alpestris apuanus) 

 

coexisting in a small pond in Tuscany, central Italy, i.e. in a habitat where dimorphism is not
expected. Although the two adult morphs do not use exactly the same resources, resource partitioning was weaker
than in deep Alpine lakes. Nevertheless, the diet of immature gilled newts (larvae) differed from that of adults (met-
amorphs and paedomorphs). While the larvae eat a large number of planktonic organisms, the adults focus on insect
larvae and newt eggs. The differences in resource use favour the coexistence of aquatic juveniles and adults. In the
studied pond, facultative paedomorphosis was previously shown to be favoured by a precocious maturity of the
paedomorphs. This study shows that the coexistence of paedomorphs and metamorphs may also be supported by
some dietary and spatial segregation, although any advantages gained by this pattern are rather limited in the adult
stage.
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INTRODUCTION

 

Newts live under water during the breeding period and
adopt a terrestrial life during the rest of the year (G

 

RIF-

FITHS

 

, 1996). Food and microhabitat use in the aquatic
phase have been largely studied in the species of genus

 

Triturus

 

 (see e.g. G

 

RIFFITHS

 

 & M

 

YLOTTE

 

, 1987; J

 

OLY

 

 &
G

 

IACOMA

 

, 1992). Newts often play the role of top preda-
tors (S

 

CHABETSBERGER

 

 & J

 

ERSABEK

 

, 1995). Their diet is
wide, newts eating prey such as small crustaceans, mol-
luscs, aquatic insect larvae, and aquatic insects (J

 

OLY

 

,
1987a). Furthermore, they can also forage on amphibian
eggs laid in the aquatic habitat (Joly, 1987a; S

 

ATTMANN

 

,
1989; J

 

OLY

 

 & G

 

IACOMA

 

, 1992) and on terrestrial inverte-
brates that fall to the water surface (C

 

HACORNAC

 

 & J

 

OLY

 

,
1985; S

 

ATTMANN

 

, 1989; J

 

OLY

 

 & G

 

IACOMA

 

, 1992; S

 

CHA-

BETSBERGER

 

 & J

 

ERSABEK

 

, 1995). They can occupy all
aquatic micro-habitats, i.e. the shoreline, the water col-
umn, the water surface and the bottom of lakes up to nine
meters deep (S

 

CHABETSBERGER

 

, 1993; D

 

ENOËL

 

 & J

 

OLY

 

2001a).
Although they can be largely opportunistic, newts can

also select microhabitats and prey according to specific
taxa or sizes (A

 

VERY

 

, 1968; J

 

OLY

 

 & G

 

IACOMA

 

, 1992;
B

 

RAZ

 

 & J

 

OLY

 

, 1994). In ponds where up to five newt spe-
cies can be found (A

 

RNTZEN

 

 & D

 

E

 

 W

 

IJER

 

, 1989), such
habitat and prey selection might reduce species competi-

tion and then favour their coexistence (S

 

CHOENER

 

, 1974;
T

 

OKESHI

 

, 1999). Resource partitioning has been observed
in several newt communities composed of two (D

 

OLMEN

 

& K

 

OKSVIK

 

, 1983; G

 

RIFFITHS

 

 & M

 

YLOTTE

 

, 1987; D

 

OL-

MEN

 

, 1988) and three species (J

 

OLY

 

 & G

 

IACOMA

 

, 1992;
F

 

ASOLA

 

, 1993; B

 

RAZ

 

 & J

 

OLY

 

, 1994). However, large
niche overlaps were also found in other newt communi-
ties (B

 

RAÑA

 

 et al., 1986; G

 

RIFFITHS

 

, 1986, 1987; J

 

EHLE

 

 et
al., 2000).

The life cycle of newts is complex and composed of a
pre-metamorphic larval stage and a post-metamorphic
juvenile and adult stage (G

 

RIFFITHS

 

, 1996). However, in
some populations, individuals forgo metamorphosis and
reproduce in the larval stage (facultative paedomorpho-
sis) (S

 

EMLITSCH

 

 & W

 

ILBUR

 

, 1989; B

 

REUIL

 

, 1992; W

 

HITE-

MAN

 

, 1994). In Europe such a process is known in 

 

Tritu-
rus

 

 newts, including Italian populations of 

 

T. alpestris

 

(D

 

UBOIS

 

 & B

 

REUIL

 

, 1983; A

 

NDREONE

 

 & D

 

ORE

 

, 1991;
A

 

NDREONE

 

 et al., 1993; D

 

ENOËL

 

 et al. 2001b). Paedomor-
phosis has been shown to be favoured in permanent
aquatic habitats at low densities (H

 

ARRIS

 

, 1987; S

 

EML-

ITSCH

 

, 1987) and when prey are abundant (D

 

ENOËL

 

 &
P

 

ONCIN

 

, 2001). Early maturation of paedomorphs (R

 

YAN

 

& S

 

EMLITSCH

 

, 1998; D

 

ENOËL

 

 & J

 

OLY

 

, 2000), resource
partitioning between morphs (W

 

HITEMAN

 

 et al., 1996;
D

 

ENOËL

 

 et al., 1999; D

 

ENOËL

 

 & J

 

OLY

 

, 2001a), high
energy intake (D

 

ENOËL

 

 et al., 2002), different breeding
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frequencies (W

 

HITEMAN

 

, 1997) and sexual activities in
the two morphs (D

 

ENOËL

 

 et al., 2001a) also favour the
maintenance of facultative paedomorphosis in natural
populations.

Resource polymorphisms are expected to be promoted
in heterogeneous habitats devoid of competitors (S

 

KULA-

SON

 

 & S

 

MITH

 

, 1995; S

 

MITH

 

 & S

 

KULASON

 

, 1996). This
hypothesis is supported by empirical data in fishes
(M

 

ALMQUIST

 

, 1992; M

 

ALMQUIST

 

 et al., 1992; R

 

OBINSON

 

 et
al., 1993), and also in newts (D

 

ENOËL

 

 et al., 1999, 2001b;
D

 

ENOËL

 

 & J

 

OLY

 

, 2001a). Intramorphic differences in diet
were also shown to favour coexistence of larval and
paedomorphic newts in one of these lakes (D

 

ENOËL

 

 &
J

 

OLY

 

, 2001b). However, in less complex habitats, space
and feeding habits of paedomorphs and metamorphs have
been poorly studied (e.g., F

 

ASOLA

 

 & C

 

ANOVA

 

, 1992) and
no study has examined resource use in such sites occu-
pied by only one species.

The aim of the present study was to determine the feed-
ing and space habits of paedomorphic, metamorphic and
immature gilled Alpine newts (

 

Triturus alpestris apuanus

 

[Bonaparte, 1839]) (Amphibia, Caudata, Salamandridae)
coexisting in a habitat devoid of diversified components :
a small pond. The comparisons of these traits in alterna-
tive heterochronic morphs will help us to understand the
maintenance of facultative metamorphosis in such natural
populations. Particularly, we expect large overlaps in
resource use between adult morphs due to the small depth
of the studied pond, but some partitioning between larval
and adult stages because of size differences.

 

MATERIAL AND METHODS

 

The study site is located in the Apennines close to
Parana (municipality of Mulazzo, Province of Massa Car-
rara, Tuscany, Italy; 44˚17’N/9˚51’E), at an elevation of
600 m a.s.l.. It is a small, shallow pond (maximum depth :
0.7 m, surface : 200 m

 

2

 

; Fig. 1). Water level may decrease
in summer, or, on some occasions, even dry up. The pond
comprised two main microhabitats : an open area devoid
of vegetation and an area covered with aquatic plants
(

 

Glyceria

 

, 

 

Typha

 

). The water surface freezes in winter,
including at the beginning of the breeding season when
there are still heavy snowfalls (March). The pond is sur-
rounded by pastures and in the proximity of deciduous
forests (around one hundred meters). It is devoid of fish
and no water snakes were observed during the study. The
newt community is only composed of Alpine newts 

 

Tritu-
rus alpestris apuanus

 

, although we found a single indi-
vidual of 

 

Triturus carnifex carnifex

 

 (D

 

ENOËL

 

 et al.,
2001b).

Five types of Alpine newt could be distinguished in the
population : (1) (2) the male and female metamorphs, (3)
(4) the male and female paedomorphs, and (5) the gilled
larvae, also called gilled juveniles (overwintering individ-
uals in the present analysis). Both paedomorphs and met-
amorphs were indeed sexually mature, as shown by
behavioural analyses (B

 

OVERO

 

 et al., 1997; pers. obs.).
Adulthood was here defined by the presence of a well
developed cloaca (

 

vs.

 

 a slit in juveniles). No metamor-
phosed juveniles were observed.

Newts were sampled with a landing net from an inflata-
ble dinghy. Sampling effort was distributed according to a
three-way design : (i) month, (ii) time of day, and (iii)
microhabitat. Two microhabitats were sampled during
each sampling session : the open area and the area cov-
ered by vegetation. Sampling lasted 20 minutes in each
microhabitat and was carried out four times a day : at
dawn (0600 hr), at mid-day (1200 hr), at the end of the
day (1800 hr) and at midnight (0000 hr). Five sampling
sessions were carried out in March 1997 (the fifth session
at 1200 hr) and eight in April 1997 (two at each sampling
time). These months correspond to the breeding period of
the newts. At that time, both paedomorphs and meta-
morphs coexisted under water. Metamorphs are terrestrial
outside the reproductive period. Captured newts were
then stocked in four large containers filled with water
from the pond. Immediately after the capture, a number of
these animals (about eight individuals of each morph)
were randomly drawn and anaesthetized in a solution of
phenoxyethanol (0.5%). Stomach contents were then col-
lected using a non-invasive stomach-flushing procedure
(J

 

OLY

 

, 1987b) and stocked in separate vials containing
formaldehyde (4%). Prey were subsequently identified (at
the species, genus, family or order level depending on
taxa) and measured (total length) on squared paper under
a stereoscopic microscope. Newts were measured (snout-
vent length, SVL to the nearest mm) with a metal rule.

As data did not fit normal distributions, we used the
Mann-Whitney 

 

U

 

-test for all statistical comparisons of
independent samples. Our samples being large and con-
taining ties, we computed the normal approximation of
the 

 

U

 

-test. We also used Spearman rank correlation with
associated 

 

t

 

-test to determine the significance of relation-
ships between variables. A chi-square test was performed
to test for equal distribution of newts in the two micro-
habitats (S

 

IEGEL

 

 & C

 

ASTELLAN

 

, 1988; S

 

TATSOFT

 

 F

 

RANCE

 

,
2000).

Prey niche overlap between morphs was calculated
using S

 

CHOENER

 

’s (1970) index, which has already been
used in newt ecology studies (G

 

RIFFITHS

 

 & M

 

YLOTTE

 

,
1987; F

 

ASOLA

 

, 1993) :

Fig. 1. – The study site (Parana, Tuscany, Italy; March 1997).
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where 

 

p

 

xi

 

 

 

is the proportional utilization of prey type i by
morph x, and pyi the proportional utilization of prey type i
by morph y. The index ranges from 0 (no prey in com-
mon) to 1 (all prey in common).

RESULTS

The four different forms of adult newt (N = 358) inhab-
ited both the open and vegetation areas. Nevertheless,
they significantly differed in the use of these microhabi-
tats (χ2 = 18.3, 3 d.f., p < 0.001; Fig. 2). The paedo-
morphs were proportionally more abundant in the vegeta-
tion area (χ2 = 12.82, 1 d.f., p < 0.001; Fig. 2).

The distribution of newts significantly differed at mid-
day (χ2 = 10.59, 3 d.f., p < 0.05; Fig. 3) and at the end of
the day (χ2 = 11.51, 3 d.f., p < 0.01; Fig. 3), but not at
midnight (χ2 = 3.68, 3 d.f., NS; Fig. 3) or at dawn (χ2 =
2.09, 3 d.f., NS; Fig. 3). At midday and in the evening,
paedomorphs were proportionally more abundant in the
vegetation (respectively, χ2 = 7.39, 1 d.f., p < 0.01 and
χ2 = 10.14, 1 d.f., p < 0.01).

A total of 7827 prey were obtained from the 296 newts
(254 adults and 42 juveniles). The prey consisted mainly
of crustaceans (Chydoridae, Cyclopoida, Ostracoda),
insect larvae (chironomid and ceratopogonid Diptera,
Plecoptera, Zygoptera, dytiscid and helodid Coleoptera),
Alpine newt eggs, and sloughs of common toad Bufo bufo
and newt Triturus alpestris (Fig. 4).

From a qualitative point of view, the two adult morphs
foraged on the same kinds of prey (Table 1 and 2). Food
niche overlap was also quite large : 0.75 between paedo-
morphic and metamorphic females and 0.74 between
paedomorphic and metamorphic males. From a quantita-
tive point of view, there were almost no significant differ-
ences between the two adult morphs (U-test, Table 1 and
2). Paedomorphic and metamorphic females significantly
differed in prey use for chironomid, helodid and Zygop-
tera larvae, but not for the other prey (U-test, Table 1).

The large mean number of Chydorus in paedomorphic
females was due to only one individual that ate 259 speci-
mens of this taxon. Paedomorphic and metamorphic
males significantly differed in prey use of Chydoridae,
Cyclopoida and amphibian sloughs, but not for the other
prey (U-test, Table 2). In all significant cases, the scores
were higher in the paedomorphs than in the metamorphs.

Significant differences were also observed between the
two different sampling dates. In females, they concern
only chironomid larvae. Other significant differences
were found only in March for chironomid pupae and
Zygoptera larvae, and in April for helodid and dytiscid
larvae (Table 1). In males, no significant differences were
found over the two months. In March, the two morphs
differed in terms of amphibian sloughs and in April for
chydorids, Cyclopoida and helodid larvae (Table 2). In
females of the two morphs, food niche overlap was 0.66
in March and 0.68 in April. In males, it was 0.67 in March
and 0.61 in April.

Fig. 2. – Spatial use of the two main microhabitats (open and
vegetation areas) in the Parana pond in April 1997. P : paedo-
morph, M : metamorph; black bars : females, open bars :
males.

Fig. 3. – Temporal use of the two main microhabitats (open
and vegetation areas) in the Parana pond in April 1997 : at
midnight, dawn, mid-day and in the evening. P : paedomorph,
M : metamorph; black bars : females, open bars : males.
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Paedomorphic females consumed significantly more
chironomid larvae (p < 0.05) and dytiscid larvae (p <
0.01) in the open area and more helodid larvae in the veg-
etation area (p < 0.05) than metamorphic females did (U-
test). Paedomorphic males consumed significantly more
Cyclopoida and helodid larvae in the open area (p < 0.01)
and more Chydorus (p < 0.01) in the vegetation area than
metamorphic males did (U-test).

There was no significant difference in diet between the
two morphs, in males and females, in the midnight sam-
ple (U-test). Significant differences were found in the
three other samples, except for males at dawn. Paedomor-
phic females ate significantly more chironomid larvae at
dawn (U-test; p < 0.01) and midday; more helodid larvae
at dawn and in the evening; and more dytiscid larvae at
dawn and midday than the metamorphic females (U-test;
p < 0.05). Stomachs of paedomorphic males contained
more Chydorus (p < 0.05) and chironomid larvae (p <
0.01) at midday, and more amphibian sloughs in the
evening than those of metamorphic males (U-test; p <
0.05).

Gilled juveniles ingested significantly more Chydorus,
Cyclopoida, Ostracoda, and chironomid and dytiscid lar-
vae than the adults (paedomorphs and metamorphs taken
together), but they consumed fewer newt eggs (U-test, p <
0.001 for each of the six comparisons; Fig. 4). Food niche
overlap was only 0.25 between adults and gilled juve-
niles.

There was a significant correlation between the size of
the prey and the size of the newts (all individuals
considered : rS = 0.32, t276 = 5.620, p < 0.001). Mean size
of the prey caught by paedomorphic and metamorphic
males (5.9 mm and 7.5 mm respectively, U-test, p = 0.05)
and by paedomorphic and metamorphic females did not
differ significantly (6.9 mm and 8.6 mm respectively, U-
test, p = 0.5), but differed between branchiate juveniles
and adults (mean = 2.7 mm and 7.3 mm respectively, U-
test, p < 0.001).

DISCUSSION

From our study it is evident that some differences were
found in both spatial and food use between paedomorphic
and metamorphic Alpine newts. Paedomorphs preferred
the microhabitats with aquatic vegetation, while meta-
morphs preferred the open area devoid of vegetation.
Some prey taxa were used differentially by the two
morphs but not consistently across the sexes (chironomid,
helodid, dytiscid and Zygoptera larvae in females and
chydorids, Cyclopoida and amphibian sloughs in males).
However, resource partitioning is different to interpret,
since it is rather limited and does not appear in all sub-
samples. The overlap for food use between the adult
morphs ranged between 0.61 and 0.75 (SCHOENER’s
Index, 1970). The two morphs were largely present in the
two microhabitats and qualitatively used the same prey
(i.e. mainly insect larvae and newt eggs, plankton being
under-exploited). In fact, the difference in prey use was
due to a larger capture rate by paedomorphs. Indeed, all
significant comparisons between the two morphs revealed
a higher mean prey number per stomach in paedomorphs
than in metamorphs.

These results differ from those obtained in a deep
Alpine lake (La Cabane lake, France). In such a diversi-
fied aquatic habitat containing a vertical component,
paedomorphs foraged in all the micro-habitats, but meta-
morphs were limited to peripheral areas. The diet of
paedomorphs was mainly composed of planktonic organ-
isms (e.g., daphnids, Cyclopoida, chirocephalids). Meta-
morphs relied for a large part on terrestrial invertebrates
that fell to the water surface of the lake (DENOËL et al.,
1999; DENOËL & JOLY, 2001a). Although less pro-
nounced, a similar degree of diet and habitat segregation
was also found in two other Alpine lakes in Greece
(DENOËL, 2001). As in our study, FASOLA & CANOVA

(1992) found a large overlap in food resources in the adult
morphs occupying small ponds inhabited by three species

Fig. 4. – Relative composition of the gut contents of gilled juveniles (N = 42) and adults (paedomorphs and metamorphs; N =
254) in the Parana pond (March/April 1997). Prey accounting for less than 0.1 percent of the diet are not represented (i.e.
Helodidae larvae, other aquatic and terrestrial invertebrates in branchiate juveniles). The large proportion of Chydorus in
adults is due to only one individual.
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of newts (Triturus alpestris apuanus, Triturus vulgaris
meridionalis and Triturus c. carnifex). These characteris-
tics support the hypothesis that the presence of varied
underexploited microhabitats favours resource partitioning
(MALMQUIST et al., 1992; ROBINSON et al., 1993; SKULASON

& SMITH, 1995), but show that the presence of such hetero-
geneity is not an obligate prerequisite for the maintenance
of polymorphisms. Alternative explications have thus to be
found, particularly in the life-history of the newts coping
with habitat uncertainty (KALEZIC & DZUKIC, 1985;
DENOËL & JOLY, 2000; DENOËL et al., 2002).

Apennine ponds are small aquatic habitats devoid of a
vertical component, in contrast to Alpine lakes, which are
often very deep (e.g. 7 m depth : DENOËL & JOLY, 2001a).
Consequently, in a rather homogeneous environment,
alternative phenotypes might profit less from their mor-
pho-physiological status (e.g. trophic apparatus, gills, and
body shape), even in the absence of newt competitors as
is the case in the studied pond (DENOËL et al., 2001b). In
the absence of deep waters, paedomorphs have also no
possibility to avoid competition with metamorphs in shal-
low waters. Differences in habitat and food use between

TABLE 1

Stomach contents of female paedomorphs (N = 35 in March,
N=40 in April) and metamorphs (N = 29 in March, N = 39 in
April) in a small Italian pond (Z-adjusted Mann-Whitney U-test)
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Chydoridae March 0 0.1 (0-2) -1.100 0.27
April 7.2 (0-259a) 0.2 (0-4) 1.534 0.12
Total 3.8 (0-259a) 0.1 (0-4) 0.980 0.32

Cyclopoida March 0.4 (0-6) 0.5 (0-5) -0.939 0.34
April 1.2 (0-16) 0.3 (0-4) 1.643 0.10
Total 0.8 (0-16) 0.4 (0-5) 0.652 0.51

Ostracoda March 0.1 (0-1) 0.1 (0-1) 0.25 0.81
April 0.03 (0-1) 0.1 (0-1) -0.607 0.54
Total 0.1 (0-1) 0.1 (0-1) -0.142 0.89

Chiromidae
larvae

March 1.4 (0-6) 0.4 (0-3) 2.860 <0.01
April 1.2 (0-7) 0.5 (0-5) 2.004 <0.05
Total 1.4 (0-7) 0.5 (0-5) 3.437 <0.001

Chironomidae 
pupae

March 1.4 (0-11) 0.4 (0-5) 2.040 <0.05
April 0.4 (0-3) 0.6 (0-4) -1.031 0.30
Total 0.8 (0-11) 0.5 (0-5) 0.767 0.44

Ceratopogonidae 
larvae

March 0.1 (0-2) 0.1 (0-2) -0.200 0.84
April 0.1 (0-1) 0.1 (0-1) 0.430 0.67
Total 0.1 (0-2) 0.1 (0-1) 0.166 0.87

Helodidae larvae March 0.9 (0-15) 0.4 (0-6) 1.345 0.18
April 0.8 (0-14) 0 3.313 <0.001
Total 0.8 (0-15) 0.2 (0-6) 3.265 <0.01

Dytiscidae larvae March 0.2 (0-2) 0.1 (0-1) 0.910 0.13
April 0.3 (0-3) 0.03 (0-1) 2.873 <0.01
Total 0.3 (0-3) 0.04 (0-1) 3.158 <0.01

Zygoptera larvae March 0.3 (0-4) 0 2.530 <0.05
April 0.3 (0-2) 0.1 (0-1) 1.487 0.13
Total 0.3 (0-4) 0.1 (0-1) 2.675 <0.01

Plecoptera larvae March 0.2 (0-2) 0.2 (0-2) 0.670 0.50
April 0 0.1 (0-2) -1.012 0.31
Total 0.1 (0-2) 0.1 (0-2) 0.430 0.67

Alpine newt eggs March 1.0 (0-9) 1.3 (0-15) 0.027 0.98
April 2.2 (0-13) 2.4 (0-17) 0.555 0.58
Total 1.6 (0-13) 1.9 (0-17) 0.388 0.70

Amphibian 
sloughs

March 0.3 (0-1) 0.3 (0-1) -0.758 0.45
April 0.1 (0-1) 0.1 (0-1) -0.032 0.97
Total 0.2 (0-1) 0.2 (0-1) -0.488 0.625

Other aquatic 
invertebrates

March 0.4 (0-3) 0.3 (0-5) 0.923 0.36
April 0.2 (0-2) 0.2 (0-2) 0.258 0.80
Total 0.2 (0-3) 0.2 (0-5) 0.904 0.37

Terrestrial
invertebrates

March 0.1 (0-2) 0.2 (0-1) -0.604 0.55
April 0.3 (0-2) 0.2 (0-2) 0.665 0.51
Total 0.2 (0-2) 0.2 (0-2) 0.145 0.89

Chydoridae are Cladocera, Cyclopoida are Copepoda, Helodidae and Dytiscidae are Coleoptera, Chironomidae and Ceratopogonidae are Diptera.
Amphibian sloughs are from Triturus alpestris and Bufo bufo. Z. adj. = Z. adjusted.
a Large value due to only one individual.

TABLE 2

Stomach contents of male paedomorphs (N = 17 in March,
N=27 in April) and metamorphs (N = 30 in March, N = 37 in
April) in a small Italian pond (Z-adjusted Mann-Whitney U-test)
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Chydoridae March 0 0 - -
April 0.6 (0-4) 0.1 (0-1) 2.692 <0.01
Total 0.4 (0-4) 0.03 (0-1) 2.768 <0.01

Cyclopoida March 1.4 (0-12) 0.4 (0-4) 0.135 0.89
April 1.4 (0-13) 0.1 (0-2) 2.589 <0.01
Total 1.4 (0-13) 0.3 (0-4) 1.969 <0.05

Ostracoda March 0 0.1 (0-1) -1.076 0.28
April 0.1 (0-1) 0.03 (0-1) 1.362 0.17
Total 0.1 (0-1) 0.05 (0-1) 0.531 0.59

Chironomidae 
larvae

March 1.1 (0-4) 0.9 (0-3) 0.366 0.71
April 1.1 (0-5) 1.1 (0-6) 0.111 0.91
Total 1.1 (0-5) 1.0 (0-6) 0.289 0.77

Chironomidae 
pupae

March 0.8 (0-4) 0.3 (0-2) 0.812 0.42
April 0.2 (0-3) 0.4 (0-4) -0.941 0.35
Total 0.4 (0-4) 0.3 (0-4) -0.211 0.83

Ceratopogonidae 
larvae

March 0.2 (0-2) 0.2 (0-2) -0.393 0.69
April 0.2 (0-3) 0.1 (0-1) 0.203 0.84
Total 0.2 (0-3) 0.2 (0-2) -0.114 0.91

Helodidae larvae March 0.3 (0-2) 0.4 (0-5) 0.320 0.75
April 0.3 (0-1) 0.03 (0-1) 2.753 <0.01
Total 0.3 (0-2) 0.2 (0-5) 1.0909 0.06

Dytiscidae larvae March 0.2 (0-1) 0.5 (0-3) -1.428 0.15
April 0.3 (0-2) 0.1 (0-1) 1.315 0.19
Total 0.3 (0-2) 0.3 (0-3) -0.206 0.84

Zygoptera larvae March 0.1 (0-1) 0 1.328 0.18
April 0.1 (0-1) 0.1 (0-1) 0.038 0.97
Total 0.1 (0-1) 0.1 (0-1) 0.619 0.54

Plecoptera larvae March 0 0.03 (0-1) -0.753 0.45
April 0.03 (0-1) 0 1.171 0.24
Total 0.02 (0-1) 0.02 (0-1) 0.301 0.76

Alpine newt eggs March 0.1 (0-1) 0.1 (0-1) -0.503 0.61
April 0.9 (0-4) 1.0 (0-16) 0.860 0.39
Total 0.6 (0-4) 0.6 (0-16) 0.785 0.43

Amphibian 
sloughs

March 0.6 (0-2) 0.2 (0-1) 2.374 <0.05
April 0.2 (0-1) 0.1 (0-1) 1.234 0.22
Total 0.3 (0-2) 0.1 (0-1) 2.363 <0.05

Other aquatic 
invertebrates

March 0.1 (0-1) 0.4 (0-4) -0.590 0.55
April 0.2 (0-1) 0.03 (0-1) 1.769 0.08
Total 0.1 (0-1) 0.2 (0-4) 0.638 0.52

Terrestrial
invertebrates

March 0 0.1 (0-1) -1.076 0.28
April 0.2 (0-1) 0.1 (0-1) 0.147 0.83
Total 0.1 (0-1) 0.1 (0-1) -0.233 0.82
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alternative morphs within a species have been shown in
animal groups other than the amphibians. For instance, in
the bluegill (Lepomis macrochirus), individuals differ in
the size of their pectoral fins. This specialization gives
them specific foraging advantages : in open water for the
individuals with short fins and in vegetated areas for the
individuals with long fins. The two morphs are also
observed in the micro-habitat where they are expected
(EHLINGHER, 1990). However, in heterochronic newts, no
morphological trait supports the higher abundance of
paedomorphs in the vegetation area than in the open area.
Indeed, paedomorphs would be particularly expected in
open water. Such habitat preference might be connected
to some foraging tactics because prey distribution differs
between the two habitat components (M. DENOËL, pers.
obs.), but laboratory experiments are needed to test this
hypothesis.

Paedomorphs and metamorphs possess a different
feeding mechanism. In both morphs, prey items are
sucked in with water, but metamorphs have to expel water
out of the mouth after suction because their gill slits are
closed (JOLY, 1981; LAUDER & SHAFFER, 1993). These
morphological differences lead to differences in effi-
ciency of catching prey : paedomorphs are better preda-
tors on crustaceans whereas metamorphs are more effi-
cient at catching terrestrial invertebrates (DENOËL, 2001).
Despite these characteristics, paedomorphs do not eat
many more plankton (except in April in males) and less
terrestrial invertebrates than metamorphs in the studied
pond. In fact, although planktonic organisms were rela-
tively abundant (around twenty individuals per litre) in
the eutrophic pond, adults caught only a few individuals
each day. This means that far fewer plankton were eaten
than in Alpine lakes where plankton was an important ele-
ment of the diet (around sixty planktonic individuals per
paedomorph stomach : DENOËL et al., 1999; DENOËL &
JOLY, 2001a). This lack of utilisation of small prey might
originate from the abundance of other prey in the diet of
newts (e.g., chironomid larvae and newt eggs) (JOLY,
1987a). Higher ingestion rates of chironomid larvae in
paedomorphs than in metamorphs were also shown in
experimental trials (DENOËL, 2001). In the studied pond,
terrestrial invertebrates were very rare, suggesting that
metamorphs are not particularly specialized on this diet.
On the contrary, in oligotrophic Alpine lakes, terrestrial
invertebrates are abundant during the aquatic active
period of the newts, and comprise a large part of the diet
of the newts (CHACORNAC & JOLY, 1985; SATTMANN,
1989; JOLY & GIACOMA, 1992; SCHABETSBERGER & JERS-

ABEK, 1995).
The diet of newts was not identical in March and April.

These differences were mainly due to variation in prey
abundance between these two months. For instance, the
small number of newt eggs consumed in March was due
to the oviposition period of the newts, which was more
intense in April than in March. More amphibian sloughs
were foraged in March as a consequence of the adaptation
of the newts to their new environment (GRIFFITHS, 1996)
and to the presence of common toads Bufo bufo only in
March. Large densities of prey might also increase
resource overlap (HINDAR & JONSSON, 1982; GRIFFITHS,
1986; SMITH, 1990), but similar food niche overlaps
between morphs were found in March and April.

Eggs of newts are usually laid in the aquatic vegetation
(MIAUD, 1995), increasing their survival against inverte-
brate and vertebrate predators (MIAUD, 1993, 1994).
However, Alpine newts foraged particularly on this kind
of prey. Considering fecundity of Alpine newts (a few
tens to hundreds of eggs : KALEZIC et al., 1996) and the
large number of eggs eaten (more than one egg per newt
per day in this study), this predation affects general pro-
ductivity and potentially limits the population size. In the
studied site, newt density was very high : more than 2000
newts for a 100 m3 pond. This predation mechanism
might then be regulated by population density. It is also
mainly exhibited by females, as previously outlined by
other authors (JOLY, 1987a; SATTMANN, 1989; JOLY &
GIACOMA, 1992). Kin selection experiments suggests that
some amphibian species avoid eating their own progeny
(BLAUSTEIN & WALLS, 1995). However, no kin selection
was found in the smooth newt (GABOR, 1996), and the sit-
uation remains unknown in the Alpine newt.

Variation in body size, and thus in the gape width, can
favour resource partitioning (HUTCHINSON, 1959).
Numerous examples have been found in newts and sala-
manders (LEFF & BACHMAN, 1986; KUZMIN, 1991; JOLY

& GIACOMA, 1992), including in paedomorphic commu-
nities (FASOLA & CANOVA, 1992; DENOËL & JOLY,
2001b). Paedomorphs from the studied site are younger
and smaller than the metamorphs (DENOËL & JOLY, 2000).
However, the difference in size (12 % in females, 7 % in
males) does not appear to be related to predation tactics
because the two morphs foraged on similar-sized prey. On
the contrary, gilled juveniles largely differ from adults in
diet use. They eat many more cladocerans and copepods
than the adults, but also a few more insect larvae. The
smallest gilled juveniles (23-34 mm) ate only small prey
(mean prey length of about 1 mm), but the largest gilled
juveniles behave more similarly to adults in eating differ-
ent-sized prey (mean prey length of about 1 to 13 mm).
Differences are related more to the size of individuals
than to the acquisition of maturity. Mean prey size of
adults was about 1 to 20 mm. There is thus an obvious
resource partitioning between the two gilled immature
classes and between gilled immature and adult stages.
The avoidance of planktonic organisms by adults favours
gilled juveniles, which are gape-limited. The limited
trophic similarities between the gilled juveniles and the
paedomorphs therefore favours the maintenance of
paedomorphs in the ponds as the two have to coexist all
the year round, in contrast to the metamorphs that leave
the pond after breeding (M. DENOËL, pers. obs).

In the studied site, paedomorphs gain fitness benefits
from their earlier age at maturity (DENOËL & JOLY, 2000),
but interfere with metamorphs in using similar dietary
items and habitat components (this study). Once they
mature in larval morphology, they can still gain advan-
tages from resource partitioning but this benefit seems
limited. However, paedomorphs gain high body condition
and energy intake, which make the paedomorphic path-
way advantageous in this habitat (DENOËL et al., 2002)
until the risk of the pond drying out and the high densities
(12 individuals/m2 in the studied pond) might make the
site undesirable and then favour metamorphosis and dis-
persion of the paedomorphs (DENOËL & PONCIN, 2001;
DENOËL, 2001).
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