HerdNet: A new CNN for accurate counting of African mammal herds in aerial imagery

Alexandre Delplanque

Forest Is Life seminar on April 07, 2023

INTRODUCTION

Objective of my PhD thesis | Assess the use of Deep Learning and aerial imagery to automate the detection and counting of large terrestrial mammals in African protected areas

- Evaluate the use of common object detection CNNs
- Develop a specific CNN for accurate animal detection in aerial imagery
- Incorporate CNN model in the aerial surveys data processing
- Develop an approach for easy adaptation of CNN models to new landscapes

Research paper in ISPRS JPRS: <u>https://doi.org/10.1016/j.isprsiprs.2023.01.025</u> Open-access code on GitHub: <u>https://github.com/Alexandre-Delplanque/HerdNet</u>

Alexandre-Delplanque / HerdNet (Public

Code for paper "From Crowd to Herd Counting: How to Precisely Detect and Count African Mammals using Aerial Imagery and Deep Learning?"

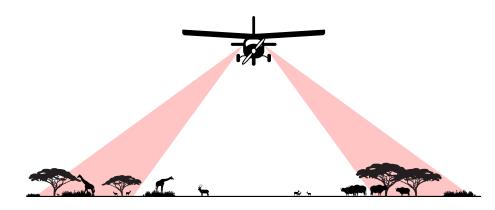
🗘 3 stars 🛛 😵 2 forks	
· · · · · · · · · · · · · · · · · · ·	
☆ Star	⊙ Unwatch 👻
2 Stall	Oliwateri +

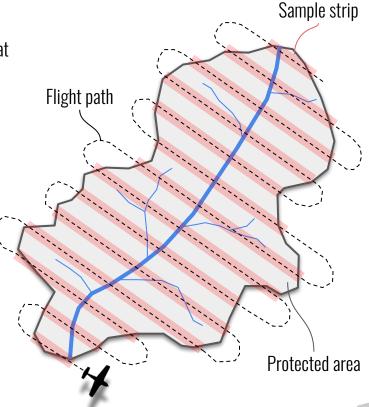
BASIC PRINCIPLES OF AN AERIAL SURVEY

Standard protocol | At least two observers (one on each side) in aircraft flying at low altitude (~300ft.) and following systematic sample strips

Real-time on-sight count of animals

→ High risk of counting errors, especially for large groups (i.e., herds)





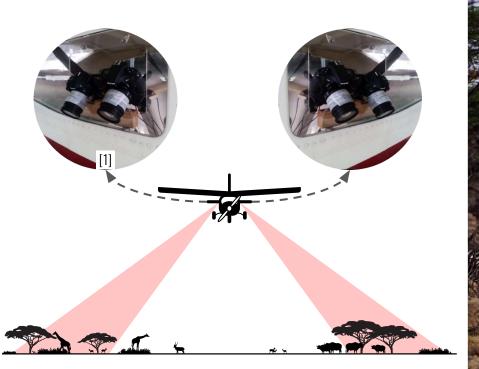
USE OF ON-BOARD CAMERAS

Real-time on-sight count is not an easy task and is prone to errors

• Could provide imprecise population estimates due mainly to the short observation time (~5s)

How to reduce such bias?

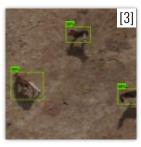
- By using on-board cameras, acquiring imagery at fixed interval
 - \mapsto Precise the counts
 - \mapsto Provide more coherent population estimates
 - → Large volume of data to manually interpret (few seconds to several minutes)



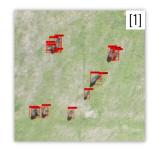
AUTOMATED COUNTING WITH COMMON OBJECT DETECTION CNNs

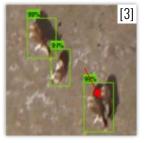
Common object detection CNNs - Faster-RCNN, RetinaNet, etc. - need bounding boxes to be trained

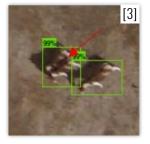
Usually show good performances for isolated mammals or sparse herds



But showed a drop of performances for dense herds and close-by individuals





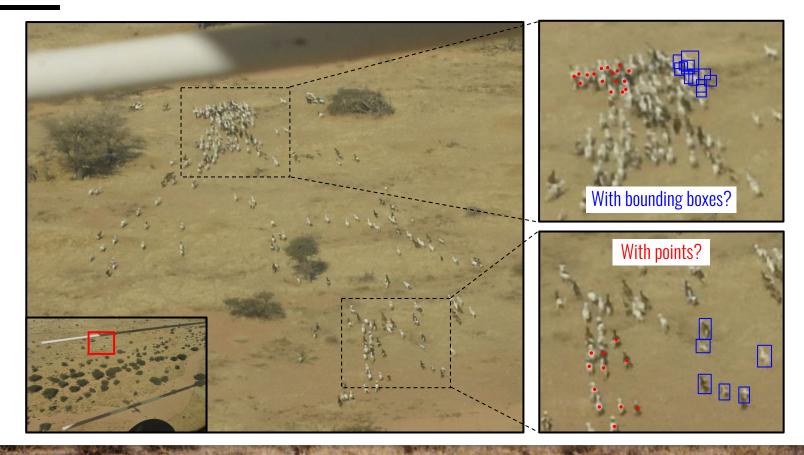


[1] Delplanque et al. (2022): <u>https://doi.org/10.1002/rse2.234</u>

[2] Eikelboom et al. (2019): <u>https://doi.org/10.1111/2041-210X.13277</u>

[3] Peng et al. (2021): <u>https://doi.org/10.1016/j.isprsjprs.2020.08.026</u>

HOW TO EFFICIENTLY ANNOTATE/COUNT A HERD LIKE THIS?



WHAT DOES THAT MAKE YOU THINK OF?

HERD COUNTING ~ CROWD COUNTING

(a) Occlusion

(b) Complex background

(c) Scale variation

(d) Non-uniform distribution

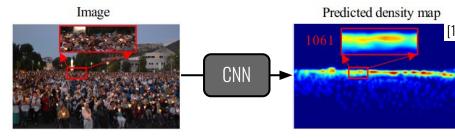
CROWD COUNTING CNN

Most used approach | CNN trained with Gaussian map - produces density

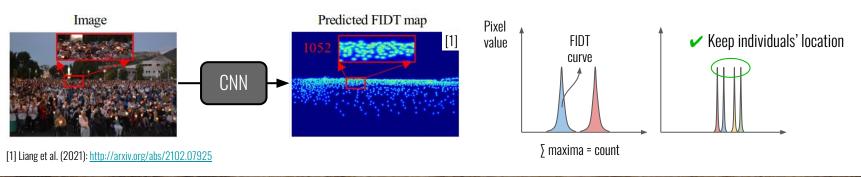
Pixel

value

∬ = count



Recent approach | CNN trained with $FIDT^{[1]}$ map - produces points

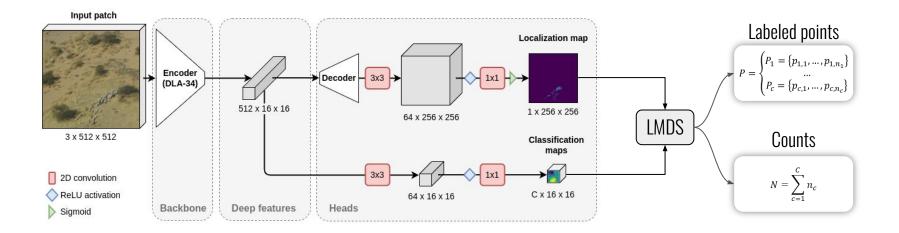


Gaussian curve

9

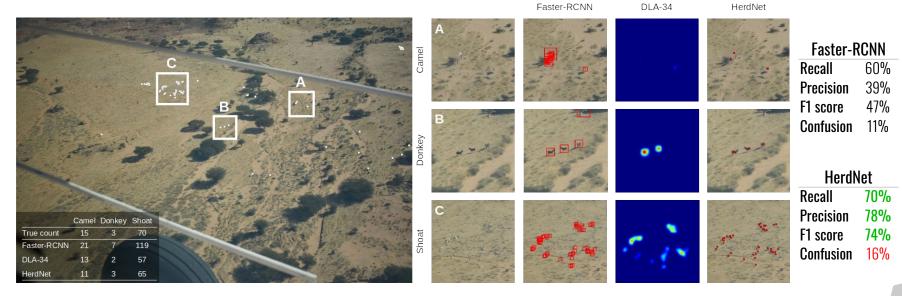
PROPOSED APPROACH: HerdNet - Architecture

Inspired by crowd counting and point-based object detectors



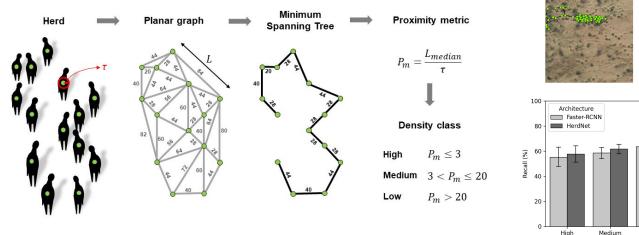
PROPOSED APPROACH: HerdNet - Detection results

Study area and dataset | Ennedi Reserve (Chad) - Oblique aerial images of the 2019 aerial survey (n=914)
 Target species | Domestic mammals: camels, donkeys, sheep and goats
 Baselines | Faster-RCNN (common object detector) & Adapted DLA-34 (usual crowd counting approach)

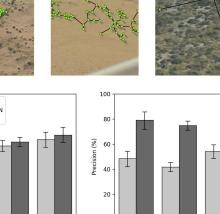


PROPOSED APPROACH: HerdNet - Detection results

Study area and dataset | Ennedi Reserve (Chad) - Oblique aerial images of the 2019 aerial survey (n=914)
Target species | Domestic mammals: camels, donkeys, sheep and goats
Baselines | Faster-RCNN (common object detector) & Adapted DLA-34 (usual crowd counting approach)



Low proximity



Low

Individuals proximity

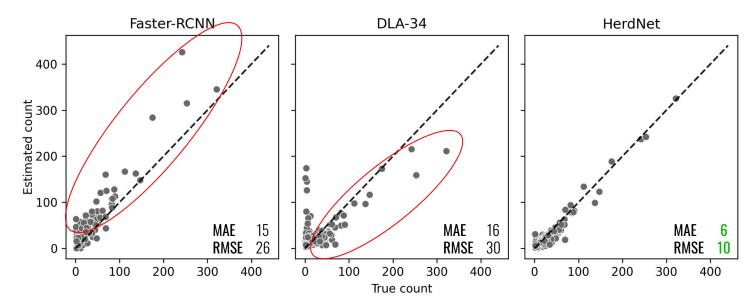
(512 x 512 pixel patches)

Medium proximity

High proximity

PROPOSED APPROACH: HerdNet - Counting results

Study area and dataset | Ennedi Reserve (Chad) - Oblique aerial images of the 2019 aerial survey (n=914)
Target species | Domestic mammals: camels, donkeys, sheep and goats
Baselines | Faster-RCNN (common object detector) & Adapted DLA-34 (usual crowd counting approach)

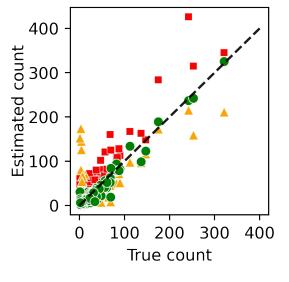


PROPOSED APPROACH: HerdNet - Results on challenging herds

BEST APPROACH FOR COUNTING DENSE HERDS?

Three approaches were evaluated:

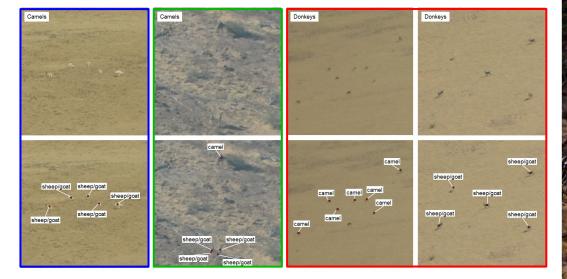
- 1) CNN-anchor-based object detector: Faster-RCNN
 - Drop of precision in dense herd, as previously observed
 - Systematic over-counting
- 2)
 CNN-density-based detector: adapted DLA-34
 - Under-counting
 - Probably caused by high variance in the number of animals
- 3) CNN-point-based object detector: HerdNet
 - Best detection and counting performances
 - 1.4x Faster (3.6s/24MP image)
 - Reliable estimated count per image



SPECIES IDENTIFICATION

HerdNet better identified the majority species (sheep/goats) but was not so good for minority ones (i.e., camels and donkey)

- Might be explained by variance in fur color, standing position and size of the animal
- Identification was sometimes difficult when annotating (help of the observers' flight sheet)



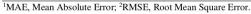
POTENTIAL USE OF HERDNET - Drone

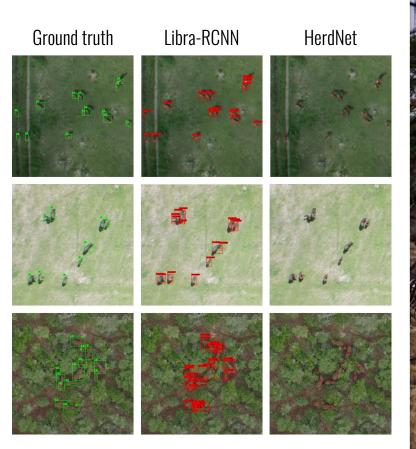
HerdNet has been trained on a **drone dataset** to assess its potential use (see Appendix S4 for more details)

Dataset | Nadir drone images of our previous paper^[1] (n=1297) **Target species |** Wildlife: topi, buffalo, kob, warthog, waterbuck and elephant **Baseline |** Libra-RCNN (state-of-the-art model)

Table 5 - Binary (animal vs. background) performances of the state-of-the-art model (Libra-RCNN) and HerdNet on full images of the Delplanque et al. (2022) test set. Values in bold indicate the best performance among the two architectures.

Architecture	Libra-RCNN	HerdNet		
Recall	94.6%	84.4%		
Precision	35.4%	82.5%		
F1 score	51.5%	83.5%		
MAE ¹	14.9	1.9		
RMSE ²	24.4	3.6		
Average confusion	2.9%	7.8%		
Total counting error	167.1%	2.3%		
Processing time (seconds)	12.0	3.4		





POTENTIAL USE OF HERDNET - Mixed herds

Identification approach may become a concern in the case of dense mixed herds (i.e., when different species are close to each other)

- Classification maps of 16x16 pixel were sufficient for our case (distance between different species > 32 pixels in input patch)
- If distance < 32 pixels (i.e., < 2-3m in real life, with similar camera), resolution of the classification head should be increased

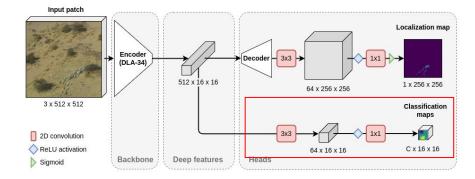


 Table 2 – Identification performances of HerdNet on full images of the Ennedi validation at different classification map resolution. Values in bold indicate the best performance among the three resolutions.

Species	Resolution	Recall	Precision	F1 score	Confusion	MAE ¹	RMSE ²
32x3	16x16 pixel	68.7%	68.5%	68.6%	5.1%	1.8	3.3
	32x32 pixel	64.2%	65.9%	65.1%	6.2%	2.1	4.2
	64x64 pixel	61.3%	68.1%	64.5%	9.3%	2.1	4.4
32:	16x16 pixel	29.1%	41.1%	34.1%	40.3%	2.3	3.2
	32x32 pixel	25.2%	41.0%	31.2%	52.2%	2.4	3.5
	64x64 pixel	22.0%	34.6%	26.9%	57.6%	2.5	3.4
1	16x16 pixel	55.4%	74.7%	63.6%	3.8%	9.5	14.9
	32x32 pixel	59.0%	71.4%	64.6%	2.2%	8.8	13.8
	64x64 pixel	56.5%	69.7%	62.4%	3.4%	8.3	13.7

¹MAE, Mean Absolute Error; ²RMSE, Root Mean Square Error.

CONCLUSION Method Results Context 400 Anchor-based CNN 00E Count (Faster-RCNN) Estimated 0 100 VS Density-based CNN (DLA-34) Ω 100 200 300 0 400 True count VS ±10 3.6 sec 73.6% Point-based CNN +++ Common object detection CNNs (HerdNet) struggle to detect/count dense herds

Thank you for your time, any questions?

Alexandre Delplanque

Forest Is Life seminar on April 07, 2023

