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Abstract

The present time is witnessing growing evidence indicating that Artificial Intelligence (AI)
will play a central role in the upcoming major industrial revolution. According to experts,
this groundbreaking technology will significantly transform the daily lives of billions of people
worldwide. With each passing day, new AI-based solutions are emerging in a wide range of
fields, not only automating repetitive tasks but also tackling intricate problems. In parallel,
the present era is characterised by the ubiquitous presence of markets, propelled by major
trends such as economic liberalisation. This serious evolution has given rise to a plethora of
complex decision-making problems, with far-reaching implications for countless individuals
across the globe. Therefore, the elaboration of novel, effective solutions to these challenges
could yield immense benefits. This situation motivates the scope of the present doctoral
thesis, which can be summarised as follows: The study of complex sequential decision-making
problems related to markets, and the development along with analysis of novel algorithmic
solutions on the basis of innovative AI techniques.

The research carried out within the framework of this thesis can be classified into three
primary categories: applied research, fundamental research and sustainable research. Firstly,
the applied research conducted focuses on the development of novel AI-driven algorithmic
solutions aimed at addressing several sequential decision-making problems that arise in the
energy and stock markets. Specifically, the Deep Reinforcement Learning (DRL) approach is
explored for that purpose. This applied research yields two important contributions. First,
innovative solutions to the decision-making problems studied are designed, explained and
rigorously evaluated. Second, the analysis of these new algorithmic solutions highlights the
potential of the DRL methodology, but also reveals key limitations related to characteristics
of market environments. Building upon these observations, a fundamental research is carried
out to enhance existing DRL techniques, so that they are more robust to stochastic and
poorly observable environments such as markets. In particular, emphasis is placed on the
distributional RL approach, which is concerned with the learning of the complete probability
distribution of the random return rather than solely its expectation. The main contributions
of the fundamental research comprise the introduction of a novel distributional RL algorithm,
together with an intuitive methodology for learning risk-sensitive policies. Finally, the author
is strongly committed to imbuing this thesis with a more sustainable dimension. To this end,
an important decision-making problem in energy markets is rigorously formalised, with the
objective to contribute to the improved synchronisation of power consumption and electricity
production of intermittent renewable energy sources.
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Résumé

À l’heure actuelle, de plus en plus d’éléments indiquent que l’Intelligence Artificielle (IA)
jouera un rôle majeur dans l’importante révolution industrielle à venir. Selon les experts,
cette technologie novatrice transformera considérablement la vie quotidienne de milliards
d’êtres humains. Chaque jour, de nouvelles solutions basées sur l’IA émergent dans un large
éventail de domaines, permettant non seulement d’automatiser des tâches répétitives mais
aussi de résoudre des problèmes complexes. Parallèlement, notre époque est caractérisée par
l’omniprésence des marchés, sous l’impulsion de tendances majeures telles que la libéralisation
économique. Cette évolution a donné naissance à une multitude de problèmes complexes de
prise de décision, avec d’importantes implications pour d’innombrables individus à travers le
monde. Par conséquent, l’élaboration de solutions innovantes et efficaces à ces défis pourrait
générer d’immenses bienfaits. Ce constat motive la portée de la présente thèse de doctorat,
qui peut être résumée comme suit : Le développement et l’analyse de solutions algorithmiques
innovantes tirant profit de techniques d’IA avancées pour résoudre des problèmes complexes
de prise de décision séquentielle relatifs aux marchés.

Les recherches menées dans le cadre de cette thèse s’inscrivent dans ces trois catégories
principales : les recherches appliquée, fondamentale et à caractère durable. Tout d’abord, la
recherche appliquée se concentre sur le développement de nouvelles solutions algorithmiques
pilotées par l’IA pour résoudre des problèmes de prise de décision séquentielle qui se posent
dans les marchés de l’énergie et de la bourse. En particulier, l’approche Deep Reinforcement
Learning (DRL) est explorée. Cette recherche appliquée produit deux contributions notables.
Premièrement, des solutions innovantes aux problèmes étudiés sont conçues, commentées et
rigoureusement évaluées. Deuxièmement, l’analyse de ces nouvelles solutions algorithmiques
met en évidence le potentiel de l’approche DRL, mais révèle également ses principales limites
liées aux caractéristiques des environnements de marché. Sur la base de ces observations, une
recherche fondamentale est menée pour améliorer les techniques DRL existantes, afin qu’elles
soient plus robustes face à des environnements stochastiques et peu observables tels que les
marchés. Plus précisément, l’accent est mis sur l’approche distributional RL, qui s’intéresse
à l’apprentissage de la distribution de probabilité complète des récompenses plutôt qu’à sa
seule espérance. Les principales contributions de cette recherche fondamentale comprennent
un nouvel algorithme de ce type, ainsi qu’une méthodologie intuitive pour l’apprentissage de
politiques décisionnelles sensibles au risque. Enfin, il est important pour l’auteur de donner à
sa thèse une dimension plus durable. A cette fin, un défi clé dans les marchés de l’énergie est
formalisé, avec l’objectif de contribuer à une meilleure synchronisation de la consommation
d’énergie et de la production d’électricité à partir de sources d’énergie renouvelables.
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Chapter 1

Introduction

Figure 1.1: Illustration of the introduction chapter of the thesis, created by a generative art AI [1].
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1.1 Preliminary context

Nowadays, Artificial Intelligence (AI) is on everyone’s lips. With the advent of Big Data
and the rise of computational power, AI has seen remarkable progress in various key areas
including natural language processing, computer vision or decision-making. From healthcare
to finance, AI has truly successful applications spanning across numerous fields, not only
automating mundane tasks but also solving complex problems. According to many experts,
AI is a true game-changer which is expected to shape the next industrial revolution. The
daily lives of billions of people will undoubtedly be profoundly transformed. Naturally, such
an influential revolution comes with its major concerns and challenges. Overall, AI has the
potential to bring significant benefits to society, by improving efficiency, productivity, and
quality of life. However, it is capital to approach the development and deployment of AI in
a responsible and ethical manner, to ensure that the benefits are shared equitably and that
the potential negative impacts are properly addressed.

More formally, AI refers to the ability of computer systems to perform tasks that typically
require human intelligence, such as learning, reasoning, and problem-solving. A key driver of
innovation in AI is the Machine Learning (ML) subfield. This family of techniques involves
the development of algorithms and statistical models that enable machines to automatically
learn and improve from experience, without being explicitly programmed. In other words, ML
algorithms are designed to autonomously identify patterns and insights within large datasets,
in order to make predictions or take actions in similar situations. Therefore, the performance
of a ML model is not only dependent on the learning algorithm, but also on the quality of the
data available for training. As illustrated in Figure 1.2, ML techniques can be subdivided into
three main categories: supervised learning, unsupervised learning and reinforcement learning.

Unsupervised
Learning

Reinforcement
Learning

Supervised
Learning

Machine 
Learning

Classification

Regression

Clustering

Dimensionality
Reduction

Figure 1.2: Non-exhaustive taxonomy of ML techniques.
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In fact, ML techniques are essentially inspired by the learning behaviour of humans and
other animals. For instance, supervised learning algorithms mimic the way humans learn
from examples. When an unfamiliar object is presented to a human being, he or she learns
to recognise this object by observing its features and by associating the findings with a label or
name. Unsupervised learning techniques are also inspired by the way humans learn. When
confronted with a new environment or data set, a human being tries to identify patterns
and structures in the data, without receiving explicit labels or feedback. The reinforce-
ment learning approach takes its inspiration from the way animals extensively learn through
trial-and-error. When an animal is presented with a new task, it tries different actions and
learns from the feedback it receives, which can either be a positive reward for appropriate
behaviour or a negative punishment for making a mistake. Biologically, rewards are generally
represented by dopamine, a neurotransmitter playing a key role in the brain’s reward system.

Firstly, Supervised Learning (SL) is a methodology concerned with the training of a model
based on a labelled dataset that contains both input data and corresponding output labels.
More precisely, the objective of a SL algorithm is to learn a mapping function from the input
data to the output labels, so that it can accurately predict the output labels for new, unseen
input data. To achieve that goal, the SL algorithm adjusts the internal parameters of the
model during training based on the difference between the predicted outputs and the actual
labelled outputs in the training data, with the aim of minimising the prediction error. The
SL approach can be adopted for both classification and regression tasks, where the goal is
to predict a categorical label or a continuous value, respectively. Examples of SL algorithms
include decision trees, support vector machines, and neural networks (NNs).

Secondly, Unsupervised Learning (UL) focuses on the training of an algorithm on the basis
of an unlabelled dataset, without any output labels available. The goal of this approach is to
identify patterns and structures within the input data, such as clusters or groups of similar
data points, or underlying features that are not directly observable. Since there is no target
variable to predict, the performance of UL algorithms is evaluated by measuring the quality
of the discovered patterns or how well the structure of the input data is captured. There
exist two main types of UL algorithms: clustering and dimensionality reduction. While clus-
tering techniques group similar data points together into clusters, dimensionality reduction
algorithms transform high-dimensional data into a lower-dimensional space. Examples of UL
algorithms include k-means clustering, principal component analysis, and autoencoders.

Thirdly, Reinforcement Learning (RL) is an approach concerned with the training of an
agent by interacting with its environment through trial-and-error to achieve a specific goal.
More precisely, the RL agent receives feedback in the form of rewards (or punishments)
from the environment as a consequence of the actions performed. The objective is to learn
the optimal decision-making policy maximising the cumulative reward over time. The RL
methodology is generally considered to solve sequential decision-making problems, in which
the agent has to take a series of actions in order to achieve a long-term goal. In this case,
the sequential decision-making problem is commonly framed as a Markov Decision Process
(MDP). Examples of RL algorithms include policy gradient, Q-learning, and actor-critic.
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Besides that, Deep Learning (DL) is an important subset of ML involving the training of
Deep Neural Networks (DNNs), from both supervised and unsupervised data. In this case,
the mathematical model is an artificial neural network with multiple layers, which is inspired
from the structure and function of the human brain. Each layer of the neural network consists
of a set of neurons that are connected to the neurons from both the previous and subsequent
layers. The input layer receives the raw data, and each subsequent layer processes the data
in increasingly abstract and complex ways. The output layer produces the final result of
the model, such as a classification or regression prediction. A substantial number of layers
enables the learning of complex hierarchical representations of data. The deep nomination
comes from this feature. Nowadays, the DL techniques achieve state-of-the-art performance
on numerous ML tasks such as image/speech recognition and natural language processing.

To finish with the main ML subfields, Deep Reinforcement Learning (DRL) combines both
DL and RL in order to improve the scalability of the RL approach. Indeed, while the classical
RL algorithms are generally limited to low-dimensional decision-making problems, the DRL
methodology allows to properly handle high-dimensional state and action spaces. More pre-
cisely, DNNs are used to approximate the value function or policy of an agent. Nevertheless,
effectively training DNNs in a RL setting is particularly challenging because of the instability
of the learning process and the high computational requirements. Still, the DRL approach
is the state of the art for a range of challenging tasks, including playing complex board and
video games or controlling robotic arms.

On the basis of the ML techniques previously introduced, multiple impressive successes
have been achieved by AI over the past decades. In March 2016, AlphaGo becomes the first
AI program to defeat the world champion Go player, demonstrating the potential for AI
to master complex strategy games that were previously thought to be exclusive to human
intelligence. Based on an advanced DRL algorithm, this breakthrough is recognised by the
research community as an important milestone in AI. Another great example of AI success is
ChatGPT, released in 2022. Nowadays, it is becoming difficult to find someone who has never
heard of or tried ChatGPT, so great is its success. This AI language model, which is built
on top of the GPT-3.5 architecture, is very proficient in providing human-like responses to
a wide range of questions and topics. In practice, the users mostly view ChatGPT as a very
powerful tool for a variety of purposes, from providing quick answers to factual questions,
to engaging in more in-depth conversations on a wide range of topics. Over the months,
this AI has progressively become a particularly valuable resource for both individuals and
businesses alike. In addition to these influential achievements, there has been a recent surge
in the development of AI artists. These algorithmic solutions are able to generate highly
realistic and detailed images of objects and scenes that don’t exist in the real world. Notable
examples include DALL-E, MidJourney or Stable Diffusion. In fact, the success of AI in
creating visually stunning images that are almost indistinguishable from real photographs
is a testament to the power and potential of AI in the field of visual arts, but also in the
creative process as a whole. Lastly, it is worth noting that AI has achieved numerous other
successes in image/speech recognition, natural language processing, autonomous vehicles,
medical diagnosis, fraud detection, among others.
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In the contemporary era, propelled by some major trends such as economic liberalisation,
markets have become ubiquitous. Whether this direction, as known today, benefits the whole
population is an interesting research question, which is not sufficiently debated according to
the author. However, this inquiry is beyond the scope of this doctoral thesis, which focuses on
the present situation. Nowadays, the markets exhibit distinct mechanisms for the exchange
of a diverse range of goods and services, and have a major impact on a tremendous number
of people across the world. The proliferation of these different market types has given rise to
a host of challenging sequential decision-making problems. Finding innovative and effective
solutions to these new challenges would significantly impact people’s lives, both socially and
economically. This situation represents a great opportunity to explore advanced AI-based
algorithmic solutions through research and development. Nevertheless, it is worth noting
that markets environments are particularly challenging to deal with, because of their limited
observability together with their stochastic and adversarial nature.

Formally, the energy is defined as a physical quantity describing the ability of a system
to do work. In practice, the energy may be viewed as the catalyst for transformation in
the world, forming the foundation of all things. Therefore, energy is undeniably capital to
human society and warrants special attention. In the 1990s, the European Union started the
liberalisation of the energy sector, creating a more market-driven system. Once again, the
present doctoral thesis does not provide any commentary on this choice, which has its benefits
and drawbacks. Nowadays, there exist several different energy (electricity) markets, each with
their own unique characteristics and purposes. The forward/future markets allow to trade
energy at a future date and at a predetermined price (bilateral contracts), up to several years
before the actual delivery. The day-ahead market is operated once a day through a single
blind auction, for the exchange of energy delivered on the following day. The continuous
intraday market enables market participants to adjust their positions close to real-time,
typically on the same day as delivery. The regulation market is operated by the transmission
system operator and allows to trade regulating power, in order to ensure the stability of the
power grid. Lastly, the imbalance settlement involves payments for potentially contributing
to the power grid imbalance, concerning both producers and consumers. As a summary,
Figure 1.3 draws a timeline of the primary energy markets in Europe.

Delivery

Forward/Future markets Day-ahead
market

Intraday
market

Regulation market

Imbalance
settlement

Figure 1.3: Timeline of the primary energy markets in Europe.
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1.2 Outline of the thesis

At first, Chapter 1 serves as an introductory section motivating the research conducted. On
the basis of the situation previously described, it appears that there is a real opportunity to
take advantage of innovative AI techniques in the context of market environments. This is the
scope of the present doctoral thesis, whose contribution can be summarised as follows. This
research work studies complex sequential decision-making problems related to markets, for
which novel algorithmic solutions based on new AI techniques are developed and analysed.
Nevertheless, such a project is particularly intricate, since market-related decision-making
problems generally have a sequential nature and are highly stochastic, with an environment
partially observable and potentially adversarial. Still, the challenge is worthwhile. Given
the particularly large number of individuals affected by markets on a daily basis, the social,
economical and environmental benefits resulting from this research may be significant.

In the scope of this thesis, both applied and fundamental research has been carried out.
More precisely, the research activities conducted may be subdivided into three primary parts.
Firstly, some novel AI-based algorithmic solutions are developed for several decision-making
problems specific to both energy and stock markets. In particular, the promising DRL
methodology is investigated for that purpose. The analysis of these new solutions reveals
the major potential of the proposed approach, but also highlights key limitations related to
characteristics of market environments. Secondly, on the basis of these observations, more
fundamental research is conducted, with the objective to improve existing DRL algorithms
so that they are better suited to market environments. To be more specific, contributions
on the distributional RL approach are presented. This technique not only makes it possible
to better manage stochastic environments, but also to learn risk-sensitive decision-making
policies, which are essential in markets. Lastly, the author is particularly keen to give this
thesis a sustainable dimension. To achieve that, the formalisation of a key decision-making
problem in energy markets is performed, which contributes to the synchronisation of power
consumption and electricity production of intermittent renewable energy sources.

To begin with, Chapter 2 studies a challenging decision-making problem related to the
forward energy markets. In order to hedge against short-term price volatility, both retailers
and large consumers of electricity generally purchase an important share of their estimated
energy needs years in advance via the forward markets. This long-term procurement task
requires identifying an appropriate timing for power purchases, so that energy costs are min-
imised while accounting for the projected consumption. In order to address this sequential
decision-making problem, the thesis presents a novel algorithmic solution generating daily
recommendations to make a purchase now or hold off, on the basis of the history of forward
prices. The promising DRL approach was initially explored for that purpose, but without
conclusive success. The main reasons for this setback have been identified and are elaborated
on further in the manuscript. As an alternative, the research work introduces a method that
relies on DL forecasting techniques along with an intuitive mathematical indicator quantify-
ing the deviation from a perfectly uniform procurement policy of reference. The core idea
is to distribute the purchase operations over the procurement horizon to spread the trading
risk, with nominal anticipation or delay depending on the market direction.
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Following that, Chapter 3 focuses on the most popular decision-making problem in the
stock markets: algorithmic trading. To be more specific, the objective is to identify the
optimal trading position, either long or short, for a particular stock at any moment in time
during a trading activity. For a trading strategy to be effective, it has to not only consistently
generate profit, but also mitigate the associated risk. The thesis presents a novel algorithmic
solution taking advantage of innovative DRL techniques to solve this challenging sequential
decision-making problem. Firstly, the algorithmic trading problem is discussed, formalised
and framed as a RL problem. In short, the goal is to learn by reinforcement a trading
policy so as to maximise the Sharpe ratio performance indicator. Secondly, a new DRL algo-
rithm is designed, which is inspired from the popular DQN algorithm and customised to best
suit the specific algorithmic trading problem studied. The resulting decision-making policies
are trained solely on the basis of artificial trajectories derived from a restricted collection
of historical stock market data. Promising results are reported for the proposed solution,
which demonstrates key benefits compared to more classical methods, such as an appreciable
versatility and a remarkable robustness to varying trading costs. In addition, the realistic ex-
periments highlight the primary limitations of the DRL for dealing with market environments.

Besides that, an instructive collaboration has been undertaken in the scope of this thesis.
However, since this collaboration is the main contribution of another dissertation, it will not
be comprehensively discussed within this manuscript. To obtain further details regarding that
research, in addition to the following summary, please consult the original article referenced
in Section 1.3. The research work presents a novel modelling framework for the strategic
participation of energy storage in the continuous intraday electricity market. In short, the
objective is the maximisation of the profits earned by the storage device operator, while
considering the physical constraints. Firstly, the sequential decision-making problem studied
is thoroughly discussed and modelled as an MDP. Secondly, a DRL approach is adopted for
solving this problem with an asynchronous version of the fitted Q iteration algorithm. Not
delving into specifics, interesting results have been produced. Despite the overall success, the
DRL approach appears to face more challenges in such a complex market environment.

On the basis of the observations from the three research works previously described, the
primary limitations of the DRL approach in the context of market environments could be
identified. Without going into detail, the key challenges can be summarised as the following.
Firstly, from the perspective of a RL agent, markets are generally stochastic environments
that are poorly observable. Such characteristics require a more robust decision-making in
the face of uncertainty. Secondly, the dynamics of market environments are continuously
changing, which may significantly impact the performance of AI-based solutions requiring
the training dataset to be representative of the test dataset. Thirdly, a successful decision-
making in market environments is generally requested to not only maximise the expected
performance, as typically seeked in RL, but also to properly mitigate the risk. Lastly, the
poor interpretability of DRL black-box models hurts their reliability, especially in markets.
Acknowledging these obstacles, the second part of the thesis consists of a more fundamental
research about distributional RL, which contributes to improve the situation.
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Subsequently, Chapter 4 presents valuable contributions to the distributional RL field.
At its core, the distributional RL methodology suggests representing the entire probability
distribution of the random return instead of solely modelling its expectation. This approach
presents major advantages that are key to market environments, at the expense of increased
complexity and computational costs. Among others, it allows for a more accurate mod-
elling of the environment and makes risk-sensitive control and exploration policies possible.
The primary concept driving the research conducted is the consideration of an innovative
DL architecture, which has been demonstrated to be a universal approximator of continuous
monotonic functions. This feature is particularly convenient for effectively modelling different
representations of a probability distribution, which is essential in distributional RL. Taking
advantage of this architecture, a novel distributional RL method is introduced, supporting
the learning of three, valid and continuous representations of the random return distribution.
In light of this new algorithm, an empirical evaluation is carried out to fairly compare three
probability quasi-metrics typically used in distributional RL for three different distribution
representations, and highlight their respective strengths and weaknesses.

Then, Chapter 5 presents an intuitive approach to learn risk-sensitive decision-making
policies on the basis of the distributional RL methodology. In most market environments,
properly mitigating the risk associated with the trading activities is capital. Nevertheless,
traditional RL techniques generally focus on the learning of policies solely maximising the
expected outcome. In order to achieve risk-sensitive RL, the research work introduces a new
risk-based utility function, taking into consideration both the expected return and the risk, to
be maximised. Replacing the popular state-action value function, this utility is to be derived
from the complete probability distribution of the random return learnt by any distributional
RL algorithm. Ultimately, the objective of this novel risk-sensitive RL approach is to provide
an intuitive, straightforward, and accessible solution that prioritises the interpretability of
the decision-making policies learnt.

Afterwards, Chapter 6 consists of the last important part of the doctoral thesis, including
a contribution to greater sustainability in the energy sector, while being related to markets.
The author’s motivation for conducting this supplementary research is rooted in his desire to
contribute to the energy transition and combat the devastating effects of climate change and
biodiversity loss, which are undeniable challenges facing humanity in the 21st century. The
research work presents a novel method for improving the synchronisation of power supply and
demand, by leveraging the flexibility provided by the demand side. It is necessary because
of the increasing share of intermittent renewable energy sources in the electricity mix. The
proposed solution, denominated dynamic pricing, consists in providing the consumer with a
price signal that is continuously evolving over time, in order to influence its consumption. It
involves a challenging decision-making problem to be faced by power producers or retailers:
choosing a price signal that maximises the synchronisation of power supply and demand,
under the constraints of balancing the profitability of the producer with the benefits to the
end consumer. This thesis presents a detailed formalisation of this particular decision-making
problem, together with a conceptual analysis of the necessary algorithmic components.

24



Finally, Chapter 7 concludes the doctoral thesis. The main contributions of the overall
research work are summarised and discussed. Moreover, multiple avenues are suggested as
future work, in order to continue the research initiated by this thesis.

While there is a coherent connection between the different chapters of the doctoral thesis,
each chapter is designed to be comprehensible independently without requiring the reader to
go through the entire manuscript. For this reason, some redundancies may exist across the
chapters, intentionally preserved to ensure clarity.

Applied research

Forward market

Stock market

Intraday market

Fundamental research Sustainable research

Distributional RL

Risk-sensitive RL

Dynamic pricing 
for power

Chapter 6

Chapter 2

Chapter 3

Chapter 4

Chapter 5

External publication

Observed
limitations

Sustainability
contribution

Figure 1.4: Illustration of the outline of the doctoral thesis.
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1.3 Scientific publications

In the scope of this doctoral thesis, numerous research activities have been carried out,
resulting in several publications in renowned scientific journals. Thoroughly discussed within
the manuscript are the following publications of which I am the main author:

• Thibaut Théate, Sébastien Mathieu, and Damien Ernst. An Artificial Intelligence So-
lution for Electricity Procurement in Forward Markets. Energies, 13(23), 2020.
→ Chapter 2 and Reference [2].

• Thibaut Théate and Damien Ernst. An Application of Deep Reinforcement Learning to
Algorithmic Trading. Expert Systems with Applications, 173:114632, 2021.
→ Chapter 3 and Reference [3].

• Thibaut Théate, Antoine Wehenkel, Adrien Bolland, Gilles Louppe, and Damien Ernst.
Distributional Reinforcement Learning with Unconstrained Monotonic Neural Networks.
Neurocomputing, 534:199–219, 2023.
→ Chapter 4 and Reference [4].

• Thibaut Théate and Damien Ernst. Risk-Sensitive Policy with Distributional Reinforce-
ment Learning. Algorithms, 16(7):325, 2023.
→ Chapter 5 and Reference [5].

• Thibaut Théate, Antonio Sutera, and Damien Ernst. Matching of Everyday Power
Supply and Demand with Dynamic Pricing: Problem Formalisation and Conceptual
Analysis. Energy Reports, 9:2453–2462, 2023.
→ Chapter 6 and Reference [6].

Additionally, a fruitful collaboration took part during the course of this PhD thesis, that
has led to the following publication of which I am a co-author. Despite being related to this
particular dissertation as well, it is not discussed in detail within the manuscript:

• Ioannis Boukas, Damien Ernst, Thibaut Théate, Adrien Bolland, Alexandre Huynen,
Martin Buchwald, Christelle Wynants, and Bertrand Cornélusse. A Deep Reinforce-
ment Learning Framework for Continuous Intraday Market Bidding. Machine Learning,
110(9):2335–2387, 2021.
→ Reference [7].
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If I have seen further it is by standing on the shoulders of giants.
— Isaac Newton
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Chapter 2

An Artificial Intelligence Solution for
Electricity Procurement in Forward
Markets

Figure 2.1: Illustration of Chapter 2 entitled An Artificial Intelligence Solution for Electricity Procurement
in Forward Markets, created by a generative art AI [1].
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Chapter overview

Both retailers and large consumers of electricity generally purchase an important
percentage of their estimated electricity needs years ahead in the forward markets,
to hedge against short-term price volatility. This long-term electricity procurement
task involves determining when to buy power over a certain trading horizon so that
the resulting energy costs are minimised, while covering the predicted consumption.
In this research work, the experimentation is based on a yearly base load product
from the Belgian forward market, named Calendar (CAL), which is tradable up to
three years ahead of the delivery period. To solve this sequential decision-making
problem, this thesis chapter presents a novel algorithm providing recommendations
to either buy electricity now or wait for a future opportunity, on the basis of the
history of CAL prices. More precisely, the algorithmic solution proposed relies
on deep learning forecasting techniques together with an indicator quantifying the
deviation from a perfectly uniform procurement policy of reference. On average, this
approach surpasses the benchmark procurement policies taken into consideration.
Moreover, a reduction in costs of 1.7% with respect to the average electricity price
over the trading horizon is achieved. Finally, among other benefits, the generality
of the algorithmic solution presented makes it particularly convenient for solving
procurement decision-making problems related to other commodities.

This thesis chapter is primarily based on the following scientific publication [2]:

Thibaut Théate, Sébastien Mathieu, and Damien Ernst. An Artificial Intelligence
Solution for Electricity Procurement in Forward Markets. Energies, 13(23), 2020.

Forecasting

Reference deviation

Decision-making

Figure 2.2: General illustration of the methodology presented in this thesis chapter entitled An Artificial
Intelligence Solution for Electricity Procurement in Forward Markets.
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2.1 Introduction

An energy retailer faces a challenging sequential decision-making problem on a daily basis.
After having accurately estimated the consumption of its clients, this actor has to purchase
the appropriate quantity of electricity in the various energy markets. In order to mitigate the
risk associated with the trading activity, the electricity retailers generally buy an important
share of their power consumption years ahead in the forward markets, limiting their exposure
to short-term markets (hedging). This challenging task also applies to large power consumers
that have flexible bilateral contracts with their energy retailer. Typically, they have to decide
when to purchase blocks of electricity at a price generally indexed on the forward price. Each
block corresponds to a certain percentage of their total electricity consumption, this quantity
being formerly predicted by the retailer. Eventually, the potential discrepancy between the
power purchased and the predicted consumption is covered by the retailer at the end of the
procurement horizon. To summarise, the long-term electricity procurement problem consists
in determining when to purchase power in the forward markets, so that the predicted energy
needs are secured and the energy costs are minimised. This key decision-making problem is
particularly challenging because of its sequential and highly stochastic nature, coupled with
a poorly observable market environment.

In practice, the long-term power procurement task is generally entrusted to experienced
consultants, on the basis of customised rules together with their expectations regarding the
future direction of energy markets. This research work introduces an alternative approach:
an algorithmic solution providing recommendations to either buy electricity now or to wait
for a future opportunity, based on the history of forward prices. To the authors’ opinion, this
novel solution may not only interest these consultants, but also retailers who are willing to
deploy more advanced procurement techniques and large consumers choosing not to rely on
consultants for buying their electricity. Therefore, the core objective of this research work can
be summarised as the following: the design of a new relevant algorithmic solution meeting
the criteria of the industry, such as the robustness and interpretability of the results. Even
though the proposed approach is tailor-made for the purchase of electricity, it can be easily
adapted to other commodities as well.

Without going into detail, the algorithm designed is based on the idea that the purchase
decisions should ideally be split over the procurement horizon to spread the trading risk, with
a nominal anticipation or delay depending on the expected market direction. The proposed
solution relies on a forecasting mechanism to predict the future dominant market trend and
on an indicator quantifying the deviation from a reference perfectly uniform procurement
policy, in order to trigger purchase decisions. In addition to conventional methodologies,
deep learning (DL) techniques are taken into consideration for the forecasting task, since
deep neural networks (DNNs) have been shown to effectively manage temporal dependence
and structures like trends. However, despite forecasting techniques being a key component of
the algorithmic solution designed, this thesis chapter does not focus on the improvement of
the forecasts related to forward prices. Instead, the main contribution of this research work
is related to the full decision-making process. In other words, how to make relevant trading
decisions on the basis of imperfect information, including inaccurate forecasts?
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2.2 Literature review

On the one hand, the scientific literature covers multiple techniques for power producers
willing to sell their energy in the forward markets. On the other hand, the side of the power
retailers/consumers lacks proper scientific coverage, with only a few articles available at the
time of writing. In brief, the algorithmic solutions promoted are mostly based on stochastic
programming and optimisation techniques.

Research paper [8] introduces a solution to the electricity procurement problem faced by
a large consumer whose supply sources include bilateral contracts, self-production and the
day-ahead market. More precisely, a stochastic programming approach is adopted, with risk
aversion being modelled using the Conditional Value at Risk (CVaR) methodology. The pro-
posed solution is assessed through a realistic case study that highlights the trade-off between
cost minimisation and risk mitigation. One chapter of the book [9] is dedicated to the power
procurement problem from a large consumer’s perspective, while another chapter discusses
the case of a retailer in a medium-term horizon. In both cases, the electricity procurement
problem is mathematically formulated as a multi-stage stochastic programming problem,
where the evolution of the price is modelled as a stochastic process using a set of scenarios
and the risk aversion is modelled through the CVaR. The work concludes that multi-stage
stochastic programming appears to be an appropriate modelling framework to make pro-
curement decisions under uncertainty, with the complex multi-stage stochastic model being
translated into a tractable mixed-integer linear programming (MILP) problem.

Article [10] presents a novel approach based on the information gap decision theory to
assess different procurement strategies for large consumers. The objective is not to minimise
the procurement cost but rather to assess the risk aversion of procurement strategies with
respect to the minimum achievable cost. The results suggest that strategies leading to a
higher procurement cost are more robust and risk averse. Later on, the paper [11] proposes
a robust optimisation methodology to solve the electricity procurement problem from the
perspective of a retailer. A collection of robust mixed-integer linear programming problems
is formulated, with the electricity price uncertainty being modelled by considering upper and
lower limits for the energy prices rather than the forecast prices. Articles [12] and [13] present
a stochastic optimisation approach relying on the integration of the paradigm of joint chance
constraints and the CVaR risk measure to solve the electricity procurement problem from
a consumer’s perspective. The results for a real case study highlight the trade-off between
risk and reliability by considering different levels of risk aversion. Paper [14] introduces an-
other multi-stage stochastic programming model for the long-term electricity procurement
task faced by a large consumer, where the complexity of the task is reduced by dividing a
one-year planning into seasons. In this model, a season is represented by characteristic weeks
and the seasonal demand is revealed at the beginning of each season. Article [15] presents a
short-term decision-making model based on robust optimisation to help an electricity retailer
in determining both the electricity procurement and its electricity retail price, so that profit
is maximised. Two possibilities are offered to the retailer for its electricity procurement task:
directly purchasing energy from generation companies or buying power on the spot market.
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Paper [16] tackles a slightly different aspect of the electricity procurement problem as it
studies how to size and use energy storage systems to minimise the procurement cost of elec-
tricity. The study focuses on short-term energy procurement by taking into consideration
both the day-ahead market and the real-time market. Article [17] studies a multi-period
power procurement problem in the specific context of smart-grid communities. The required
energy can be obtained from both the day-ahead market, characterised by variable prices,
and renewable energy sources, which are free but with uncertain supplies. To determine the
optimal procurement amount, the authors adopt an approach based on dynamic program-
ming, which has been proven to provide significant cost-savings. Finally, the article [18]
introduces an agent-based two-stage trading model for direct electricity procurement of large
consumers, which considers both the fairness and efficiency of direct energy procurement.
The authors claim that this mechanism could offer more choices to both large consumers and
generation companies that could also benefit from the reduction of the average market price.

To summarise, the algorithmic solutions to the electricity procurement problem found in
the scientific literature are mostly based on stochastic programming, dynamic programming
and optimisation techniques. Moreover, the sequential decision-making problem behind the
electricity procurement task is formalised in numerous different ways with respect to the
time horizon, the electricity power sources and markets, the energy consumption, among
others. For this reason, a fair comparison between the different solutions is not feasible.
Nevertheless, despite being sound and interesting works, the approaches from the literature
are not well established within the industry. A potential explanation may be the tendency to
have black box models, which are quite difficult for inexperienced employees to understand,
interpret and monitor on a daily basis. Another observation about the scientific literature
is the absence of methodologies based on advanced machine learning (ML) techniques. This
research work attempts to fill this gap, by taking advantage of the promising results achieved
by DL techniques in many fields of application. Finally, the key contribution of this research
work can be summarised as follows: the design of an algorithmic solution taking advantage
of advances in artificial intelligence (AI) to make sound and explainable trading decisions in
the context of the long-term procurement of electricity.

2.3 Problem formalisation

In this section, the long-term electricity procurement problem is thoroughly presented and
formalised. To begin with, it is assumed that the single supply source available to the agent,
whether a retailer or a large consumer, is the Calendar (CAL) product from the Belgian
forward market operated by Ice Endex (Belgian Power Base Futures). This yearly base load
product is tradable up to three years ahead of the delivery period. For instance, the CAL
2018 product corresponds to the delivery of power during the entire year 2018, this energy
being tradable between 2015 and 2017 included, as depicted in Figure 2.3. In fact, such an
assumption is a slight simplification of the reality, where the agent may not only consider
other products from the forward market but also the day-ahead and intraday markets if its
consumption is not fully covered.
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Figure 2.3: Evolution of the forward price related to the CAL 2018 product.

Prior to any trading activity, the electricity procurement problem requires to forecast the
power consumption over the future period of interest. In this research work, the quantity of
energy to be purchased over the procurement horizon is denoted Q. For the CAL product,
this procurement horizon corresponds to a time period of three years and the quantity Q
represents the consumption for one future year. In practice, the commodity exchanged in
the forward markets is not a quantity of electricity, generally expressed in MWh, but rather
an electrical power, commonly expressed in MW. In the following, this research work finds
it more convenient to present its reasoning based on the quantity, knowing that a conversion
to the power is easily performed since the delivery horizon is fixed (one year).

In the scope of this research work, the continuous trading timeline is discretised into a
number of discrete time steps t of constant duration ∆t. In this case, the agent is assumed
to be able to make a single decision per trading day, meaning that ∆t is equal to one
full trading day. In the context of the long-term electricity procurement task, a trading or
procurement strategy represents the set of rules adopted to make a decision. Mathematically,
a procurement strategy is defined as a programmed policy π : X → Y which, based on some
input information xt ∈ X at time step t, outputs a trading decision yt ∈ Y so as to maximise
an objective criterion. The following subsections thoroughly detail the input, output and
objective criterion defined for the electricity procurement problem studied.
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2.3.1 Input of a procurement policy

Theoretically, the input of a procurement policy xt at time step t has to ideally include every
single piece of information that may potentially have an impact on the future electricity
forward prices. However, a critical challenge associated with the power procurement problem
is the unavailability of this information, which takes various forms and is both quantitative
and qualitative. This situation leads to considerable uncertainty, with market directions that
may be impossible to accurately explain and forecast. In this research work, the input xt at
time step t can be mathematically expressed as the following:

xt = {Pt, St}, (2.1)

where:

• Pt = {pt−τ |τ = 1, ..., K} is a time series composed of the last K prices from the CAL
product traded, with K ∈ N \ {0} being a parameter,

• St is the state information of the trading agent, which is formally expressed as follows:

St = {t, T, qt, Q}, (2.2)

with:

• t being the current trading time step,
• T being the total number of trading time steps over the procurement horizon,
• qt being the quantity of electricity already purchased by the agent at time step t,
• Q being the total quantity to be purchased over the procurement horizon.

2.3.2 Output of a procurement policy

At each time step, the agent is assumed to have the decision whether to purchase electricity
right now or to wait for a future opportunity. Therefore, the output of the procurement
policy yt at time step t is binary and can be mathematically expressed as the following:

yt ∈ {0, 1}, (2.3)

where yt = 0 (yt = 1) corresponds to the recommendation to hold/wait (buy), respectively.
Whenever purchasing electricity, the agent is also required to specify the quantity of energy
to be traded. In this research work, the volume contracted is assumed to be constant. The
total quantity of electricity Q is split into N ∈ N\{0} purchase operations of a fixed amount
of energy A = Q/N . Consequently, the quantity of electricity purchased at each trading time
step t would either be equal to 0 or A depending on the output yt. However, this approach
does not take into account the resolution of the market dQ, corresponding to the smallest
block of electricity tradable. To address this issue, the quantity of energy Q is constrained
to be a multiple of this market resolution dQ. Moreover, the parameter N is constrained to
be such that the amount of electricity A = Q/N is a multiple of the market resolution dQ.
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An important constraint is imposed concerning the output of a procurement policy. By
the end of the trading activity, meaning at the end of the trading horizon (t = T ), the agent
is required to have precisely purchased the quantity of electricity Q originally planned. In
addition, it is assumed that the agent is not allowed to sell electricity in the forward market.
If that operation was permitted, it would be a completely different decision-making problem
closer to the topic studied in Chapter 3 of the doctoral thesis. Consequently, the agent is
not allowed to buy electricity in excess of its planned consumption. Moreover, anticipation is
necessary because the agent is only able purchase the amount of electricity A during a single
time step. Formally, let nt = (Q − qt)/A be the number of remaining purchase operations
to be performed by the agent at time step t, this quantity must never exceed the number
of remaining time steps T − t. For this reason, the output of a procurement policy may
not always be freely selected. Eventually, this important constraint can be mathematically
summarised as the following:

T∑
t=0

yt A = Q . (2.4)

In order to realistically simulate the trading activity resulting from a procurement policy,
the trading costs have to be seriously taken into consideration. This research work assumes
that the only trading costs incurred by the agent are the transaction costs. As their name
indicates, these costs occur each time a transaction (purchase) is performed. Therefore, the
trading costs are modelled as a fixed fee CF to be paid by the agent for each MWh of energy
purchased in the forward markets.

Finally, making the hypothesis that the electricity is always successfully purchased by the
agent, the state variable qt is updated in line with the following equation:

qt+1 = qt + yt A . (2.5)

2.3.3 Objective criterion

In the scope of the electricity procurement problem studied, the core objective is naturally the
minimisation of the costs incurred for buying energy. However, such an intuitive goal lacks the
proper consideration of the risk associated with the trading activity, which has to ideally be
mitigated as well. In fact, there generally exists a trade-off between cost minimisation and risk
mitigation, in accordance with the adage: with great risk comes great reward. Nevertheless,
although risk mitigation is built in the proposed algorithmic solution, this research work
adopts the costs minimisation alone as objective criterion, the inclusion of the risk being left
as future work. Therefore, the quantity to be minimised is the total cost incurred by the
agent at the end of the procurement horizon T , denoted cT , which can be mathematically
expressed as the following:

cT =
T∑
t=0

yt A (pt + CF ) . (2.6)
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2.4 Algorithmic solution

In this section, a novel algorithmic solution denominated Uniformity-based Procurement of
Electricity (UPE) is thoroughly presented to solve the long-term electricity procurement
problem studied. The core idea behind this algorithm is to speed up or delay purchase
operations with respect to a procurement strategy of reference, depending on the expected
evolution of the market prices in the future. More precisely, the decision-making process is
based on the coupling of two important pieces of information. Firstly, the identification of
the dominant market direction. Secondly, the computation of the procurement uniformity
level quantifying the deviation from a perfectly uniform procurement policy.

The first important component of the UPE algorithmic solution is the forecaster F whose
responsibility is to predict the future dominant market trend, either upward or downward.
In this research work, the market trend can be defined as the general direction in which the
market price is going. Formally, at each trading time step t, the forecaster F takes as input
a series of K previous forward prices Pt and outputs the predicted market trend ft:

ft = F (Pt), (2.7)

where ft = 1 (ft = −1) corresponds to a forecast upward (downward) trend at time step t.

A market trend is a subjective notion that possesses different definitions in the scientific
literature. For instance, some may argue that a sudden decrease in price during a week
is a new downward trend, when others view this behaviour as a temporary phenomenon
within a more global upward trend lasting for months. Actually, both views may be right
depending on the time horizon taken into consideration. In order to eliminate any ambiguity,
this research work adopts the following methodology to elaborate an objective mathematical
definition. A lag-free low-pass filtering operation of large order k, typically several weeks, is
applied to the market price signal. The resulting smoothed price signal p̄t at time step t can
be mathematically expressed as the following:

p̄t =
1

2k + 1

t+k∑
τ=t−k

pτ . (2.8)

As an illustration, the result of this lag-free low-pass filtering operation with k = 25 is
depicted in Figure 2.4 for the CAL 2018 product. Based on this new information, the mar-
ket trend ft at time step t is derived from the comparison of the two consecutive smoothed
prices p̄t and p̄t−1. More precisely, an upward trend f̂t = 1 is designated when p̄t ≥ p̄t−1,
and a downward trend f̂t = −1 is specified when p̄t < p̄t−1, with f̂t representing the market
trend label at time step t. Although this rigorous mathematical definition of a market trend
is intuitive and convenient, it is not perfect and there exist other relevant definitions that
could be investigated as future work. For instance, the market trend may be defined as the
slope (sign) of the straight line produced by a linear regression operation on price data over
a certain time period, as illustrated in Figure 2.5. Finally, despite being subjective, human
annotations could alternatively be considered as well.
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Figure 2.4: Lag-free low-pass filtering operation performed on the CAL 2018 product.

Figure 2.5: Linear regression (orange line) performed on a fictive price signal (blue dots).

39



The second important component of the UPE algorithm is the concept of procurement
uniformity deviation. At its name indicates, this quantitative indicator compares the trading
activity of the agent to a strategy of reference named perfectly uniform procurement policy.
This particular procurement strategy consists in purchasing the same amount of electricity
Au = Q/T at each trading time step t over the entire procurement horizon T . Despite not
being generally feasible in practice because of the market resolution dQ, this procurement
policy is an interesting candidate for comparison purposes since it achieves the average power
price and spreads the trading risk over the full procurement horizon. Therefore, this research
work introduces the procurement uniformity level ut ∈ [−1, 1] that quantifies the deviation
from such a perfectly uniform procurement policy of reference:

ut =
T − t

T
− Q− qt

Q
. (2.9)

Three cases arise depending on the value of the procurement uniformity level ut:

• Null value (ut = 0). The agent has purchased at time step t a quantity of electricity
equal to the amount of energy that a perfectly uniform procurement policy would have
already bought at that time.

• Positive value (ut ∈ ]0, 1]). The trading agent leads at time step t compared to a
perfectly uniform procurement policy, meaning that it has already purchased a larger
quantity of electricity.

• Negative value (ut ∈ [−1, 0[). The trading agent lags behind at time step t compared
to a perfectly uniform procurement policy, meaning that it has already purchased a
smaller quantity of electricity.

The decision-making process is based on the comparison of the procurement uniformity
level ut with two trigger values u− and u+. As indicated in Equation (2.9), the quantity ut

decreases over time when the agent holds with some purchase operations remaining. The
idea of the UPE algorithm is to issue a new purchase operation when this indicator hits
the trigger value associated with the predicted trend, u+ for upward and u− for downward.
Therefore, the triggers values represent how long the agent is willing to wait for each market
trend. These are key parameters of the algorithmic solution, to be set by the agent according
to its expectations regarding the market dynamics and its sensitivity to the trading risk.

More precisely, the UPE algorithm proceeds as follows to generate trading recommenda-
tions on the basis of both the market trend forecasts and the procurement uniformity level.
While a downward market trend is predicted by the forecaster F (ft = −1), meaning that
the prices are expected to decrease in the future, the agent is advised to wait as long as
possible. In this case, the purchase operation is recommended once the procurement uni-
formity level ut goes below the trigger value u−, in order to not lack too much behind the
reference policy. On the contrary, if an upward market trend is likely to happen according
to the forecaster F (ft = 1), the agent is advised to directly buy as much as possible. In
this situation, a new purchase operation is suggested as soon as the procurement uniformity
level ut goes below the trigger value u+, so as not to be too far ahead of the policy of reference.
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For the sake of completeness and clarity, Algorithm 1 details the decision-making process
behind the UPE algorithm for a single time step t. In addition, a graphical illustration
(flowchart) of the decision-making is presented in Figure 2.6. Line 2 of Algorithm 1 indicates
that the first operation of the UPE algorithm at each time step t is to potentially retrain
or retune the forecaster on the basis of the newly available data. This optional operation
consists in updating the forecasting model F at a certain frequency (daily, weekly, monthly)
to take advantage of the latest data available. Indeed, at each time step t, the forecaster F
can be trained (tuned) using all the data available up to time step t. Therefore, the training
dataset is continuously growing over time, and it could be interesting to retrain (retune) the
forecasting model as new data becomes available. In practice, this particular technique may
be helpful to ensure the adaptability of the UPE algorithm to changing market conditions.
Nevertheless, this approach is left as future work, because of the important computational
cost associated. In the following, the forecasting model F is trained (tuned) once and remains
fixed over the entire procurement horizon.

Algorithm 1 Decision-making process behind the UPE algorithm for a single time step t

1: Inputs: procurement policy input xt, formerly trained/tuned forecaster F , triggers values u− and u+.
2: If applicable, retrain/retune the forecasting model F according to the newly available data.
3: Generate a new market trend forecast ft = F (Pt).
4: Compute the procurement uniformity ut =

T−t
T − Q−qt

Q .
5: if ft = 1 and ut < u+ then
6: Make the trading decision to purchase electricity: yt = 1.
7: else if ft = −1 and ut < u− then
8: Make the trading decision to purchase electricity: yt = 1.
9: else

10: Make the trading decision to hold/wait: yt = 0.
11: end if
12: return yt

Figure 2.6: Flowchart of the decision-making process behind the UPE algorithm.

In this research work, two different forecasting models are adopted to predict the market
trends. Thoroughly described hereafter, they are respectively denominated basic forecaster
and DL forecaster.

41



2.4.1 Basic forecaster

In finance, a popular approach to acquire insights about the market trend from past data
consists in comparing two moving averages of different window lengths [19]. The core idea
is to assess how the more recent prices represented by the shorter moving average evolve
with respect to the older prices described by the longer moving average. Both windows
lengths Lshort and Llong are parameters to be tuned, with typical values being several weeks
or months. The moving average of window length L at time step t is expressed as follows:

Mt(L) =
1

L

t−1∑
τ=t−L

pτ . (2.10)

With such a definition, an upward trend (ft = 1) is naturally expected when the shorter
moving average is greater than the longer one: Mt(L

short) ≥ Mt(L
long). On the contrary, a

downward trend (ft = −1) is awaited when the shorter moving average is lesser than the
longer one: Mt(L

short) < Mt(L
long). This conventional approach is adopted for the first

forecasting model FMA tested. The UPE algorithm using this forecaster is denominated
Uniformity-based Procurement of Electricity with Moving Averages (UPE-MA).

2.4.2 DL forecaster

A more advanced approach inspired by recent successes in DL is investigated for the second
forecasting model. This forecaster, denoted FDL, consists of a residual deep neural network
(ResDNN). More precisely, this model is a multilayer perceptron (feedforward artificial NN)
equipped with residual connections [20]. Also called skip connections, the latter have been
proven to significantly improve the training of DNNs by avoiding the problem of vanishing
gradients as well as mitigating the degradation problem (accuracy saturation). A typical
residual block is depicted graphically in Figure 2.7. The ResDNN architecture is composed
of several residual blocks sequentially connected. The number of residual blocks nb, the
number of hidden layers nl and the number of neurons per layer nn are parameters of the
DL model to be tuned. Regarding the choice of the activation functions, leaky rectified linear
unit (Leaky ReLU), introduced in the article [21], are selected for the hidden layers. This
popular activation function is mathematically expressed as follows:

f(x) =

{
x if x > 0,

0.01x otherwise.
(2.11)

Because the market trend forecasting task is a classification problem, a softmax activation
function is selected for the output layer. This enables to return valid probabilities for each
market trend, as explained in the book [22]. Naturally, the forecaster FDL outputs the market
trend with the greatest probability. Formally, the softmax activation function takes as input
a vector of real numbers X = (x1, ..., xJ) ∈ RJ and outputs a vector of J real numbers
bounded between 0 and 1 representing probabilities:

S(X)i =
exi∑J
j=1 e

xj

∀i ∈ {1, ..., J}. (2.12)
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Figure 2.7: Illustration of a typical residual block.

The choice of the loss to be minimised is also conditioned by the fact that the market
trend forecasting task is a classification problem. The cross-entropy loss, also referred to as
logarithmic loss and inspired from the article [23], is selected for that purpose. This particular
loss is mathematically expressed as the following:

L(θ) = 1

B

B∑
b=1

− log(p(yb = ŷb|xb, θ)), (2.13)

where:

• B is the batch size,

• x denotes the input of the DNN,

• y denotes the output of the DNN,

• ŷ represents the classification labels,

• θ represents the parameters of the DNN (Weights and biases),

• p(⋆) represents the probability of the event ⋆.

The training of the DL forecasting model is performed using the ADAM optimiser, which
is introduced in the article [24]. Moreover, in order to prevent overfitting of the ML model,
both dropout and L2 regularisation techniques are included within the forecasting model.
Finally, the inputs of the DL model are properly normalised, and some data augmentation
techniques for time series are taken into consideration. For more details about the various ML
and DL techniques previously mentioned, please refer to the article [25] and the book [22].
As an illustration, Figure 2.8 depicts the ResDNN architecture composing the DL forecaster,
with the weight layers being fully connected (dense) layers in this case. In the following, the
UPE algorithm operating the forecaster FDL is denominated Uniformity-based Procurement
of Electricity with Deep Learning (UPE-DL).
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Figure 2.8: Illustration of the ResDNN architecture composing the DL forecaster.

2.5 Performance assessment methodology

In this section, the performance assessment methodology adopted by this research work to
evaluate the performance of a long-term electricity procurement policy is presented. The case
study selected consists of multiple CAL products over a time period of eight years, ranging
from CAL 2012 to CAL 2019. A single CAL product is approximately composed of 750 daily
power prices. If missing samples or abnormal values are detected within the dataset provided
by Ice Endex, new data are artificially generated by linear interpolation or extrapolation as
replacements for the problematic samples. As an illustration, Figure 2.9 depicts graphically
the full set of data composing this case study. It can be clearly observed from this plot that
the procurement policy assessed will be confronted to various market phenomena, including
both upward and downward trends together with diverse levels of volatility. Finally, in order
to present meaningful results, the training and test sets are naturally separated. Both the
tuning of the parameters and the training of the DL forecasting model are performed on the
basis of the CAL product three years prior to the one actually tested, so that no data are
shared between the training and test sets. For instance, the training of a procurement policy
for the CAL 2018 product, with electricity purchased between 2015 and 2017, is performed
with data from the CAL 2015 product, for which energy is bought between 2012 and 2014.

For comparison purposes, two basic benchmark procurement strategies are included within
the performance assessment methodology. The first one is named Naive Balanced Electricity
Procurement (NBEP). This strategy simply consists in spreading the N purchase operations
evenly over the time horizon. More precisely, the procurement horizon is divided into N
intervals of identical durations and a single purchase operation is executed in the middle
of each interval. In fact, this basic strategy is the realistic version of the perfectly uniform
procurement policy, taking into consideration the market resolution. The second benchmark
strategy is denominated Electricity Procurement with Moving Averages (EPMA), which is
an adaptation of the moving averages trend following strategy to the electricity procurement
task. More details about this popular algorithmic trading approach in finance can be found
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in the book [19]. This procurement strategy is primarily based on the basic forecaster from
Section 2.4.1, with two moving averages over different time periods for predicting the future
market trend. A purchase operation is simply triggered each time a new upward trend is
detected, occurring when the shorter moving average Mt(L

short) crosses and becomes greater
than the longer moving average Mt(L

long). If the number of purchase operations performed
is smaller than N by the end of the procurement horizon, the remaining ones are executed
during the last trading time steps.

As previously explained in Section 2.3.3, the ultimate objective of the procurement policy
is the minimisation of the total cost cT . In order to improve the readability of the results,
the quantitative performance indicator C = cT/Q, representing the average price expressed
in e/MWh at which the electricity is purchased, is adopted instead. Additionally, several
procurement strategies of reference achieving particular values for the performance indicator
C are also taken into consideration for comparison purposes. Firstly, the optimal and worst
procurement policies respectively achieving the minimum and maximum costs are examined.
These unrealistic strategies are trivially derived once the evolution of the power price over
the entire procurement horizon is known. Secondly, the average electricity price achieved
by the perfectly uniform procurement strategy of reference is computed, even though this
policy is generally not feasible in practice because of the market resolution dQ. Lastly, the
UPE algorithm equipped with a perfect forecaster achieving 100% accuracy, meaning always
correctly predicting the market trend labels f̂t defined in Section 2.4, is investigated under
the denomination UPE-F.
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Figure 2.9: Illustration of the full set of CAL data composing the case study.
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2.6 Results

Before getting into the analysis of the results, several elements are specified to ensure the
reproducibility of the experiments. Firstly, the hyperparameters adopted in the simulations
are revealed in Table 2.1. Secondly, the data composing the case study, which are depicted in
Figure 2.9, have been provided by Ice Endex [26]. The dataset is not freely and publicly avail-
able, but can be purchased or may potentially be requested for research purposes. Finally,
the complete experimental code of the algorithmic solution discussed can not be publicly
shared because the present research has been conducted in the scope of a partnership with a
company from the private sector.

To begin with, following the performance assessment methodology previously described,
Table 2.2 summarises the results achieved by the novel procurement policies introduced
(UPE-MA, UPE-DL) alongside the benchmark procurement strategies (NBEP, EPMA) and
references (Min, Mean, Max, UPE-F).

Table 2.1: Hyperparameters adopted within the experiments.

Name Symbol Value

Quantity of electricity to buy [MWh] Q 106

Number of purchase operations N 10
Length of the input time series [days] K 50
Order of the low-pass filtering operation k 25
Procurement uniformity trigger − u− −0.3
Procurement uniformity trigger + u+ 0
Number of training epochs (DL model) e 104

Learning rate (DL model) lr 10−5

Dropout probability (DL model) Dp 0.2
L2 regularisation factor (DL model) L2 10−3

Number of residual blocks (ResDNN) nb 3
Number of layers per residual block (ResDNN) nl 2
Number of neurons per layer (ResDNN) nn 256

Table 2.2: Comparison of the electricity cost C [e/MWh] achieved by the different procurement policies.

CAL product Procurement policies References

NBEP EPMA UPE-MA UPE-DL Min Mean Max UPE-F

2012 54.903 52.854 56.076 52.032 47.289 55.005 63.319 52.879
2013 53.564 52.566 52.826 53.548 48.239 53.614 60.638 52.400
2014 49.387 51.346 50.063 48.762 41.233 50.234 60.279 49.036
2015 45.834 44.402 47.400 47.614 40.580 47.043 53.713 46.230
2016 43.613 43.038 43.927 43.374 34.077 43.912 48.631 41.632
2017 38.887 38.707 39.940 39.477 27.814 39.449 46.435 37.756
2018 36.357 38.666 34.537 36.206 27.727 36.440 43.852 35.443
2019 42.532 48.526 37.749 37.501 27.310 39.017 70.693 37.335

Average 45.635 46.263 45.315 44.814 36.784 45.589 55.945 44.089
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Average performance. Taking into consideration solely the average performance that
is presented on the last line of Table 2.2, the two variants of the novel UPE algorithm clearly
outperform both benchmark procurement strategies. Moreover, the UPE-MA and UPE-DL
procurement policies respectively perform 0.6% and 1.7% better than the perfectly uniform
procurement strategy of reference (column Mean in Table 2.2). More precisely, the former
percentage represents the relative reduction in electricity costs C to be expected with respect
to the situation of purchasing at the average power price over the procurement horizon. Even
though the improvement in performance achieved by the novel algorithmic solution may seem
to be quite limited at first glance, it actually corresponds to a comfortable annual saving of
hundreds of thousands of euros for large electricity consumers/retailers. For instance, the
UPE-DL procurement policy achieves an expected yearly saving of e775,000 with respect to
the perfectly uniform procurement strategy for an annual consumption of 1 TWh of energy.
Additionally, the maximum achievable reduction in costs is naturally not 100%, but rather
19.31% for this case study (column Min in Table 2.2), which is not even realistically feasible
in practice. The promising results achieved indicate that the novel algorithmic solution is
able to identify and take advantage of certain market phenomena. Moreover, the experiments
suggest that the DL forecasting model FDL outputs more accurate and relevant market trend
predictions compared to the more conventional forecaster FMA, the accuracy of a forecaster
being defined as the number of correct predictions ft = f̂t compared to the total number
of predictions. On average, the performance of the UPE procurement policy is expected to
increase as the forecasting model becomes more accurate while staying consistent, as proven
by the UPE-F reference strategy that is characterised by a 100% accuracy.

Results variance. In addition to the expected performance, the variance of the results
achieved by the novel algorithmic solution has to be rigorously analysed. Indeed, such an
assessment provides valuable information on the robustness and stability of a procurement
strategy, which is key for its application in real life. First of all, it has to be highlighted that
the mean electricity price reported in Table 2.2 significantly varies over the years. Therefore,
the variance in performance has to be discussed after subtracting the mean electricity prices
from the electricity costs C achieved by a procurement policy. Following this methodology,
the results variance substantially differs depending on the procurement policy analysed. On
the one hand, the EPMA strategy achieves the best performance for half the years of the
case study but totally fails the CAL 2019 product, because of a flaw in its design further
discussed later. On the other hand, the NBEP strategy is never the best procurement policy
but achieves a lower variance without any significant failure, as expected. As far as the UPE
algorithm is concerned, both variants deliver consistent results which are at least comparable
and generally better than the mean electricity price of reference. This consistency through-
out the years demonstrates the stability and robustness of the proposed algorithmic solution,
with positive results achieved whatever the price dynamics. In the scope of the long-term
electricity procurement task studied, this is particularly important because of the subtiantial
uncertainty characterising the sequential decision-making problem.
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Figure 2.10: Predicted market trends (top) and forecasting errors (bottom) of the forecaster FDL in the
context of the CAL 2012 product.
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Figure 2.11: Purchase operations performed by the UPE-DL algorithm (top) alongside the evolution of the
procurement uniformity ut (bottom) in the context of the the CAL 2012 product.
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Representative application of the UPE-DL algorithm. Figures 2.10 and 2.11 do
illustrate the application of the UPE-DL algorithmic solution in the context of the CAL
2012 product. Firstly, Figure 2.10 presents the market trend predictions ft outputted by the
forecaster FDL alongside the market prices pt in the upper plot, together with the forecasting
errors ft ̸= f̂t in the bottom plot. For this particular year, the DL forecasting model achieves
very encouraging results, with an accuracy of approximately 80% together with convenient
forecasts. Indeed, the predictions do not incorrectly oscillate between the two market trends
during time periods of pronounced volatility, a behaviour which could significantly harm
the performance of the UPE-DL algorithm. For instance, in the case of a major downward
market trend with several temporary limited rebounds, erroneous forecasts of upward trends
would lead to the trigger of some purchase operations prematurely. Secondly, Figure 2.11
presents the evolution of the market price pt alongside the purchase decisions yt = 1 in the
upper plot, together with the associated procurement uniformity level ut in the bottom plot.
This illustration demonstrates the ability of the UPE-DL procurement policy to delay buying
operations when the market price is expected to decrease in the future, so that purchases
are completed close to local price minima. Moreover, the bottom plot exhibits how the
two procurement uniformity thresholds u− and u+ may actually be viewed as a risk mitiga-
tion mechanism built into the UPE algorithm. Finally, Figures 2.10 and 2.11 highlight the
interpretability of the trading decisions recommended by the UPE-DL algorithm. Having
a decision-making process which is explainable and completely transparent to the human
supervisor significantly eases the monitoring of the procurement strategy and improves its
reliability, a critical feature for its application in the industry.

Sensitivity analysis. The long-term electricity procurement task is dependent on the
number of purchase operations N to be performed over the procurement horizon. Contrarily
to other parameters that are freely tuned, this quantity is constrained because of the market
resolution dQ. For this reason, the sensitivity of the performance achieved by a procurement
strategy to the number of purchase operations N has to be analysed. Figure 2.12 illustrates
the impact of the constrained parameter N on the expected electricity cost C achieved by
different procurement policies. Firstly, it can be clearly observed that the number of purchase
operations has to naturally be large enough to observe the true behaviour of a procurement
strategy, in this case N ≥ 5 typically. Otherwise, a completely different situation arises
where the results are generally a matter of luck. Secondly, the UPE-DL algorithm remains
the leading procurement policy, whatever the value of the parameter N . Additionally, the
orange curve (UPE-MA) is roughly shifted up compared to the blue one (UPE-DL), which is
another indication that the DL forecasting model generates better market trend predictions.
Thirdly, regarding the benchmark procurement strategies, NBEP is, by design, the most
resilient policy to changes in the number of buying operations. As expected, its performance
converges towards the mean electricity price when this parameter increases. On the contrary,
the EPMA strategy has a real flaw in its design since it does not monitor the number of
purchase operations. This makes the procurement policy more sensitive to the constrained
parameter N , and therefore significantly less reliable.
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Figure 2.12: Evolution of the average performance (electricity cost C) achieved by the different procurement
policies with respect to the number of purchase operations N .

2.7 Discussion

On the basis of the results previously analysed, this section discusses the main advantages
and limitations of the proposed approach. Firstly, the novel algorithmic solution introduced
successfully takes advantage of the impressive forecasting capabilities of DL techniques. With
future innovations in this area, the performance of the UPE algorithm is expected to further
improve over time. To the authors’ knowledge, this is the first research work considering
advanced AI techniques to solve the sequential decision-making problem behind the power
procurement task, with existing solutions being mostly based on stochastic programming and
optimisation methods. Secondly, the UPE algorithm presents the key advantage of producing
trading recommendations which are easier to interpret, a particularly important feature for
its application in the industry. This is achieved by coupling the market trend forecasting
with the procurement uniformity level within the decision-making process. Lastly, a risk
mitigation mechanism is included within the procurement policy, through the limitation of
the deviation from a perfectly uniform procurement policy (triggers u− and u+). This makes
the algorithmic solution more robust to exceptional events such as economic crises, during
which the forecasting model may potentially be inaccurate. With appropriate tuning of the
two parameters u− and u+, performance collapses can truly be prevented, or at the very least
mitigated, due to the constrained deviation with respect to a perfectly uniform procurement
policy of reference.
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Concerning the weaknesses, the proposed approach suffers from two main limitations.
Firstly, the quality of the trading recommendations generated by the UPE algorithm is
strongly dependent on the performance achieved by the market trend forecasting model.
Nevertheless, if a complex DL model is used for that purpose, the forecaster F becomes a black
box whose output is quite difficult to interpret. This may potentially have a negative impact
on the explainability of the trading recommendations. Secondly, as previously explained, the
deviation from a perfectly uniform procurement policy of reference is constrained according
to the two procurement uniformity triggers u− and u+. Despite being a useful mechanism to
effectively mitigate the risk, it may also limit the profit (cost reduction) when the forecasting
model is particularly accurate. Therefore, this mechanism may be viewed as both a strength
and a weakness, depending on the market dynamics and on the performance of the market
trend forecaster. In addition, the tuning of the two parameters u− and u+ is an appreciable
degree of freedom, but which may be quite challenging to perform.

2.8 Future work

Even though the novel algorithmic solution presented does achieve promising results, there is
still room for improvements. In the following, several avenues are suggested as future work.
Firstly, as previously explained in Section 2.3.3, the risk associated with the trading activity
of the agent in the scope of the long-term electricity procurement task has to be rigorously
defined and mitigated. This exercise is expected to be complicated because the trading risk
may have several different definitions for this particular sequential decision-making problem.
Once a proper mathematical definition is available, the risk has to be included within the
objective criterion of procurement policies alongside cost minimisation.

The second idea promoted concerns the dataset used to train the market trend forecasting
model. First, the performance of the forecaster could undoubtedly be improved by taking
into consideration additional information within the input space. Indeed, the procurement
policy input xt is not sufficient to accurately explain most financial phenomena occurring
within the forward markets. The forecasting model could really benefit from supplementary
information including the price evolution of correlated commodities, some macroeconomic
data, and perhaps most importantly the news. In fact, the price from the forward market
reflects the expectation of the market participants regarding the future average price from
the day-ahead market over a certain period of time. Therefore, having access to the general
feeling of these market participants about this subject is particularly important for accu-
rately forecasting the future price direction. Although it is impossible to directly retrieve
this information, monitoring the news that may have a substantial impact on the perception
of these market participants is feasible. Second, the training set could be extended, since a
sufficiently large dataset is required to effectively train complex DL models. In this research
work, the amount of training data is fairly limited compared to the complexity of the fore-
casting task. Therefore, not only could the training set range over a longer period of time,
but data augmentation techniques relevant to financial time series could also be taken into
consideration, in order to generate additional data samples. Last, updating the forecasting
model as new data becomes available is key to adapt to changing market dynamics.
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Thirdly, the forecasting model could potentially benefit from more advanced techniques
promoted by the DL research community in the scope of various forecasting problems. In
addition, other state-of-the-art forecasting approaches may also be considered [27, 28]. The
first architecture highlighted is the residual convolutional neural network (ResCNN), which is
similar to the ResDNN architecture except for the fully connected layers within the residual
blocks that are replaced by 1D convolutional layers with batch normalisation [29]. As an
illustration, the convolutional version of the residual block proposed is depicted graphically
in Figure 2.13. A second DL architecture to further explore is the long short-term memory
(LTSM), a recurrent neural network which has been demonstrated to better deal with the
vanishing gradient problem generally encountered when training such recurrent models [30].
Theoretically, this architecture excels at modelling sequential data, including time series.
This is the main reason for considering such a recurrent model in the scope of the market
trend forecasting task. An illustration of the LSTM network adapted to this forecasting
problem is provided in Figure 2.14. The last architecture suggested for the market trend
forecasting task is the transformer. This particular DL model is composed of an encoder
and a decoder, and leverages the attention mechanism [31]. The latter technique is a key
step towards the valuable interpretability of complex DL models, by giving access to the
focus (attention) of the black box model among its input features to generate its output.
The transformer has already been demonstrated to be particularly successful in the field of
natural language processing (NLP). More recently, research works highlighted the potential
of this innovative architecture for time series forecasting [32, 33]. In particular, the temporal
fusion transformer (TFT) [33] is a promising model to deal with such complex problems.
For illustration purposes, the general transformer architecture adapted to the market trend
forecasting task at hand is graphically depicted from a high-level perspective in Figure 2.15.
Moreover, the attention mechanism would be particularly helpful to further improve the
interpretability of the UPE algorithm introduced.

+

1D convolutional

Activation

Residual block (convolutional version)

Batch normalisation

Figure 2.13: Illustration of the convolutional version of the residual block previously presented.
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Figure 2.14: Illustration of the suggested LSTM architecture adapted to market trend forecasting.
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Figure 2.15: Illustration of the proposed transformer architecture adapted to market trend forecasting.
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Lastly, an interesting alternative approach to solve the complex sequential decision-making
problem studied is the subfield of AI called deep reinforcement learning (DRL). In short, this
methodology is concerned with the learning process of an agent (i) sequentially interacting
with an unknown environment (ii) aiming to maximise its cumulative rewards (iii) using DL
techniques to generalise the information acquired from the interaction with the environment.
The multiple recent successes of DRL solutions in various fields such as gaming and robotics
highlight the potential of this novel approach. Applying such an advanced AI method to the
long-term electricity procurement problem will be particularly challenging, but is expected
to lead to interesting decision-making policies. Unfortunately, the first experiments carried
out were not conclusive. To the author’s opinion, the main reason for this failure is the
market environment, which has completely different characteristics compared to the environ-
ments for which positive results have been reported for the DRL approach. More precisely,
four major problems have been identified, without getting into too many details. First, the
long-term procurement problem studied leads to a particularly sparse reward setting, which
significantly complicates the learning process. Second, the dynamics of the market environ-
ment are continuously changing, with a training set that is not always representative of the
test set. Third, the considerable stochasticity of the environment makes the learning process
even more complicated. Last, the market environment is poorly observable, meaning that
the information available to the agent is fairly limited compared to the complexity of the
environment. Hopefully, further research will eventually alleviate these problems, so that
successful procurement policies could be learnt on the basis of DRL algorithms. The present
doctoral thesis contributes to this important research.

2.9 Conclusions

This thesis chapter introduces a novel algorithmic solution, denominated Uniformity-based
Procurement of Electricity (UPE), advising a retailer or a large consumer of electricity for its
procurement task in the forward markets. This algorithm relies on a forecasting mechanism
to predict the market trend and on the concept of procurement uniformity, which quantifies
the deviation from a perfectly uniform policy of reference purchasing a fixed amount of power
at each time step over the entire procurement horizon. Taking advantage of the successful
DL approach for the forecasting problem, the proposed solution outperforms the benchmark
procurement strategies and achieves a reduction in costs of 1.7% with respect to the perfectly
uniform policy realising the average price. This represents an expected yearly saving of
e775,000 for an annual electricity consumption of 1 TWh. Besides these promising results,
the algorithmic solution presented exhibits key advantages. Firstly, the UPE algorithm is
relatively stable in its performance, with consistent results achieved throughout the years
despite having to deal with various market phenomena. Secondly, the procurement policies
learnt are quite robust with regard to exceptional events, such as economic crises, because of
the mechanism constraining the deviation with respect to a perfectly uniform procurement
policy. Lastly, the decisions advised are completely transparent and easily interpretable,
which is key to improve the reliability of the algorithmic solution. To conclude, the proposed
methodology could also be slightly adapted to address the sequential decision-making problem
of selling electricity in the forward markets, which could benefit energy producers.
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Science is organised knowledge. Wisdom is organised life.
— Emmanuel Kant
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Chapter 3

An Application of Deep Reinforcement
Learning to Algorithmic Trading

Figure 3.1: Illustration of Chapter 3 entitled An Application of Deep Reinforcement Learning to Algorithmic
Trading, created by a generative art AI [1].
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Chapter overview

This thesis chapter presents a novel approach on the basis of innovative deep
reinforcement learning (DRL) techniques to deal with a challenging sequential
decision-making problem related to algorithmic trading in the stock market. More
precisely, the objective is to determine the optimal position, either long or short,
at any point in time during the trading activity of a given stock. To achieve that
goal, a trading policy taking as input the recent history of the price signal is learnt
by reinforcement, so as to maximise the associated Sharpe ratio performance
indicator. The resulting DRL algorithm is denominated Trading Deep Q-Network
(TDQN), drawing inspiration from the successful DQN algorithm and adapted to
the particular algorithmic trading decision-making problem studied. Both training
and testing of this novel DRL algorithm are based exclusively on the generation of
artificial trajectories from a limited set of stock market historical data. In order
to objectively assess the performance of the trading policies learnt, this research
work also introduces a new and more rigorous quantitative performance assessment
methodology. The realistic experiments conducted highlight the strengths and
weaknesses of the TDQN algorithm, for which promising results are reported.

This thesis chapter is primarily based on the following scientific publication [3]:

Thibaut Théate and Damien Ernst. An Application of Deep Reinforcement Learn-
ing to Algorithmic Trading. Expert Systems with Applications, 173:114632, 2021.

Observation

Action

Reward

RL agent Environment

Figure 3.2: General illustration of the novel technical solution presented in this thesis chapter entitled An
Application of Deep Reinforcement Learning to Algorithmic Trading.
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3.1 Introduction

For the past few years, the interest in artificial intelligence (AI) has grown at a very fast pace,
with numerous research papers published every year. A key element for this growing interest
is related to the impressive successes of deep learning (DL) techniques, which are based on
deep neural networks (DNNs). The latter may be viewed as mathematical models directly
inspired by the human brain structure. This innovative approach has nowadays become the
state of the art in numerous applications such as speech recognition, image classification,
natural language processing or generative models. In parallel to DL, another field of research
has recently gained much more attention from the research community: deep reinforcement
learning (DRL). In short, this family of techniques is concerned with the learning process
of an intelligent agent (i) interacting in a sequential manner with an unknown environment
(ii) aiming to maximise its cumulative rewards and (iii) taking advantage of DL techniques
to generalise the information acquired from its interactions with the environment. Without
going into detail, the multiple recent successes of DRL techniques highlight their ability to
solve complex sequential decision-making problems.

Nowadays, an emerging industry that is growing extremely fast is the financial technology
industry, generally referred to by the abbreviation FinTech. The objective of FinTech is
pretty simple: to extensively take advantage of technology in order to innovate and improve
activities in finance. In the coming years, the FinTech industry is expected to revolutionise
the way diverse decision-making problems related to the financial sector are addressed, in-
cluding the problems related to trading, investment, portfolio management, risk management,
fraud detection or financial advising. In fact, such decision-making problems are particularly
complex to solve as they generally are sequential in nature and characterised by considerable
stochasticity, with a partially observable and potentially adversarial environment. Especially,
algorithmic trading, which is a key sector of the FinTech industry, presents really interest-
ing challenges. More precisely, also called quantitative trading, algorithmic trading may be
viewed as a methodology to trade using computers and a specific set of mathematical rules.

The primarily objective of this research work is to answer the following question: how to
design a novel trading policy/strategy on the basis of innovative AI techniques that could
compete with the popular algorithmic trading strategies that are widely adopted in practice?
To achieve that goal, this thesis chapter presents and analyses a new DRL solution to tackle
the algorithmic trading problem of determining the optimal trading position (long or short)
at any point in time during a trading activity in the stock market. The algorithmic solution
presented in this research work is inspired by the popular Deep Q-Network (DQN) algorithm,
which is adapted to the particular sequential decision-making problem studied. Additionally,
a quantitative performance assessment is introduced to evaluate in a rigorous and unbiased
way the performance of a trading policy in the stock market. Finally, the experiments
conducted are particularly instructive for the DRL approach since the trading environment
at hand presents different characteristics from those that have already been successfully solved
by DRL methods, mainly significant stochasticity and extremely poor observability.
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3.2 Literature review

To begin this scientific literature review, two key facts have to be emphasised. Firstly, it is
important to be aware that many sound research works in the field of algorithmic trading
are not publicly available. As explained in article [34], due to the huge amount of money
at stake, private FinTech firms are very unlikely to make their latest research results public.
Secondly, it has to be acknowledged that making a fair comparison between trading strategies
is a challenging task, because of the lack of a well-established framework to properly evaluate
their performance. Instead, the authors generally define their own benchmark with their
potential bias. Additionally, another major problem is related to the trading costs which are
variously defined or even omitted in the literature.

Most of the research works in algorithmic trading concern techniques generally developed
by mathematicians, economists and traders who do not exploit the recent breakthroughs in
AI. Typical examples of classical algorithmic trading strategies are the trend following and
mean reversion strategies, which are covered in detail in [19], [35] and [36]. The majority of
works applying machine learning (ML) techniques in the algorithmic trading field focus on
forecasting. If the financial market evolution is known in advance with a reasonable level of
confidence, the optimal trading decisions can easily be computed. Following this approach,
several DL techniques have already been investigated with promising results. For instance,
[37] introduces a new trading strategy based predictions achieved by a DNN, and [38] uses
wavelet transforms, stacked autoencoders and long short-term memory (LSTM) to improve
these predictions. Alternatively, some authors have investigated RL techniques to solve the
algorithmic trading decision-making problem. For instance, [39] introduces a recurrent RL
algorithm for discovering new investment strategies without the need to build forecasting
models, and [40] uses adaptive RL to trade in foreign exchange markets. More recently, a
few research works investigated DRL techniques in a scientifically sound way to solve the
algorithmic trading problem. For instance, one can first mention [41] which introduces the
fuzzy recurrent DNN structure to obtain a technical-indicator-free trading system that takes
advantage of fuzzy learning to reduce the time series uncertainty. One can also mention
[42] which studies the application of the deep Q-learning algorithm for trading in foreign ex-
change markets. Finally, there exist a few interesting research works studying the application
of DRL techniques to algorithmic trading in specific markets, such as in the field of energy [7].

To finish this short literature review, a sensitive problem in the scientific literature is the
tendency to prioritise the communication of good results or findings, sometimes at the cost
of a proper scientific approach with objective criticism. Going even further, the article [43]
even states that most published research findings in certain sensitive fields are probably false.
Such a concern appears to be all the more relevant in the field of financial sciences, especially
when the subject directly relates to trading activities. Indeed, the paper [44] claims that
many scientific publications in finance suffer from the lack of a proper scientific approach,
instead getting closer to pseudo-mathematics and financial charlatanism. Aware of these
concerning tendencies, the present research work intends to deliver an unbiased, rigorous
scientific evaluation of the novel DRL solution proposed.
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3.3 Algorithmic trading problem formalisation

3.3.1 Algorithmic trading

Also known as quantitative trading, algorithmic trading is a subfield of FinTech that may
be viewed as the approach of automatically making trading decisions on the basis of a set of
mathematical rules computed by a machine. This commonly accepted definition is adopted in
this research work, although other definitions exist in the literature. Indeed, several authors
differentiate the trading decisions (quantitative trading) from the actual trading execution
(algorithmic trading). However, for the sake of generality, algorithmic trading and quanti-
tative trading are considered synonyms in this research work, defining the entire automated
trading process. Algorithmic trading has already proven to be positive to markets, the main
benefit being the significant improvement in liquidity, as discussed in paper [45]. For more
information about this specific field, please refer to the articles [46] and [47].

There are many different markets that are suitable to apply algorithmic trading strategies.
For instance, stocks and shares are traded in the stock market. Forex trading is concerned
with foreign currencies. A trader could also invest in commodity futures. The recent rise
of cryptocurrencies, such as the Bitcoin, offer new interesting possibilities as well. Ideally,
the solution based on DRL techniques which is developed in this research work has to be
applicable to multiple markets. In this thesis chapter, the focus is set exclusively on the stock
market, but the conclusions drawn are expected to stand for algorithmic trading in general.
As future work, the algorithmic solution introduced could be adapted/specialised to other
markets as well.

Without loss of generality, a trading activity may be considered as the management of a
portfolio, which is a set of assets including diverse stocks, bonds, commodities, currencies,
among others. In the scope of this research work, the portfolio is assumed to consist of one
single stock together with the agent’s cash. Therefore, the portfolio value vt is composed of
both the trading agent’s cash value vct and the share value vst , which continuously evolve over
time t. In such a context, buying and selling operations are simply cash and share exchanges.
The trading agent interacts with the stock market through an order book, which contains the
entire set of buying orders (bids) and selling orders (asks). An example of a simplified order
book is depicted in Table 3.1. An order represents the willingness of a market participant
to trade and is composed of a price p, a quantity q and a side s (either bid or ask). For
a trade to occur, a match between bid and ask orders is required, an event which can only
occur if pbidmax ≥ paskmin, with pbidmax (paskmin) being the maximum (minimum) price of a bid (ask)
order. Consequently, a trading agent faces a very challenging task in order to generate profit:
what, when, how, at which price and which quantity to trade? This is the complex sequential
decision-making problem behind algorithmic trading which is studied in this research work.

62



Table 3.1: Example of a simplified order book.

Side s Quantity q Price p

Ask 3000 107
Ask 1500 106
Ask 500 105
Bid 1000 95
Bid 2000 94
Bid 4000 93

3.3.2 Timeline discretisation

In reality, the trading decisions can be issued at any time within the business hours, making
trading a continuous process. In order to study the algorithmic trading problem previously
described, a discretisation operation of the continuous timeline is performed. More precisely,
the trading timeline is discretised into a number of discrete trading time steps t of constant
duration ∆t. In the thesis chapter, for the sake of readability, the increment (decrement)
operations t + 1 (t − 1) are used to model the discrete transition from time step t to time
step t+∆t (t−∆t).

The duration ∆t is closely linked to the trading frequency targeted by the trading agent
(very high trading frequency, intraday, daily, monthly). Such a discretisation operation
inevitably imposes a constraint with respect to this trading frequency. Indeed, because the
duration ∆t between two time steps can not be chosen as small as possible due to technical
constraints, the maximum trading frequency achievable, equal to 1/∆t, is limited. In the
scope of this research work, this constraint is met as the trading frequency targeted is daily,
meaning that the trading agent makes a new decision once every day.

3.3.3 Trading strategy

The algorithmic trading approach is rule-based, meaning that the trading decisions are made
according to a set of rules, which are embedded into a trading strategy. In technical terms,
a trading strategy may be viewed as a programmed policy π(at|it), either deterministic or
stochastic, which outputs a trading action at according to the information available to the
trading agent it at time step t. Additionally, a key characteristic of a trading strategy is
its sequential aspect, as illustrated in Figure 3.3. An agent executing its trading strategy
sequentially applies the following steps:

1. Update of the available market information it.

2. Execution of the strategy π(at|it) to get action at.

3. Application of the designated trading action at.

4. Next time step t → t+ 1, loop back to step 1.
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Figure 3.3: Illustration of the sequential execution of a trading strategy.

3.3.4 Reinforcement learning problem formalisation

As illustrated in Figure 3.4 hereafter, reinforcement learning (RL) is concerned with the
sequential interaction of an agent with its environment. At each time step t, the RL agent
firstly observes the environment of internal state st, and retrieves an observation ot. Then, it
executes the action at resulting from its policy π(at|ht), with ht being the RL agent history,
and receives a reward rt as a consequence of its action. In this RL context, the agent history
can be mathematically, expressed as ht = {(oτ , aτ , rτ )|τ = 0, 1, ..., t}. Reinforcement learning
techniques are concerned with the design of policies π maximising an optimality criterion,
which directly depends on the immediate rewards rt observed over a certain time horizon.
The most popular optimality criterion is the expected discounted sum of rewards over an
infinite time horizon, also named return and which is denoted R. Formally, the resulting
optimal policy π∗ is expressed as the following:

π∗ = argmax
π

E[R|π] , (3.1)

R =
∞∑
t=0

γtrt . (3.2)

The parameter γ ∈ [0, 1] is the discount factor, which determines the relative importance
of future rewards. For instance, if γ = 0, the RL agent is said to be myopic as it only con-
siders the current reward and totally discards the future rewards. When the discount factor
increases, the RL agent tends to become more long-term oriented. In the extreme case with
γ = 1, the RL agent considers each reward equally. This important parameter has to be
carefully tuned according to the desired behaviour.

Figure 3.4: Illustration of the reinforcement learning approach.
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Algorithmic trading: observation space

In the scope of the algorithmic trading problem studied, the environment is assumed to be
the entire trading world gravitating around the RL agent. In fact, this market environment
can be viewed as an abstraction including the trading mechanisms together with every single
piece of information that could potentially have an effect on the trading activity of the agent.
A major challenge of the algorithmic trading problem is the extremely poor observability of
this market environment. Indeed, a considerable amount of information is completely hidden
to the trading agent, ranging from some companies’ confidential information to the other
market participants’ strategies. Therefore, the information available to the trading agent
is extremely limited compared to the complexity of the environment. From the perspective
of the RL agent, this makes the market environment particularly stochastic. Additionally,
the information available may take various forms, being both quantitative and qualitative.
Correctly processing such information and re-expressing it using relevant quantitative figures
while minimising the subjective bias is capital. Finally, the information retrieved at each
time step has to be taken into consideration sequentially rather than individually.

At each trading time step t, the RL agent observes the stock market whose internal
state is st ∈ S. The limited information collected by the agent on this complex market
environment is denoted ot ∈ O. Ideally, this observation space O has to encompass all the
information capable of influencing the market prices. As previously explained, because of the
sequential nature of the algorithmic trading problem, an observation ot has to be considered
as a sequence of both the information gathered during the previous τ time steps (history)
and the newly available information at time step t. In this research work, the RL agent’s
observations can be mathematically expressed as the following:

ot = {S(t′), D(t′), T (t′), I(t′), M(t′), N(t′), E(t′)}tt′=t−τ , (3.3)

where:

• S(t) represents the state information of the RL agent at time step t, such as the current
trading position, the number of shares owned or the available cash.

• D(t) is the information gathered by the agent at time step t concerning the OHLCV
(Open-High-Low-Close-Volume) data characterising the stock market. More precisely,
D(t) can be formally expressed as follows:

D(t) = {pOt , pHt , pLt , pCt , Vt}, (3.4)

where:

– pOt is the stock market price at the opening of the time period [t−∆t, t[,
– pHt is the highest stock market price over the time period [t−∆t, t[,
– pLt is the lowest stock market price over the time period [t−∆t, t[,
– pCt is the stock market price at the closing of the time period [t−∆t, t[,
– Vt is the total volume of shares exchanged over the time period [t−∆t, t[.
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• T (t) is the information regarding the trading time step t itself (date, weekday, time).

• I(t) is the information at the disposal of the agent regarding multiple technical indicators
about the stock market targeted at time step t. There exist many technical indicators
providing extra insights about diverse financial phenomena, such as the moving average
convergence divergence (MACD), relative strength index (RSI) or average directional
index (ADX), to only cite the most popular ones.

• M(t) gathers the macroeconomic information at the disposal of the agent at time step t.
There are many interesting macroeconomic indicators which could potentially be useful
to forecast the evolution of markets, such as the interest rate or the exchange rate.

• N(t) represents the news information gathered by the agent at time step t. These key
data can be retrieved from various sources such as the social media (Facebook, Twitter,
LinkedIn), some specialised websites, or the newspapers. Complex sentiment analysis
models have to be designed in order to extract meaningful quantitative figures (volume,
sentiment polarity and subjectivity) from the news. The benefits of such information
have already been demonstrated by several authors, see e.g. papers [48], [49] and [50].

• E(t) is any extra useful information at the disposal of the RL agent at time step t,
including among others the strategies of other market participants, some companies’
confidential information, the behaviour of related stock markets, advice from experts,
but also rumours.

In the scope of this research work, it is assumed that the only information taken into
consideration by the RL agent is the classical OHLCV data D(t) together with the state
information S(t). More precisely, the reduced observation space O encompasses the current
trading position together with a series of the previous τ + 1 daily open-high-low-close prices
and daily traded volume. Following such an assumption, the reduced RL observation ot at
time step t can be mathematically expressed as the following:

ot =
{
{pOt′ , pHt′ , pLt′ , pCt′ , Vt′}tt′=t−τ , Pt

}
, (3.5)

with Pt being the trading position of the RL agent at time step t, either long or short.

Algorithmic trading: action space

At each time step t, the RL agent executes a trading action at ∈ A resulting from its
decision-making policy π(at|ot). In fact, the trading agent has to answer several questions:
whether, how and how much to trade? This decision can be modelled by the quantity of
shares purchased by the trading agent at time step t, represented by Qt ∈ Z. Consequently,
the RL action at at time step t can be formally expressed as the following:

at = Qt . (3.6)
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Three cases have to be differentiated according to the value of Qt:

• Qt > 0: The agent buys shares on the stock market, by posting new bid orders.

• Qt < 0: The agent sells shares on the stock market, by posting new ask orders.

• Qt = 0: The agent holds, not buying nor selling any shares on the stock market.

As previously hinted, the actions occurring in practice in the scope of a trading activity
are the orders posted in the order book. Therefore, the RL agent is assumed to communicate
with an external module responsible for the synthesis of these real actions according to the
value of Qt: the trading execution system. Nevertheless, this other decision-making problem
is out of the scope of this research work and is not discussed further.

Naturally, the trading actions have an impact on the two components of the portfolio
value, namely the cash and share values (vct and vst ). In this research work, it is assumed
that the trading action at at time step t occurs just before market closure at a price pt ≃ pCt .
Following this assumption, the portfolio value can updated as the following:

vct+1 = vct −Qt pt , (3.7)

vst+1 = (nt +Qt)︸ ︷︷ ︸
nt+1

pt+1 , (3.8)

with nt ∈ Z being the number of shares owned by the agent at time step t. Interestingly,
this research work allows negative values for that quantity. Despite being surprising at first
glance, a negative number of shares simply corresponds to shares borrowed and sold, with
the obligation to repay the lender in shares in the future. Such a mechanism is particularly
important to take into consideration as it introduces new possibilities for the trading agent.

Two capital constraints are assumed regarding the quantity of shares traded Qt. Firstly,
contrarily to the share value vst which can be both positive or negative, the cash value vct has
to remain positive for every trading time steps t. This constraint imposes an upper bound
on the number of shares that the trading agent is capable of purchasing, which can be easily
derived from Equation (3.7). Secondly, there exists a risk associated with the impossibility
to repay the share lender if the agent suffers significant losses. To prevent such a situation
from happening, the cash value vct is constrained to be sufficiently large when a negative
number of shares is owned, in order to be able to get back to a neutral position (nt = 0).
A maximum relative change in price, expressed in % and denoted ϵ ∈ R+, is assumed by
the agent prior to the trading activity. This parameter corresponds to the maximum daily
evolution of the market price supposed by the agent over the entire trading horizon, so that
the trading agent should always be capable of paying back the share lender as long as the
price variation remains below this value. Consequently, the constraints acting upon the RL
actions at time step t can be mathematically expressed as follows:

vct+1 ≥ 0 , (3.9)

vct+1 ≥ −nt+1 pt (1 + ϵ) , (3.10)
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with the following condition assumed to be satisfied:∣∣∣∣pt+1 − pt
pt

∣∣∣∣ ≤ ϵ . (3.11)

Actually, the modelling represented by Equation (3.7) is inaccurate and will inevitably lead
to unrealistic results. Indeed, whenever simulating trading activities, the trading costs have
to be carefully taken into consideration. Such an omission can potentially be misleading
because a trading strategy, which is highly profitable in simulations, may generate large
losses in real trading situations caused by these trading costs, especially when the trading
frequency is high. The trading costs can be subdivided into two categories. On the one hand,
the explicit costs are induced by transaction costs and taxes. On the other hand, there are
implicit costs, also called slippage costs, which are composed of three main components and
are associated to some of the dynamics of the market environment:

• Spread costs. These costs are related to the difference between the minimum ask price
paskmin and the maximum bid price pbidmax, called the spread. Because the complete state of
the order book is generally too complex to efficiently process or even not available, the
trading decisions are mostly based on the middle price pmid = (pbidmax+paskmin)/2. However,
a buying (selling) trade issued at pmid inevitably occurs at a price p ≥ paskmin (p ≤ pbidmax).
Such costs are all the more significant that the stock market liquidity is low compared
to the quantity of shares traded.

• Market impact costs. These costs are induced by the impact of the trader’s actions
on the market. Each trade, whether it consists of buying or selling orders, is potentially
capable of influencing the market price. This phenomenon is all the more pronounced
that the stock market liquidity is low with respect to the quantity of shares traded.

• Timing costs. These costs are caused by the time required for a trade to physically
happen once the trading decision is made, since the market price is continuously evolving.
The first cause is the inevitable latency that delays the posting of the orders in the
market order book. The second cause is the intentional delays that may potentially be
generated by the trading execution system. For instance, a large trade could be split
into multiple smaller trades spread over time in order to limit the market impact costs.

As previously explained, an accurate modelling of the trading costs is required to faithfully
reproduce the dynamics of a real trading environment. While explicit costs are relatively easy
to take into consideration, the valid modelling of slippage costs is a truly complex task. In this
research work, the integration of both costs into the RL environment is performed through a
heuristic. When a trade is performed, a certain amount of capital equivalent to a percentage
C ∈ R+ of the amount of money invested is lost. This parameter was realistically chosen
equal to 0.1% in the forthcoming simulations. Practically, these trading costs are directly
withdrawn from the trading agent’s cash, leading to the following equation which is the
re-expression of Equation 3.7 with a corrective term modelling the trading costs:

vct+1 = vct −Qt pt − C |Qt| pt︸ ︷︷ ︸
Trading costs

. (3.12)
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Moreover, the trading costs have to be properly included into the constraint expressed in
Equation (3.10). Indeed, the cash value vct has to be sufficiently large to get back to a neutral
position (nt = 0) when the maximum price variation ϵ occurs, with the trading costs being
included. Therefore, Equation (3.10) can be re-expressed as follows:

vct+1 ≥ −nt+1 pt (1 + ϵ)(1 + C). (3.13)

Eventually, the RL action space A can be defined as the discrete set of acceptable values
for the quantity of shares traded Qt, with regard to the two constrained previously explained.
Formally proven hereafter, the RL action space A can be mathematically expressed as follows:

A = {Qt ∈ Z ∩ [Qt, Qt]}, (3.14)

where:

• Qt =
vct

pt(1+C)
,

• Qt =

{
∆t

ptϵ(1+C)
if ∆t ≥ 0,

∆t

pt(2C+ϵ(1+C))
if ∆t < 0,

with ∆t = −vct − nt pt (1 + ϵ)(1 + C).

Theorem 1. On the basis of the algorithmic trading context previously described together
with the assumptions made, the RL action space A admits an upper bound Qt such that:

Qt =
vct

pt(1 + C)
.

Proof. The upper bound of the RL action space A is derived from the assumption that the
cash value vct has to always remain positive, as formally expressed in Equation (3.9). Making
the hypothesis that vct ≥ 0, the number of shares Qt traded by the RL agent at time step t has
to be such that the constraint vct+1 ≥ 0 is respected. Introducing the former constraint into
Equation (3.12) describing the update of the cash value, the following inequality is obtained:

vct −Qt pt − C |Qt| pt ≥ 0 .

Two different cases arise depending on the value of Qt:

Selling shares (Qt < 0):
vct −Qt pt + C Qt pt ≥ 0

⇔ Qt ≤ vct
pt(1−C)

.
The right hand side of this inequality is always positive because of the hypothesis that vct ≥ 0.
Since Qt is strictly negative in this case (selling of shares), the condition is always satisfied.

Buying shares (Qt ≥ 0):
vct −Qt pt − C Qt pt ≥ 0

⇔ Qt ≤ vct
pt(1+C)

.
This condition represents the (positive) upper bound of the RL action space A.

69



Theorem 2. On the basis of the algorithmic trading context previously described together
with the assumptions made, the RL action space A admits a lower bound Qt such that:

Qt =

{
∆t

ptϵ(1+C)
if ∆t ≥ 0,

∆t

pt(2C+ϵ(1+C))
if ∆t < 0,

with ∆t = −vct − nt pt (1 + ϵ)(1 + C).

Proof. The lower bound of the RL action space A is derived from the assumption that the
cash value vct has to always be sufficient to get back to a neutral position (nt = 0), as formally
expressed in Equation (3.13). Making the hypothesis that this constraint is satisfied at time
step t, the number of shares Qt traded by the RL agent has to be such that this condition
remains true at the next time step t + 1. Introducing this constraint into Equation (3.12),
the following inequality is obtained:

vct −Qt pt − C |Qt| pt ≥ −(nt +Qt) pt (1 + C)(1 + ϵ).

Two different cases arise depending on the value of Qt:

Buying shares (Qt ≥ 0):
vct −Qt pt − C Qt pt ≥ −(nt +Qt) pt (1 + C)(1 + ϵ)

⇔ Qt ≥ −vct−ntpt(1+C)(1+ϵ)

ptϵ(1+C)

This condition represents the first lower bound of the RL action space A.

Selling shares (Qt < 0):
vct −Qt pt + C Qt pt ≥ −(nt +Qt) pt (1 + C)(1 + ϵ)

⇔ Qt ≥ −vct−ntpt(1+C)(1+ϵ)

pt(2C+ϵ(1+C))

This condition represents the second lower bound of the RL action space A.

Both lower bounds previously derived have the same numerator, which is denoted ∆t. In
fact, this quantity represents the difference between the maximum assumed cost to get back
to a neutral position at the next time step t + 1 and the current cash value of the agent vct .
In other words, it indicates whether or not the trading agent is able to pay its debt in shares
in the worst assumed case, if no shares are traded at the current time step (Qt = 0). Once
again, two cases arise depending on the sign of the quantity ∆t:

Case of ∆t < 0: The trading agent has no problem paying its debt in shares in the situation
previously described. Indeed, this statement is always true when the agent owns a positive
number of shares (nt ≥ 0). Moreover, this is also always true when the agent owns a
negative number of shares (nt < 0) and when the price decreases (pt < pt−1), on the basis
of the hypothesis that Equation (3.13) was satisfied at time step t. In this case, the most
constraining lower bound of the two is the following:

Qt =
∆t

pt(2C + ϵ(1 + C))
.
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Case of ∆t ≥ 0: The trading agent may potentially have problem paying its debt in shares
in the situation previously described. Following a similar reasoning as for the previous case,
the most constraining lower bound of the two is the following:

Qt =
∆t

ptϵ(1 + C)
.

In the scope of this research work, the RL action space A is slightly reduced in order to
lower the complexity of the algorithmic trading problem. More precisely, the reduced action
space becomes discrete and offers two different possibilities to the agent. At each time step t,
the RL agent can either choose to adopt a long trading position or a short trading position
for the next time step, denoted Pt+1. A long trading position consists in purchasing shares
now in order to sell them back in the future, hopefully at a higher price. On the contrary, a
short trading position consists in borrowing some shares to be sold now with the obligation
to buy them back in the future, ideally at a lower price. Eventually, the two actions available
can be mathematically expressed as the following:

at = Qt ∈ {QLong
t , QShort

t }. (3.15)

The first RL action QLong
t is designed to maximise the number of shares owned by the

trading agent, by converting as much cash value vct as possible into share value vst . Formally,
it can be mathematically expressed as follows:

QLong
t =

{⌊
vct

pt(1+C)

⌋
if at−1 ̸= QLong

t−1 ,

0 otherwise.
(3.16)

The action QLong
t is always valid since it is included into the original action space A

defined in Equation 3.14. Executing this action results in the trading agent owning a number
of shares NLong

t = nt +QLong
t . On the contrary, the second action, denoted QShort

t , converts
share value vst into cash value vct , in such a way that the trading agent owns a number of
shares equal to −NLong

t . This operation can be mathematically expressed as the following:

Q̂Short
t =

{
−2nt −

⌊
vct

pt(1+C)

⌋
if at−1 ̸= QShort

t−1 ,

0 otherwise.
(3.17)

Nevertheless, the action Q̂Short
t may potentially violate the lower bound Qt of the action

space A when the price significantly increases over time. Consequently, the second action
QShort

t is formally expressed as follows:

QShort
t = max

{
Q̂Short

t , Qt

}
. (3.18)
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Algorithmic trading: reward design

In the scope of the algorithmic trading problem studied, a relevant choice for the RL
rewards would be the daily returns achieved by the trading policy, for three reasons. Firstly,
it makes sense intuitively to seek the highest returns which are an evidence of a profitable
trading strategy. Secondly, the daily return presents the advantage of being independent of
the number of shares owned by the agent. Lastly, considering the daily returns as rewards
allows to avoid a sparse reward setup, which generally leads to a much more complicated
learning process. Therefore, the RL rewards are mathematically defined as the following:

rt =
vt+1 − vt

vt
. (3.19)

Algorithmic trading: RL objective

Exhaustively assessing the performance of a trading strategy is a challenging task, because
of the numerous quantitative and qualitative factors to ideally take into consideration. In
fact, a successful trading policy is not solely expected to generate convenient profit, but also
to efficiently mitigate the risk associated with the trading activity. Naturally, the balance
(generally trade-off) between these two objectives may significantly vary depending on the
trader’s profile together with its willingness to take extra risks in order to potentially achieve
a higher profit. Consequently, despite being intuitively appropriate, maximising the profit
generated by a trading strategy is a necessary but not sufficient objective. Instead, the
core objective of a trading strategy is selected to be the maximisation of the Sharpe ratio, a
performance indicator widely used in the field of finance and algorithmic trading. Its strength
lies in the simultaneous consideration of both the generated profit and the risk associated
with the trading activity. Mathematically, the Sharpe ratio Sr is expressed as the following:

Sr =
E[Rs −Rf ]

σr

=
E[Rs −Rf ]√
var[Rs −Rf ]

≃ E[Rs]√
var[Rs]

, (3.20)

where:

• Rs is the return achieved by the trading strategy over a certain period of time, modelling
the profitability of the trading policy π learnt,

• Rf is the risk-free return over that same time period, meaning the expected return from
a perfectly safe investment (considered negligible in this research work),

• σr is the standard deviation of the excess return Rs−Rf achieved by the trading strategy,
modelling the riskiness of the trading activity.

In practice, the Sharpe ratio Sr is computed as follows. Firstly, the daily returns achieved
by the trading strategy are computed using the formula ρt = (vt − vt−1)/vt−1. Secondly, the
ratio between the mean and standard deviation of these daily returns is evaluated. Lastly,
the annualised Sharpe ratio is derived by multiplying the former result with the square root
of the number of trading days within a year (252).
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Although the core objective targeted is the maximisation of the Sharpe ratio quantitative
indicator, the DRL approach adopted in this research work actually maximises the expected
discounted sum of daily returns (rewards) over an infinite time horizon. In fact, the former
optimisation criterion, despite being different, may be regarded as a relaxation of the Sharpe
ratio criterion. An interesting future research direction could be to further narrow the gap
between these two objectives.

Moreover, a successful trading strategy has to ideally be capable of achieving convenient
performance for different markets presenting diverse patterns. Typically, the perfect trading
strategy is expected to achieve great results for both bullish and bearish markets together
with various levels of volatility, referring to an upward and downward trend in the price
evolution, respectively. Therefore, the ultimate objective of this research work is the design
of a novel trading strategy on the basis of innovative DRL techniques in order to maximise
the Sharpe ratio on average for various market patterns.

3.4 Deep reinforcement learning algorithm

3.4.1 Deep Q-Network algorithm

The Deep Q-Network algorithm, generally referred to as DQN, is a prominent DRL algorithm
that may be viewed as the successor of the popular Q-learning algorithm [51]. This approach
is said to be model-free, meaning that a complete model of the environment is not required,
some trajectories alone being sufficient. Belonging to the Q-learning family of methods, this
algorithm is based on the learning of an approximation of the state-action value function,
denoted Q, via the Bellman equation [52]. The innovation brought by the DQN algorithm
resides in the modelling of the function Q with a DNN, whose parameters θ have to be learnt.
This optimisation is primarily performed off-policy, meaning that each update is based on
previous experiences et = (st, at, rt, st+1) collected at any point during training.

The DQN algorithm has originally been designed as a solution to learn playing the Atari-57
benchmark [53], for which it achieved promising results [54, 55]. Since then, a great scientific
literature has appeared around this algorithm, with both applications and improvements.
Typically, one can mention the numerous enhancements from the Rainbow algorithm [56]:
multi-step learning [57], double Q-learning [58], prioritised experience replay [59], duelling
architecture [60], distributional RL [61] and noisy networks [62]. The interested reader can
also refer to the following resources for more information about DL [25, 63, 22] and RL
[64, 65, 66, 67, 68] in general.

3.4.2 Generation of artificial trajectories

In the scope of the algorithmic trading problem studied, a model of the environment E is
obviously not available. Therefore, the training of the DRL algorithm will be based entirely
on the generation of artificial trajectories from a limited set historical daily OHLCV data
from the stock market. Formally, a trajectory τ is defined as a sequence of observations
ot ∈ O, actions at ∈ A and rewards rt for a number T of time steps t:
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τ =
(
{o0, a0, r0}, {o1, a1, r1}, ..., {oT−1, aT−1, rT−1}

)
.

Initially, the single trajectory τ which is available corresponds to the historical behaviour
of the stock market, without any interaction from the RL agent. Consequently, this original
trajectory is composed of the historical prices and volumes together with some long actions
executed by the RL agent without any money to invest (vc0 = 0), to model the absence of
a trading activity. In order to generate a dataset to learn from, new fictive trajectories are
artificially created from this unique real historical trajectory to simulate interactions between
the RL agent and its market environment E . For this approach to be scientifically acceptable
and lead to realistic simulations, the stock market is assumed to be unaffected by the actions
performed by the trading agent. This assumption generally holds when the number of shares
manipulated by the trading agent is low with respect to the liquidity of the stock market.
Finally, the artificial trajectories generated are simply composed of the sequence of historical
observations associated with various sequences of trading actions from the RL agent.

Additionally, a technique is employed to slightly improve the exploration of the RL agent.
It relies on the particularly low cardinality of the reduced action space, with only two actions
available (long and short). At each time step t, the selected action at is normally performed
within the market environment E , while the opposite action a−t is executed within a copy of
this environment, denoted E−. Although this approach does not replace classical exploration
techniques nor solve the challenging exploration/exploitation trade-off, it allows the RL agent
to continuously explore at a limited computational cost.

Figure 3.5: Simplified illustration of the DQN algorithm.
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3.4.3 TDQN algorithm

This section presents the Trading Deep Q-Network (TDQN) algorithm, which is designed to
learn novel algorithmic trading strategies on the basis of the DRL approach. As previously
explained, the DQN algorithm is selected as a starting point, with various adaptations and
improvements taken into consideration to better fit the algorithmic trading decision-making
problem studied. The diverse modifications, which have been validated empirically based on
the numerous simulations performed, are summarised hereafter:

• DNN architecture. The first important difference with respect to the original DQN
algorithm is the architecture of the DNN modelling the value function Qπ(s, a). Because
of the different nature of the inputs (time-series instead of images), the Convolutional
Neural Network (CNN) has been replaced by a classical Feedforward Neural Network
(FNN) with some Leaky Rectified Linear Unit (Leaky ReLU) activation functions.

• Xavier initialisation. While the original DQN algorithm simply initialises the DNN
weights θ randomly, the Xavier initialisation is implemented to improve the convergence
of the DRL algorithm. The idea is to setup the initial weights in such a way that the
variance of the gradients remains constant across the layers of the DNN.

• Double DQN. The DQN algorithm suffers from substantial overestimations, with this
overoptimism harming the algorithm performance. In order to reduce the impact of this
undesired phenomenon, the double DQN algorithm [58] decomposes the max operation
in the target into both action selection and action evaluation.

• ADAM optimiser. The original DQN algorithm implements the RMSProp optimiser.
However, the ADAM optimiser introduced in paper [24], has been observed to improve
both the training stability and the convergence speed of the TDQN algorithm.

• Gradient clipping. The gradient clipping technique is implemented in the TDQN
algorithm to solve the gradient exploding problem which induces significant instabilities
during the training process.

• Huber loss. While the original DQN algorithm implements a Mean Squared Error
(MSE) loss, the Huber loss experimentally improves the stability of the training phase.
Such an observation may be explained by the significant penalisation of large errors
with the MSE, which is generally desired but has a negative side-effect for the DQN
algorithm. In this case, the DNN is supposed to output values that depend on its own
input. Therefore, this DNN should not radically change in a single training update
because this would also lead to an excessive change in the target as well. Ideally, the
update of the DNN has to be performed in a slower and more stable manner. On the
other hand, the Mean Absolute Error (MAE) is much more robust to the presence of
outliers, but has the drawback of not being differentiable at 0. A good trade-off between
the former two losses is the Huber loss H, which is formally defined as follows:

H(x) =

{
1
2
x2 if |x| ≤ 1,

|x| − 1
2

otherwise. (3.21)
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Figure 3.6: Illustration and comparison of the MSE, MAE and Huber losses.

• Batch normalisation layers. This DL technique, introduced by [69], consists in
normalising the input layer by adjusting and scaling the activation functions. In practice,
this method provides many benefits including a faster and more robust training phase
together with an improved generalisation (countering overfitting).

• Regularisation techniques. In the preliminary experiments carried out, a very strong
tendency to overfit was observed. For this reason, three regularisation techniques have
been implemented: Dropout, L2 Regularisation and Early Stopping.

• Preprocessing and normalisation. Before getting manipulated by the DRL algo-
rithm, the observations ot go through both preprocessing and normalisation operations.
Firstly, because the high-frequency noise present in the trading data has been observed
to favour overfitting, a low-pass filtering operation is performed. Nevertheless, this
comes at a cost since this operation modifies or even destroys some potentially useful
trading patterns and introduces a non-negligible lag. Secondly, the market data are
transformed in order to convey more meaningful information about market movements.
Typically, the daily evolution of prices is taken into consideration instead of the raw
prices. Lastly, the resulting dataset is properly normalised.

• Data augmentation techniques. As previously explained, a key challenge of the
algorithmic trading problem studied is the limited amount of available data. In order to
alleviate this critical problem, several data augmentation techniques are implemented:
signal shifting, signal filtering and artificial noise addition. The idea is to generate new
fictive trading data that are slightly different while keeping the underlying financial
market phenomena untouched.

Eventually, for the sake of clarity and completeness, the complete TDQN algorithm is
thoroughly depicted hereafter in Algorithm 2.
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Algorithm 2 Trading Deep Q-Network algorithm
Initialise the experience replay memory M of capacity C.
Initialise the main DNN weights θ (Xavier initialisation).
Initialise the target DNN weights θ− = θ.
Apply the data augmentation techniques.
Apply the preprocessing and normalisation operations.
for episode = 0 to N do

for t = 0 to T , or until episode termination do
Acquire the observation ot from the environment E .
Make a virtual copy of the environment E− = E .
With probability ϵ, select a random action at from A.
Otherwise, select at = argmaxa∈A Q(ot, a; θ).
Determine the (single) opposite action a−t ∈ A \ {at}.
Interact with the environment E with action at to get the next observation ot+1 and reward rt.
Interact with the environment E− with action a−t to get the next observation o−t+1 and reward r−t .
Store both experiences et = (ot, at, rt, ot+1) and e−t = (ot, a

−
t , r

−
t , o

−
t+1) in M .

if t%T ′ = 0 then
Randomly sample from M a minibatch of Ne experiences ei = (oi, ai, ri, oi+1).

Set yi =

{
ri if the observation oi+1 is terminal,
ri + γ Q(oi+1, argmaxa∈A Q(oi+1, a; θ); θ

−) otherwise.
Compute the loss L(θ) = H(yi, Q(oi, ai; θ)).
Clip the resulting gradient in the range [0, 1].
Update the main DNN parameters θ using the ADAM optimiser.

end if
Update the target DNN parameters θ− = θ every N− steps.
Anneal the ϵ-Greedy exploration parameter ϵ.

end for
end for
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3.5 Performance assessment methodology

3.5.1 Benchmark stock markets

This section presents a novel quantitative performance assessment methodology to rigorously
evaluate the soundness of algorithmic trading strategies, whether conventional or based on
innovative AI techniques. This contribution is capital for producing meaningful and reliable
results, especially in the financial field. As previously explained, there have been serious
weaknesses concerning the evaluation protocols in algorithmic trading. In the literature, the
performance of a trading strategy is commonly assessed on a single instrument over a certain
period of time, either from the stock exchange or other financial markets. Nevertheless, such
a methodology does not lead to reliable analyses, since the trading data could potentially
have been specifically selected to artificially improve the performance of a trading strategy,
which may not be as profitable in a diversified setup more representative of reality. In order
to alleviate such a problematic bias, the performance of an algorithmic trading strategy has
to ideally be assessed across multiple instruments characterised by diverse market patterns.

On the basis of this observation, this research work introduces a new benchmark composed
of 30 stocks presenting various characteristics: different sectors and regions, both bullish and
bearish markets, diverse levels of volatility but also liquidity, among others. This particular
benchmark is depicted hereafter in Table 3.2. In order to avoid any confusion, the official
reference for each stock (ticker) is specified in parentheses. Therefore, the ultimate objective
is to design an algorithmic trading strategy achieving the best average performance for this
benchmark. However, to avoid any ambiguities about the training and evaluation protocols,
it should be specified that a new trading strategy can be trained for each stock considered
individually, while keeping the hyperparameters of the algorithm unchanged.

Table 3.2: Benchmark adopted within the performance assessment methodology.

Sector Region

American European Asian

Trading index
Dow Jones (DIA) FTSE 100 (EZU) Nikkei 225 (EWJ)
S&P 500 (SPY)
NASDAQ (QQQ)

Technology

Apple (AAPL) Nokia (NOK) Sony (6758.T)
Google (GOOGL) Philips (PHIA.AS) Baidu (BIDU)
Amazon (AMZN) Siemens (SIE.DE) Tencent (0700.HK)
Facebook (FB) Alibaba (BABA)
Microsoft (MSFT)
Twitter (TWTR)

Financial services JPMorgan Chase (JPM) HSBC (HSBC) CCB (0939.HK)

Energy ExxonMobil (XOM) Shell (RDSA.AS) PetroChina (PTR)

Automotive Tesla (TSLA) Volkswagen (VOW3.DE) Toyota (7203.T)

Food Coca Cola (KO) AB InBev (ABI.BR) Kirin (2503.T)
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As far as the trading horizon is concerned, the 8 years preceding the original publication
of this research work are assumed to be a relevant period of time. However, such a limited
time period could (rightly) be criticised to not sufficiently be representative of the entire set
of market phenomena. For instance, the financial crisis of 2008 is not taken into considera-
tion, even though it could be interesting to assess the robustness of a trading strategy with
respect to such an extraordinary event. This important choice is motivated by two reasons.
Firstly, a shorter trading horizon is less likely to contain significant market regime shifts that
could seriously harm the training stability of trading strategies. Secondly, the availability
of financial data substantially drops when going further into the past. Finally, the 8-year
trading horizon is divided into both training and test sets as follows:

• Training set: 01/01/2012 → 31/12/2017.

• Test set: 01/01/2018 → 31/12/2019.

Besides that, a validation set is selected as a subset of the training set, for the tuning
of the numerous hyperparameters of the TDQN algorithm. It should also be specified that,
after the training phase, the parameters of the algorithmic trading strategy are fixed dur-
ing its evaluation on the test set, meaning that the new experiences acquired are not valued
for extra training. However, this approach constitutes an interesting future research direction.

Eventually, there is still room for improvements with regard to the new benchmark stock
markets introduced, by incorporating further diversification. Firstly, more stocks together
with some instruments from other financial markets could undoubtedly cover complementary
market phenomena that need to be addressed appropriately. Secondly, the time horizon of the
trading activity could be further extended with the same objective, as previously explained.

3.5.2 Benchmark trading strategies

In order to accurately assess both the strengths and weaknesses of the TDQN algorithm,
some benchmark algorithmic trading strategies are selected for comparison purposes. More
precisely, the most popular conventional trading strategies that are commonly adopted in
practice are taken into consideration. For the ease of analysis, more advanced approaches
are discarded for now, such a comparison being left as future work. Although the TDQN
algorithm mostly produces active trading strategies, both passive and active strategies are
included within the benchmark. Naturally, all the trading strategies share the same input and
output spaces presented in Section 3.3.4 (O and A), for the sake of fairness. The following
list summarises the benchmark trading strategies selected:

• Buy and Hold (BH).

• Sell and Hold (SH).

• Trend Following with moving averages (TF).

• Mean Reversion with moving averages (MR).
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The first two benchmark trading strategies (BH and SH) are said to be passive, because
there are no changes in trading position over the trading horizon. On the contrary, the other
two benchmark strategies (TF and MR) are active trading strategies, that issue multiple
changes in trading position over the trading horizon. On the one hand, a trend following
trading strategy is concerned with the identification and the follow-up of significant market
trends, as depicted in Figure 3.7. On the other hand, a mean reversion trading strategy,
illustrated in Figure 3.8, exploits the tendency of the market to get back to its previous
average price in the absence of clear trends. Therefore, by design, a trend following trading
strategy generally makes a profit when a mean reversion trading strategy does not, with the
opposite being true as well. Indeed, these two families of trading strategies adopt opposite
positions: a mean reversion strategy always denies and goes against the trends while a trend
following strategy follows the movements. For more detailed about these classical trading
strategies, the reader can refer to the following documents [19, 35, 36].

Figure 3.7: Illustration of a typical trend following trading strategy.

Figure 3.8: Illustration of a typical mean reversion trading strategy.

3.5.3 Quantitative performance assessment

In the scope of the algorithmic trading problem, the quantitative performance assessment
consists in defining some performance indicators to quantify numerically the results achieved
by a trading strategy. Because the core objective of an algorithmic trading strategy is to be
profitable, its performance should be linked to the amount of money earned. However, as
previously explained, this reasoning omits to take into consideration the risk associated with
the trading activity, which should ideally be mitigated. There is a trade-off between raw
performance and risk which depends on the investor’s profile. Therefore, the quantitative
performance indicators have to assess both aspects of the performance of a trading strategy.

80



Table 3.3: Quantitative performance assessment indicators adopted.

Performance indicator Description

Sharpe ratio Return of a trading activity compared to its riskiness.
Profit & Loss Money gained or lost at the end of a trading activity.
Annualised return Annualised return generated during a trading activity.
Annualised volatility Modelling of the risk associated with a trading activity.
Profitability ratio Percentage of winning trades made during a trading activity.
Profit and loss ratio Ratio between the average profit and loss of the trades made.
Sortino ratio Sharpe ratio with solely the negative risk being penalised.
Maximum drawdown Largest loss from a peak to a trough during a trading activity.
Maximum drawdown duration Time duration of the maximum drawdown of a trading activity.

To achieve that goal, multiple quantitative performance indicators have been selected.
Previously introduced in Section 3.3.4, the most important one is certainly the Sharpe ratio.
Indeed, this performance indicator, which is very popular in the algorithmic trading field,
is particularly informative since it combines both profitability and risk into a single figure.
In addition to the Sharpe ratio, this research work makes use of various other quantitative
performance indicators in order to provide extra insights. Table 3.3 summarises the set of
nine performance indicators adopted to quantify the performance of a trading strategy. For
more details about these indicators, please refer to the following references [19, 35, 36].

Complementarily to the computation and analysis of these performance indicators, it is
interesting to graphically represent the behaviour of a trading strategy. Plotting both the
stock market price pt and portfolio value vt evolutions together with the trading actions at
issued by the trading strategy seems appropriate to accurately analyse the trading policy
learnt. Moreover, this visualisation could also provide extra insights about the performance,
the strengths and the weaknesses of the strategy analysed.

3.6 Results and discussion

This section presents a thorough evaluation of the TDQN algorithm proposed, following the
performance assessment methodology previously described in Section 3.5.3. Firstly, a detailed
analysis is carried out both for a case that performs well and for a case where the results are
mitigated at best. This perfectly highlights the strengths, weaknesses and limitations of the
TDQN algorithm. Secondly, the performance achieved by this novel algorithmic solution on
the complete benchmark is summarised and analysed. Finally, some additional discussions
about the discount factor parameter, the influence of the trading costs as well as the main
challenges faced by the DRL approach are provided. For the sake of reproducibility, the
experimental code supporting the results presented in this thesis chapter is publicly available
at the following link:

https://github.com/ThibautTheate/An-Application-of-Deep-Reinforcement-Learning-
to-Algorithmic-Trading.
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3.6.1 Positive results - Apple stock

The first detailed analysis carried out is related to the trading strategies generated by the
TDQN algorithm for the Apple stock, for which promising results are reported. In practice,
the DRL algorithms are generally characterised by a non-negligible variance, especially in the
context of stochastic environments. The TDQN algorithm is no exception. Indeed, despite
identical initial conditions, different training experiments inevitably lead to distinct trading
policies whose performance slightly varies. For this reason, the analysis of the results achieved
by the TDQN algorithm is performed in two steps. Firstly, a typical trading strategy learnt
by the TDQN algorithm is inspected and compared to the benchmark trading strategies.
Secondly, the expected performance of the TDQN algorithm is discussed.

Typical policy. Firstly, a representative trading policy learnt by the TDQN algorithm
is quantitatively evaluated and compared to the benchmark trading strategies. Table 3.4
summarises this performance assessment, with an initial capital of $100,000. The TDQN
algorithm achieves really positive results from both raw performance and risk mitigation
perspectives, clearly outperforming the benchmark active and passive trading strategies.
Despite not being the best performing solution for all performance indicators, the TDQN
algorithm is more balanced and always remains very close to the top results. Secondly, a
qualitative and graphical analysis is carried out. Figure 3.9 plots both evolutions of the
stock market price pt and of the trading agent’s portfolio value vt, alongside the actions at
outputted by the trading policy learnt via the TDQN algorithm. It can be observed that
the RL agent is capable of accurately detecting and benefiting from dominant market trends,
either upward or downward, while being less effective when the volatility increases during
market behavioural shifts. Additionally, the trading agent generally lags slightly behind the
market trends, meaning that the policy learnt by the TDQN algorithm for this particular
stock market is more reactive than proactive. This behaviour can be expected with such a
limited observation space O compared to the complexity of the environment, not including
the reasons for the future market directions (news, financial reports, macroeconomics). Still,
the trading strategy learnt is not purely reactive. Indeed, it can be observed that the RL
agent may adapt its trading position slightly before the occurrence of a new trend inversion,
on the basis of a sudden increase in volatility (anticipation).

Expected performance. Figure 3.10 plots the evolution during the training phase of
the averaged performance achieved by the trading policies learnt via the TDQN algorithm for
both the training and test sets, with the variance highlighted as a shaded area. The expected
performance reported is in line with the results previously presented for a typical run of the
TDQN algorithm, but the associated variance is non-negligible. Moreover, it can be observed
from this figure that the problematic overfitting phenomenon is appropriately managed in this
particular case. In fact, the performance for the test set being superior to that for the training
set is not a mistake. This simply indicates a more profitable market in the test set compared
to the training set. This observation perfectly illustrates a major difficulty associated with
the algorithmic trading problem: the distinct distributions within the training and test sets.
Indeed, the probability distribution of the daily returns is continuously changing, which
significantly complicates both training and evaluation of the trading strategies.
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Table 3.4: Quantitative performance assessment for the Apple stock.

Performance indicator BH SH TF MR TDQN

Sharpe ratio 1.239 -1.593 1.178 -0.609 1.484
Profit & Loss [$] 79823 -80023 68738 -34630 100288
Annualised return [%] 28.86 -100.00 25.97 -19.09 32.81
Annualised volatility [%] 26.62 44.39 24.86 28.33 25.69
Profitability ratio [%] 100 0.00 42.31 56.67 52.17
Profit and loss ratio ∞ 0.00 3.182 0.492 2.958
Sortino ratio 1.558 -2.203 1.802 -0.812 1.841
Max drawdown [%] 38.51 82.48 14.89 51.12 17.31
Max drawdown duration [days] 62 250 20 204 25

Figure 3.9: Behaviour of a typical trading strategy produced by the TDQN algorithm for the Apple stock.

Figure 3.10: Expected performance of the trading strategies produced by the TDQN algorithm (Apple stock).
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3.6.2 Mitigated results - Tesla stock

The same detailed analysis is carried out for the Tesla stock, which presents very different
characteristics compared to the Apple stock, such as a pronounced volatility. In contrast to
the promising performance reported for the previous stock, this case has been specifically
selected to highlight the limitations of the TDQN algorithm. The intuition behind the choice
of the Tesla stock is the following. Over the time period targeted, it could be demonstrated
that the price of a Tesla share has been significantly impacted by the news, an information
that is not taken into consideration by the RL agent (see observation space in Section 3.3.4).
Consequently, the observability of the environment further decreases, which is expected to
seriously harm the performance of the TDQN algorithm.

Typical policy. Table 3.5 presents the performance achieved by a typical trading policy
learnt via the TDQN algorithm alongside the results from the benchmark trading strategies,
with an initial capital of $100,000. The mitigated performance achieved by the benchmark
active trading strategies suggests that the Tesla stock is quite difficult to properly manage.
As previously explained, it is likely caused by the significant volatility together with the
lack of important information within the observation space. Even though the typical trading
strategy produced by the TDQN algorithm achieves a positive Sharpe ratio, almost no profit
is generated. Moreover, the risk level associated with this trading activity is undoubtedly
not acceptable. For instance, both the maximum drawdown and its duration are particularly
large, which would result in a stressful situation for the operator responsible for the trading
strategy. Figure 3.11, plotting the evolution of both the stock market price pt and the RL
agent’s portfolio value vt together with the trading decisions at made, confirms the former
observation. Additionally, this graph reveals that the typical trading strategy learnt via the
TDQN algorithm presents a higher trading frequency. Despite the non-negligible trading
costs, numerous changes in the trading position are performed, which further increases the
riskiness of the trading activity.

Expected performance. Figure 3.12 plots the expected performance and variance of
the trading policies learnt by the TDQN algorithm for both the training and test sets, as
a function of the number of training episodes (training phase). The expected performance
reported is substantially higher than the results achieved by the typical policy previously
analysed. Consequently, the latter can not be considered as representative of the average
behaviour, but has been selected for the ensuing discussion. This observation highlights a
key limitation of the TDQN algorithm: the considerable variance that may potentially lead
to the selection of a poorly performing policy compared to the expected performance. Then,
another observation from this figure concerns the significantly higher performance achieved
on the training set compared to the test set. This suggests that the DRL algorithm is subject
to overfitting in this case, despite the multiple regularisation techniques implemented. Once
again, this overfitting phenomenon can be partially explained by the observation space which
is too limited to effectively apprehend the Tesla stock.

84



Table 3.5: Quantitative performance assessment for the Tesla stock.

Performance indicator BH SH TF MR TDQN

Sharpe ratio 0.508 -0.154 -0.987 0.358 0.261
Profit & Loss [$] 29847 -29847 -73301 8600 98
Annualised return [%] 24.11 -7.38 -100.00 19.02 12.80
Annualised volatility [%] 53.14 46.11 52.70 58.05 52.09
Profitability ratio [%] 100 0.00 34.38 67.65 38.18
Profit and loss ratio ∞ 0.00 0.534 0.496 1.621
Sortino ratio 0.741 -0.205 -1.229 0.539 0.359
Max drawdown [%] 52.83 54.09 79.91 65.31 58.95
Max drawdown duration [days] 205 144 229 159 331

Figure 3.11: Behaviour of a typical trading strategy produced by the TDQN algorithm for the Tesla stock.

Figure 3.12: Expected performance of the trading strategies produced by the TDQN algorithm (Tesla stock).
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3.6.3 Global results - Testbench

Despite being truly insightful regarding both the strengths and weaknesses of the TDQN
algorithm, the two previous detailed analyses are not sufficient to draw robust conclusions.
As previously explained, the new algorithmic trading solution proposed has to be rigorously
evaluated on a set of diversified markets. To meet this requirement, the TDQN algorithm is
quantitatively assessed on the benchmark introduced in Section 3.5.1, which is composed of
30 stocks. More precisely, Table 3.6 summarises the expected Sharpe ratio achieved by the
trading policies learnt via the TDQN algorithm alongside the benchmark trading strategies
detailed in Section 3.5.2, for all the 30 stocks taken into consideration.

To begin with, the performance achieved by the benchmark trading strategies is briefly
discussed. It is important to differentiate the passive trading strategies (BH and SH) from
the active ones (TF and MR). This second category has way more potential, at the cost
of an extra non-negligible risk associated with the trading activity: continuous speculation.
On the contrary, the passive trading strategies could be viewed as long-term investments,
generally safer (provided a relevant choice is made for the initial trading position) but also
less profitable. Having a closer look at the time period, it appears that the training and test
sets present quite different distributions for the daily returns, which complicates the training
of active strategies. The stock markets were mostly bullish (price pt primarily increasing over
time), with more volatility and instabilities during the trading period composing the test set.
Therefore, it is not surprising to have the BH passive trading strategy outperforming the
other benchmark strategies. In fact, both active trading strategies fail to generate positive
results on average on the benchmark studied. This observation suggests that these market
conditions are very complex to actively trade. Finally, this poorer performance can also be
explained by the lack of versatility of such trading strategies which are designed to exploit
specific market patterns, but are less effective in more diversified situation.

As far as the new TDQN algorithm is concerned, promising yet mixed results are reported.
On the one hand, the proposed methodology significantly outperforms the benchmark active
trading strategies. On the other hand, the TDQN algorithm barely surpasses the BH trading
strategy, even though it has to be admitted that the particular market conditions of the test
set are favourable to this simple passive strategy. Interestingly, the TDQN algorithm and BH
strategy achieves an identical performance for certain stocks. This observation is explained
by the ability of the TDQN algorithm to learn to switch to a passive trading strategy when
uncertainty is too pronounced. Once again, the restrained observation space is key in making
the market environment stochastic and uncertain. When the TDQN algorithm learns active
trading strategies, it has been observed that both the trend following and mean reversion
patterns can be effectively exploited, which is really encouraging. Finally, based on these
results, the main advantage of the DRL approach for algorithmic trading is probably its
versatility and ability to efficiently adapt to various markets presenting diverse characteristics.
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Table 3.6: Quantitative performance assessment for the complete benchmark.

Stock Sharpe Ratio

BH SH TF MR TDQN

Dow Jones (DIA) 0.684 -0.636 -0.325 -0.214 0.684
S&P 500 (SPY) 0.834 -0.833 -0.309 -0.376 0.834
NASDAQ 100 (QQQ) 0.845 -0.806 0.264 0.060 0.845
FTSE 100 (EZU) 0.088 0.026 -0.404 -0.030 0.103
Nikkei 225 (EWJ) 0.128 -0.025 -1.649 0.418 0.019
Google (GOOGL) 0.570 -0.370 0.125 0.555 0.227
Apple (AAPL) 1.239 -1.593 1.178 -0.609 1.424
Facebook (FB) 0.371 -0.078 0.248 -0.168 0.151
Amazon (AMZN) 0.559 -0.187 0.161 -1.193 0.419
Microsoft (MSFT) 1.364 -1.390 -0.041 -0.416 0.987
Twitter (TWTR) 0.189 0.314 -0.271 -0.422 0.238
Nokia (NOK) -0.408 0.565 1.088 1.314 -0.094
Philips (PHIA.AS) 1.062 -0.672 -0.167 -0.599 0.675
Siemens (SIE.DE) 0.399 -0.265 0.525 0.526 0.426
Baidu (BIDU) -0.699 0.866 -1.209 0.167 0.080
Alibaba (BABA) 0.357 -0.139 -0.068 0.293 0.021
Tencent (0700.HK) -0.013 0.309 0.179 -0.466 -0.198
Sony (6758.T) 0.794 -0.655 -0.352 0.415 0.424
JPMorgan Chase (JPM) 0.713 -0.743 -1.325 -0.004 0.722
HSBC (HSBC) -0.518 0.725 -1.061 0.447 0.011
CCB (0939.HK) 0.026 0.165 -1.163 -0.388 0.202
ExxonMobil (XOM) 0.055 0.132 -0.386 -0.673 0.098
Shell (RDSA.AS) 0.488 -0.238 -0.043 0.742 0.425
PetroChina (PTR) -0.376 0.514 -0.821 -0.238 0.156
Tesla (TSLA) 0.508 -0.154 -0.987 0.358 0.621
Volkswagen (VOW3.DE) 0.384 -0.208 -0.361 0.601 0.216
Toyota (7203.T) 0.352 -0.242 -1.108 -0.378 0.304
Coca Cola (KO) 1.031 -0.871 -0.236 -0.394 1.068
AB InBev (ABI.BR) -0.058 0.275 0.036 -1.313 0.187
Kirin (2503.T) 0.106 0.156 -1.441 0.313 0.852

Average 0.369 -0.202 -0.331 -0.056 0.404

87



3.6.4 Discussion about the discount factor

As previously explained in Section 3.3.4, the discount factor, denoted γ ∈ [0, 1], is concerned
with the relative importance of future rewards. Without going into detail, this parameter is
generally set between 0.9 and 0.999 for most control problems solved with RL. However, in
the scope of the algorithmic trading problem, the proper tuning of the discount factor is not
trivial because of the considerable uncertainty assigned to the future. On the one hand, the
desired trading policy should be long-term oriented (γ → 1), in order to avoid a high trading
frequency that would expose the agent to considerable trading costs. On the other hand, it
would be unwise to place too much importance into an uncertain future (γ → 0). Therefore,
there intuitively exists a trade-off for the discount factor parameter.

This theoretical reasoning is validated by the multiple experiments performed to tune the
parameter γ. Indeed, it has been observed that there is an optimal value for the discount
factor, which is neither too small nor too large. Moreover, the experiments highlight another
link between this important parameter and the trading frequency of the RL agent, because
of the trading costs. From the perspective of the RL agent, these costs represent an obstacle
to a change in trading position. Indeed, changing its trading position inevitably results in
an immediate reduced reward for the agent. Therefore, the RL agent has to be sufficiently
confident about the future in order to overcome the lower immediate reward caused by the
trading costs. Since the discount factor sets the relative importance of the future, the value
of this parameter has to be large enough to allow an active trading strategy to be learnt.

3.6.5 Discussion about the trading costs

As previously hinted, the trading costs play a major role in algorithmic trading. Indeed, the
performance of a trading strategy may be strongly impacted by these costs, which should
therefore be rigorously taken into consideration. A major motivation for investigating a DRL
approach rather than pure forecasting methodologies that could also be based on innovative
AI techniques is related to the trading costs. As previously explained in Section 3.3, the RL
formalism allows the consideration of these costs directly into the decision-making process.
Therefore, the trading policy is learnt according to the exact value assigned to the trading
costs. On the contrary, a purely predictive approach based on DL techniques would learn to
forecast the future market prices, but would not provide any indications about an appropriate
trading strategy taking into account the trading costs. Although the former methodology
offers more flexibility and can also lead to performing trading policies, it is less efficient by
design because of these important trading costs.

In order to illustrate the ability of the TDQN algorithm to adapt the produced policies
according to the trading costs, Figure 3.13 presents the trading activities of three typical
strategies learnt for three different values of the trading costs. It can be clearly observed
from that figure that the trading frequency is reduced when the trading costs increase, as
expected. Moreover, when the costs become too high, the TDQN algorithm learns to adopt
a passive trading strategy (buy/sell and hold).
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(a) Trading costs: 0%.

(b) Trading costs: 0.1%.

(c) Trading costs: 0.2%.

Figure 3.13: Impact of the trading costs on the trading strategies learnt by the TDQN algorithm, in the
context of the Apple stock.
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3.6.6 Challenges identified

Nowadays, the DRL approach has already become the state of the art for numerous real-world
problems. In particular, this AI-based methodology excels in specific environments such as
games, the most impressive success being the AlphaGo algorithm [70]. Nevertheless, in the
scope of the algorithmic trading problem, the market environment presents very different
characteristics: stochasticity, uncertainty and poor observability, among others. Naturally,
numerous challenges remain in order to solve the sequential decision-making problem behind
algorithmic trading with a DRL approach, the main ones being summarised hereafter.

Firstly, markets are stochastic environments requiring the algorithmic solution considered
to be particularly robust to uncertainty. Moreover, the extremely poor observability of the
market environments further reinforces this problematic uncertainty. From the perspective
of the RL agent, the amount of information at its disposal may not be sufficient to properly
understand the dynamics of the environment. If the agent is not able to accurately explain
the market phenomena happening, the training will be ineffective. Secondly, the market
environments are continuously changing and may even be subjected to significant regime
shifts. In other words, the probability distributions of important quantities such as the daily
returns are constantly evolving. However, ML approaches, including the RL methodology,
require the training data (past) to be representative of the test data (future). For this reason,
the continuous evolution of markets inevitably hurts the performance of DRL algorithms, by
design. Thirdly, for most problems related to markets, a successful decision-making does
not solely maximises the raw performance, but does also efficiently mitigate the associated
risk. Although the risk can be somehow included within the design of the rewards, a more
convenient solution would be to keep the rewards unchanged (about raw performance) and
to take into consideration the risk directly within the RL algorithm. This research direction
is being explored, but would definitively deserve more attention from the RL community.
Fourthly, partly caused by the stochasticity and poor observability of the market environ-
ments, the RL approach may heavily suffer from the problematic overfitting phenomenon. As
suggested in paper [14], there is a critical need for more rigorous evaluation protocols in RL
because of the strong tendency of common DRL techniques to overfit. Additional research
on this specific topic is required for the DRL approach to fit a broader range of real-world
applications. Fifthly, the substantial variance of DRL techniques such as the popular DQN
algorithm may hinder their application to certain decision-making problems, including those
related to markets where there is generally a lot of money at stake. Lastly, the AI-based
solutions, including the one presented in this research work, are commonly viewed as black-
box models, that do not inspire trust to most users. For the RL approach to solve more
real-world problems, the explainability of the decision-making process has to be improved.

On the basis of these conclusions, the doctoral thesis presents new scientific contributions
to three of the major problems discussed. Chapter 4 introduces an important research about
the distributional RL approach, which, to the author’s opinion, may be particularly well
suited to handle stochastic environments such as markets. Chapter 5 goes a step further by
presenting a novel methodology to learn risk-sensitive policies based on the distributional RL
approach, while improving the explainability of the decision-making process.
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3.7 Conclusion

This thesis chapter presents a detailed formalisation of the algorithmic trading problem of
determining the optimal trading position at any point in time during a trading activity in
the stock markets. More precisely, this challenging sequential decision-making problem is
cast as a RL problem. Additionally, this research work presents the Trading Deep Q-Network
(TDQN) algorithm, an AI-based solution on the basis of the deep reinforcement learning
(DRL) approach. Following a new quantitative performance assessment designed to promote
more reliable results in algorithmic trading, promising results are reported for the TDQN
algorithm, which outperforms the benchmark conventional trading strategies. Moreover, the
proposed solution demonstrates key benefits compared to classical approaches, including an
encouraging versatility as well a remarkable adaptability to various trading costs. Finally,
the limitations of the TDQN algorithm are thoroughly discussed, highlighting the important
research directions that are necessary to make the RL approach a viable solution to market
environments in general.

This thesis chapter is concluded with several avenues that are suggested as future work,
since there is room for improvements. Firstly and most importantly, the main limitations of
the RL approach to the algorithmic trading problem and more generally for market environ-
ments, detailed in Section 3.6.6, should receive more attention for the research community.
Secondly, some assumptions related to the formalisation of the sequential decision-making
problem behind algorithmic trading could be reviewed. For instance, the observation space
could be extended to enhance the observability of the market environment. Similarly, some
constraints about the action space could be slightly relaxed in order to allow new possibilities
for the agent. In addition, advanced RL reward engineering could be performed to narrow the
gap between the RL objective and the Sharpe ratio maximisation objective. Thirdly, diverse
improvements to the DRL algorithm could be investigated. For instance, including LSTM
layers into the DNN would be a better fit for the financial time-series data [71]. Another
important enhancement would be the implementation of the various improvements that are
promoted by the Rainbow algorithm [56]: multi-step learning [57], double Q-learning [58],
prioritised experience replay [59], duelling architecture [60], distributional RL [61] and noisy
networks [62]. Finally, it would be interesting to investigate a DRL approach from the policy
optimisation category, such as the Proximal Policy Optimisation (PPO) algorithm [72].
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Progress is made by trial and failure; the failures are generally a hundred times
more numerous than the successes, yet they are usually left unchronicled.

— William Ramsay
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Chapter 4

Distributional Reinforcement Learning
with Unconstrained Monotonic Neural
Networks

Figure 4.1: Illustration of Chapter 4 entitled Distributional Reinforcement Learning with Unconstrained
Monotonic Neural Networks, created by a generative art AI [1].
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Chapter overview

The distributional reinforcement learning approach advocates for representing the
complete probability distribution of the random return instead of solely modelling
its expectation. A distributional RL algorithm may be characterised by two main
components, namely the representation together with its parameterisation of the
distribution and the probability metric defining the loss. The present research
work considers the unconstrained monotonic neural network (UMNN) architecture,
which is a universal approximator of continuous monotonic functions, particularly
well suited for modelling different representations of a probability distribution. This
property enables the efficient decoupling of the effect of the function approximator
class from that of the probability metric. Firstly, the research work introduces a
methodology for learning different representations of the random return probability
distribution (PDF, CDF and QF). Secondly, a novel distributional RL algorithm
named unconstrained monotonic deep Q-network (UMDQN) is presented. To the
author’s knowledge, it is the first distributional RL method supporting the learning
of three, valid and continuous representations of the random return distribution.
Lastly, in light of this new algorithm, an empirical comparison is performed between
three probability quasi-metrics commonly employed in distributional RL, namely
the Kullback-Leibler divergence, the Cramer distance and the Wasserstein distance.
The results highlight the strengths and weaknesses associated with each probability
metric, together with an important limitation of the Wasserstein distance.

This thesis chapter is primarily based on the following scientific publication [4]:

Thibaut Théate, Antoine Wehenkel, Adrien Bolland, Gilles Louppe and Damien
Ernst. Distributional Reinforcement Learning with Unconstrained Monotonic Neu-
ral Networks. Neurocomputing, 534:199-219, 2023.

Actions

State
DNN

Embedded state
UMNN

Actions

Actions

PDF

CDF

QF

Figure 4.2: General illustration of the novel technical solution presented in this thesis chapter entitled
Distributional Reinforcement Learning with Unconstrained Monotonic Neural Networks.
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4.1 Introduction

As previously explained in this thesis, Reinforcement learning (RL) is a family of techniques
belonging to the area of machine learning (ML), concerned with the learning process of an
agent sequentially interacting within an environment and aiming to maximise the notion of
cumulative reward. Deep reinforcement learning (DRL) extends this approach by employing
deep learning (DL) techniques to generalise the information acquired from the interaction
of the agent with its environment. Depending on whether a model of the environment is
available and exploited or not, the RL algorithms can be classified model-based or model-free.
The present research focuses exclusively on the second category, which can be subdivided into
two classes: policy optimisation and Q-learning. The RL algorithms based on the Q-learning
approach generally model the expectation of the random return, to ideally be maximised [51].
Alternatively, the distributional RL approach suggests learning the probability distribution
of the random return. This methodology presents key advantages including learning richer
representations of the returns collected, which leads to more efficient and stable learning, as
well as making risk-sensitive control and exploration policies possible [73, 74].

A distributional RL algorithm may generally be characterised by two main components.
The first one relates to both the representation together with its parameterisation of the
random return probability distribution. A unidimensional distribution possesses several rep-
resentations, such as the probability density function (PDF), cumulative distribution function
(CDF) and quantile function (QF). Typically, deep neural networks (DNNs) are considered
for approximating these various functions. The second important component concerns the
probability quasi-metric adopted for comparing two distributions. Multiple quasi-metrics do
exist for that purpose, the main ones experimented in distributional RL being the Kullback-
Leibler (KL) divergence, the Cramer distance (which is also named energy distance), and
the Wasserstein distance. In the rest of this thesis chapter, they will simply be referred to
as probability metrics. In the context of distributional RL, the role of the probability metric
is to quantitatively compare two distributions of the random return in order to implement
a temporal difference (TD) learning method, similarly to the mean squared error between
Q-values in classical RL. The choice of the probability metric is particularly important since
each metric offers different theoretical convergence guarantees for distributional RL.

The core idea of this research work is to consider the unconstrained monotonic neural
network (UMNN) architecture [75] in the scope of distributional RL. Originally designed
for autoregressive flows, this particular architecture is in fact a universal approximator of
continuous monotonic functions. Several works have already demonstrated the ability of this
neural network to accurately model continuous monotonic functions in practice [76, 77]. Since
both the CDF and QF are monotonic, the UMNN architecture is expected to offer superior
capability compared to classical neural networks when it comes to representing distributions.
Moreover, the PDF can also be efficiently represented by this architecture, when standing at
the heart of a normalizing flow [78], by taking advantage of the change of variables theorem
[75]. Because the UMNN architecture can effectively model different distribution representa-
tions, it enables the efficient decoupling of the effect of the function approximator class from
that of the probability metric, making a fair comparison between probability metrics possible.
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This leads to the main contributions of the present research work, which are threefold.
Firstly, a methodology for learning three representations of the random return probability
distribution, namely the PDF, CDF and QF, is introduced. Secondly, a novel distributional
RL algorithm, named unconstrained monotonic deep Q-network (UMDQN), is presented.
Basically, it combines the UMNN architecture with the previous methodology for learning
three different valid representations of the continuous distribution of the random return.
Thirdly, taking advantage of this new algorithm, the research work proposes an empirical
comparison of three probability metrics commonly used in distributional RL, namely the KL
divergence, the Cramer distance and the Wasserstein distance. This analysis highlights the
main strengths and weaknesses associated with each probability metric, but also reveals an
important limitation of the Wasserstein distance. Actually, the latter observation highlights
a critical approximation made by several state-of-the-art distributional RL algorithms, that
leads to the learning of inaccurate probability distributions for the random return. To the
author’s knowledge, the proposed algorithmic solution is the first distributional RL approach
supporting the learning of several (PDF, CDF and QF), valid (by ensuring monotonicity)
and continuous (as opposed to discrete) representations of the random return distribution.
To end this introductory section, it should be emphasised that the core objective of this
research work is not to present a novel distributional RL algorithm outperforming the state-
of-the-art algorithms on a given testbench, typically the Atari-57 benchmark [53], but rather
to empirically derive new insights about distributional RL from this algorithmic solution.

4.2 Literature review

Q-learning is a popular model-free RL approach which is concerned with the learning of the
quantity Q representing the quality of executing a certain action in a particular state [51].
Originally based on tabular or linear approximations, the methodology has been significantly
extended with the DQN algorithm [55] using a DNN for approximating the quantity Q in
a non-linear setting. The next important evolution is undoubtedly the distributional RL
approach advocating for learning the entire probability distribution of the random return
instead of only modelling its expectation [73]. Fundamental research on distributional RL is
still in its early stages, but key benefits have already been discovered [74, 79].

Multiple successful distributional RL algorithms can be found in the scientific literature,
based on diverse representations of the random return distribution and different probability
metrics. First of all, the categorical DQN (CDQN) algorithm [73], which is also known as
C51, approximates the PDF of the random return through categorical distributions and uses
the KL divergence for quantitatively comparing these distributions. The link between this
pioneer distributional RL algorithm and the Cramer distance probability metric was later
highlighted [80]. Alternatively, the quantile regression DQN (QR-DQN) algorithm [81] learns
the distribution of the random return by manipulating the QF with fixed uniform quantile
fractions and the Wasserstein distance. Compared to the CDQN algorithm, this approach has
the advantage of avoiding the specification of a fixed support for the random return values.
Nevertheless, both algorithms suffer from the same drawback of estimating the distribution
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of the random return on fixed locations (either value or probability), with as a consequence
that the distributions learnt are discrete. The implicit quantile network (IQN) algorithm
[82] solves this problem by learning the quantile values from quantile fractions sampled from
a uniform distribution U([0, 1]). This is achieved with a specific DNN representing the QF
by mapping quantile fractions to quantile values and trained by minimising the Wasserstein
distance. Finally, the fully parameterised quantile function (FQF) algorithm [83] extends the
previous methodology by parameterising both quantile fraction and value axes. To do so, two
DNNs are used: one for generating appropriate quantile fractions and one for mapping these
quantile fractions to quantile values. They are jointly trained by minimising the Wasserstein
distance once again. Table 4.1 summarises the key characteristics of these state-of-the-art
distributional RL algorithms, and Figure 4.3 illustrates these important algorithms in the
context of the Atari-57 benchmark [53].

Table 4.1: Key characteristics (representation of the random return probability distribution and probability
metric) of the main state-of-the-art distributional RL algorithms.

Algorithm Probability distribution representation Probability metric

DQN Expectation (non distributional RL) L1 metric
CDQN Categorical PDF (fixed discrete support) KL divergence
QR-DQN Discrete QF (fixed quantile fractions) Wasserstein distance
IQN Continuous QF (quantiles drawn from U([0, 1])) Wasserstein distance
FQF Continuous QF (quantiles sampled by a DNN) Wasserstein distance

DQN CDQN QR-DQN IQN FQF

CNN CNN CNN CNN

FFN FFN FFN FFN

FFN

cos

FFN

×

CNN

cos

FFN
×

FFN

Actions

Returns

Actions

Returns

Actions

Returns

Actions

Returns

Actions

Returns

Figure 4.3: Illustration of the state-of-the-art distributional RL algorithms for the Atari-57 benchmark [53].
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Besides the previous distributional RL algorithms that are well-established in the research
community, one can mention several recent research works bringing new interesting insights
about distributional RL. To begin with, the moment matching DQN (MMDQN) algorithm
[84] learns via a DNN a finite set of statistics for the distribution of the random return by
implicitly matching all orders of moments between the random return distribution and its
target. The key benefit of this approach is to avoid the predefined statistic principle used in
prior distributional RL works, leading to a simpler objective amenable to backpropagation.
This is achieved by learning unrestricted statistics, i.e. deterministic samples, of the random
return distribution by leveraging the maximum mean discrepancy technique from hypothesis
testing. Then, sharing a similar philosophy to the present research work, the non-crossing
QR-DQN algorithm [85] is an improvement of the well-established QR-DQN algorithm by
implementing non-crossing quantile regression to ensure the monotonicity constraint for the
QF. This enhancement is built on the observation that the non-decreasing property of learnt
quantile curves is not guaranteed, which can lead to abnormal distribution estimates and
reduce model interpretability. Nevertheless, this technique is not directly transferable to the
IQN or FQF algorithms. To end this literature review, an important study reveals that
the reward system of the human brain would operate similarly to distributional RL [86].
Indeed, the findings suggest that the human brain represents possible future rewards as a
complete probability distribution and not as a single mean of stochastic outcomes. This is
naturally very encouraging news supporting the soundness of the distributional RL approach.

4.3 Distributional Reinforcement Learning

This thesis adopts the standard RL setting where the agent interacts with its environment
modelled as a Markov decision process (MDP). An MDP is a 6-tuple (S, A, pR, pT , p0, γ)
where S and A respectively are the state and action spaces, pR(r|s, a) is the probability
distribution from which the reward r ∈ R is drawn given a state-action pair (s, a), pT (s′|s, a)
is the transition probability distribution, p0(s0) is the probability distribution over the initial
states s0 ∈ S, and γ ∈ [0, 1[ is the discount factor. The RL agent makes decisions according
to its policy π : S → A, which is considered deterministic in the rest of this thesis chapter,
mapping the states s ∈ S to the actions a ∈ A.

As previously explained, the Q-learning approach focuses on modelling the state-action
value function Qπ of a policy π. This quantity represents the expected discounted sum of
rewards to be obtained by executing an action a in a state s and then following a policy π.
Also named expected return, it satisfies the Bellman equation [52]:

Qπ(s, a) = E
st,rt

[
∞∑
t=0

γtrt

]
, (s0, a0) := (s, a), at = π(st) , (4.1)

Qπ(s, a) = E
s′,r

[r + γQπ(s′, π(s′))] . (4.2)
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Following this methodology, one can define the optimal policy π∗ on the basis of the optimal
state-action value function Q∗ as the following:

Q∗(s, a) = E
s′,r

[
r + γmax

a′∈A
Q∗(s′, a′)

]
, (4.3)

π∗(s) ∈ argmax
a∈A

Q∗(s, a) . (4.4)

Distributional RL aims at modelling the entire probability distribution over returns instead
of only its expectation. To this end, let the reward R(s, a) be a random variable distributed
under pR(·|s, a), the state-action value distribution Zπ ∈ Z (which is also called state-action
return distribution function) of a policy π is a random variable defined as follows:

Zπ(s, a)
D
=

∞∑
t=0

γtR(st, at) , (s0, a0) := (s, a), at = π(st), st+1 ∼ pT (·|st, at) , (4.5)

where A
D
= B denotes the equality in distribution between the random variables A and B.

Therefore, the state-action value function Qπ is the expectation of the random return Zπ. In
a similar way, there exists a distributional Bellman equation recursively describing Zπ:

Zπ(s, a)
D
= R(s, a) + γP πZπ(s, a) , (4.6)

P πZπ(s, a) :
D
= Zπ(s′, a′) , s′ ∼ pT (·|s, a), a′ = π(s′) , (4.7)

where P π : Z → Z is the transition operator based on the decision-making policy π. Finally,
one can define the distributional Bellman operator T π : Z → Z and the distributional
Bellman optimality operator T ∗ : Z → Z as the following:

T πZπ(s, a)
D
= R(s, a) + γP πZπ(s, a) , (4.8)

T ∗Z∗(s, a)
D
= R(s, a) + γZ∗ (s′, π∗(s′)) , s′ ∼ pT (·|s, a) . (4.9)

Theoretically, the distributional Bellman operator T π may potentially be a contraction
mapping or not depending on the probability metric. This property implies that there exists
a unique fixed point Zπ to converge towards when repeatedly applying the operator T π.
For the distributional Bellman optimality operator T ∗, another condition is required for this
contraction mapping property to hold: the optimal policy π∗ has to be unique [73]. Multiple
probability metrics do exist for quantitatively comparing the probability distributions of two
continuous random variables. In this research work, the emphasis is set on the three main
probability metrics used in distributional RL, namely the KL divergence, Cramer distance and
Wasserstein distance. Table 4.2 formally introduces these probability metrics, together with
their impact on the contraction mapping property of the distributional Bellman operator T π.
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Table 4.2: Formal definition of the probability metrics studied, where A and B are two random variables,
and where pD, FD and F−1

D denote the PDF, CDF and QF of the random variable D, respectively.

Probability metric Mathematical definition T π contraction?

KL divergence LKL(A,B) = DKL(pA, pB) =
∫
R pA(x) log

(
pA(x)
pB(x)

)
dx No [87]

Cramer distance LC(A,B) = DC(FA, FB) =
(∫

R (FA(x)− FB(x))
2
dx

)1/2

Yes [80]

Wasserstein distance LW (A,B) = DW (F−1
A , F−1

B ) =
∫ 1

0
F−1
A (x)− F−1

B (x)dx Yes [73]

4.4 Unconstrained monotonic deep Q-network

4.4.1 Learning different representations of a probability distribution

This section presents a new methodology for learning three different representations of the
probability distribution of the random return: the PDF, CDF and QF. The learning process
is based on the comparison of the left- and right-hand sides of the distributional Bellman
equation (4.6). For a given probability metric L, the random return Zπ is a fixed point of
the Bellman operator T π if it minimises the following loss:

L (T πZπ(s, a), Zπ(s, a)) , (4.10)

for all state-action pairs (s, a) ∈ S × A. The distributional RL problem at hand will be
addressed by defining a hypothesis space for the quantity Zπ and by minimising the loss
function defined in Equation (4.10) over this space using stochastic gradient descent (SGD).
In the following, the effect of the distributional Bellman operator T π on the different rep-
resentations of the random return probability distribution is rigorously studied. Intuitively,
the discount factor γ squeezes the random return distribution while the reward R shifts this
probability distribution, as illustrated in Figure 4.4 in the simplified particular situation of
both deterministic reward and transition functions.

PDF

CDF

QF

𝛾 𝛾

𝛾 𝛾

𝛾

𝛾

𝑅ሺ𝑠,𝑎ሻ

𝑅ሺ𝑠,𝑎ሻ

𝑅ሺ𝑠,𝑎ሻ

Figure 4.4: Illustration of the effect of the distributional Bellman operator on three different representations of
the random return probability distribution in the simplified situation of both a deterministic reward function
and a deterministic transition function.
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PDF representation. Let pZπ(z|s, a) be the PDF of the random variable Zπ given the state-
action pair (s, a) at the return z. Assuming the KL divergence LKL as the probability metric
considered, the loss to be minimised defined in Equation (4.10) can be re-expressed as follows:

LKL(T πZπ(s, a), Zπ(s, a)) = DKL (pT πZπ(z|s, a), pZπ(z|s, a)) (4.11)

= DKL

(
E
s′,r

[
1

γ
pZπ

(
z − r

γ

∣∣∣∣s′, π(s′))] , pZπ(z|s, a)
)

. (4.12)

CDF representation. Let FZπ(z|s, a) be the CDF of the random variable Zπ conditioned
by the state-action pair (s, a) at the return z. Assuming the Cramer distance LC as the
probability metric considered, the loss formally defined in Equation (4.10) can be re-expressed
as the following:

LC(T πZπ(s, a), Zπ(s, a)) = DC (FT πZπ(z|s, a), FZπ(z|s, a)) (4.13)

= DC

(
E
s′,r

[
FZπ

(
z − r

γ

∣∣∣∣s′, π(s′))] , FZπ(z|s, a)
)

. (4.14)

QF representation. Let F−1
Zπ (τ |s, a) be the QF of the random variable Zπ given the state-

action pair (s, a) at the quantile fraction τ ∈ [0, 1]. Assuming the Wasserstein distance LW

as the probability metric considered, the loss to be minimised defined in Equation (4.10) can
be re-expressed as follows:

LW (T πZπ(s, a), Zπ(s, a)) = DW

(
F−1
T πZπ(τ |s, a), F−1

Zπ (τ |s, a)
)

(4.15)

≃ DW

(
E
s′,r

[
r + γF−1

Zπ (τ |s′, π(s′))
]
, F−1

Zπ (τ |s, a)
)

. (4.16)

As far as mathematical proofs are concerned, Equations (4.12) and (4.14) are respectively
supported by Proposition 1 and Corollary 1 hereafter. On the contrary, Equation (4.16) could
not be rigorously proven as originally intended. In order to get a better understanding of
the challenge faced, some basic experiments have been conducted. The results suggest that
Equation (4.16) results from an approximation of F−1

T πZπ(τ |s, a), leading to a random variable
with the correct expectation but potentially different higher-order moments. In the scope
of distributional RL, such an approximation may have two completely different implications
depending on the objective pursued. If the intention is to accurately learn the probability
distribution of the random return for implementing risk-aware policies, this approximation
is obviously problematic. On the contrary, if the goal is to learn policies maximising the
expectation of the random return, this approximation may have no negative effect since the
distribution learnt has the correct first-order moment. In fact, this approach is adopted by
the state-of-the-art QR-DQN, IQN and FQF algorithms which are able to learn valuable
policies in practice, based on the expectation of the random return alone [81, 82, 83].
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Proposition 1 Let Zπ ∈ Z be the random return associated with the policy π : S → A,
which is a random variable mapping the state-action pair (s, a) ∈ S ×A to the realisation of
the return z ∈ R. Additionally, let pR(r|s, a) be the probability distribution from which the
reward r ∈ R is drawn, and pT (s

′|s, a) be the transition probability distribution. Finally, let
T π : Z → Z be the distributional Bellman operator, and let Zπ ′ ∈ Z be a random variable
such that Zπ = T πZπ ′. Then, the probability density functions pZπ and pZπ ′ associated with
the random variables Zπ and Zπ ′ respect the following equality:

pZπ(z|s, a) = E
r∼pR(·|s,a)
s′∼pT (·|s,a)

[
1

γ
pZπ ′

(
z − r

γ

∣∣∣∣s′, a′) ∣∣∣∣
a′=π(s′)

]
∀z ∈ R, s ∈ S, a ∈ A . (4.17)

Proof Let z be the return sampled from the random variable Zπ(s, a) for the state-action
pair (s, a). By marginalising over the reward r collected and over the next state-action pair
(s′, a′) with a′ = π(s′), the PDF of the random return can be expressed as follows:

pZπ(z|s, a) =
∫

pZπ(z|s, a, r, s′, a′) p(r, s′, a′|s, a) dr ds′. (4.18)

Considering both the conditional independence and the Markov property of the decision-
making process, the expression p(r, s′, a′|s, a) can be re-written as the following:

p(r, s′, a′|s, a) = pR(r|s, a)pT (s′|s, a). (4.19)

According to the distributional Bellman equation, the return z can be expressed as a
function of both the reward r and the next return z′:

z = r + γz′. (4.20)

Based on this expression and making use of the change of variables theorem, the PDF
pZπ(z|s, a, r, s′, a′) can be re-expressed as follows:

pZπ(z|s, a, r, s′, a′) = |γ|−1 pZπ ′ (z′|s, a, r, s′, a′)
∣∣
z′= z−r

γ

(4.21)

=
1

γ
pZπ ′

(
z − r

γ

∣∣∣∣s′, a′) . (4.22)

Finally, by substitution of Equations (4.19) and (4.22) into Equation (4.18), the following
relation is obtained:

pZπ(z|s, a) =
∫

1

γ
pZπ ′

(
z − r

γ

∣∣∣∣s′, a′) pR(r|s, a)pT (s′|s, a) dr ds′ (4.23)

= E
r∼pR(·|s,a)
s′∼pT (·|s,a)

[
1

γ
pZπ ′

(
z − r

γ

∣∣∣∣s′, a′) ∣∣∣∣
a′=π(s′)

]
. (4.24)

□
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Corollary 1 Let Zπ ∈ Z be the random return associated with the policy π : S → A, which
is a random variable mapping the state-action pair (s, a) ∈ S × A to the realisation of the
return z ∈ R. Additionally, let pR(r|s, a) be the probability distribution from which the
reward r ∈ R is drawn, and pT (s

′|s, a) be the transition probability distribution. Finally, let
T π : Z → Z be the distributional Bellman operator, and let Zπ ′ ∈ Z be a random variable
such that Zπ = T πZπ ′. Then, the cumulative distribution functions FZπ and FZπ ′ associated
with the random variables Zπ and Zπ ′ respect the following equality:

FZπ(z|s, a) = E
r∼pR(·|s,a)
s′∼pT (·|s,a)

[
FZπ ′

(
z − r

γ

∣∣∣∣s′, a′) ∣∣∣∣
a′=π(s′)

]
∀z ∈ R, s ∈ S, a ∈ A. (4.25)

Proof By considering the definition of the CDF together with Equation (4.17) given by
Proposition 1, the following development can be obtained:

FZπ(z|s, a) =
∫ z

−∞
pZπ(z∗|s, a) dz∗ (4.26)

=

∫ z

−∞
E

r∼pR(·|s,a)
s′∼pT (·|s,a)

[
1

γ
pZπ ′

(
z∗ − r

γ

∣∣∣∣s′, a′) ∣∣∣∣
a′=π(s′)

]
dz∗ (4.27)

= E
r∼pR(·|s,a)
s′∼pT (·|s,a)

[∫ z

−∞

1

γ
pZπ ′

(
z∗ − r

γ

∣∣∣∣s′, a′) ∣∣∣∣
a′=π(s′)

dz∗

]
(4.28)

= E
r∼pR(·|s,a)
s′∼pT (·|s,a)

[∫ z−r
γ

−∞
pZπ ′

(
z∗∗

∣∣∣∣s′, a′) ∣∣∣∣
a′=π(s′)

dz∗∗

]
(4.29)

= E
r∼pR(·|s,a)
s′∼pT (·|s,a)

[
FZπ ′

(
z − r

γ

∣∣∣∣s′, a′) ∣∣∣∣
a′=π(s′)

]
. (4.30)

□

As previously mentioned, the case of the QF is more complex and involves an important
approximation. Let Zπ ∈ Z be the random return associated with the policy π : S → A,
which is a random variable mapping the state-action pair (s, a) ∈ S × A to the realisation
of the return z ∈ R. Additionally, let pR(r|s, a) be the probability distribution from which
the reward r ∈ R is drawn, and pT (s

′|s, a) be the transition probability distribution. Finally,
let T π : Z → Z be the distributional Bellman operator, and let Zπ ′ ∈ Z be a random
variable such that Zπ = T πZπ ′. Then, the quantile functions F−1

Zπ and F−1
Zπ ′ associated with

the random variables Zπ and Zπ ′ can be linked based on an approximation as the following:

F−1
Zπ (τ |s, a) ≃ E

r∼pR(·|s,a)
s′∼pT (·|s,a)

[
r + γF−1

Zπ ′(τ |s′, a′)
∣∣
a′=π(s′)

]
∀τ ∈ [0, 1], s ∈ S, a ∈ A. (4.31)
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A limited empirical research on this approximation suggests that it leads to a random
variable modelling the quantity Zπ with the correct expectation but potentially different
higher-order moments. Moreover, the error resulting from this approximation is observed
to increase with the stochasticity characterising the dynamics of the MDP (transition and
reward probability distributions pT and pR). On the contrary, Equation (4.31) no longer relies
on an approximation in the deterministic case. Consequently, this particular approximation
may have two completely different implications depending on the objective pursued. If the
distributional RL algorithm is used to learn ordinary decision-making policies maximising the
expectation of the random return, the approach remains totally sound since the probability
distribution learnt has the correct first-order moment. On the contrary, this approximation
becomes really problematic if the intention is to learn the complete probability distribution
of the random return for implementing risk-sensitive policies, as studied in Chapter 5.

4.4.2 Unconstrained monotonic neural network

As previously hinted, the PDF, CDF and QF of continuous random variables share the key
property of being effectively modelled with strictly monotonic functions. This is the primarily
reason for this research to consider unconstrained monotonic neural networks (UMNNs),
which are universal approximators of continuous monotonic functions, for parameterising the
random return probability distribution. Formally, a UMNN defines a parametric continuous
monotonic function G(·; θ) : R → R as the following:

G(x; θ) :=

∫ x

0

g(t; θ)dt+ β , (4.32)

where g(·; θ) : R → R+ is a free-form neural network whose output positiveness is enforced
via an appropriate activation function (for instance ReLU or exponential), where θ denotes
its parameters, and where β ∈ R is a trainable scalar parameter. This parameterisation
can efficiently generalise to random variables conditioned by other quantities, in this case
the state s and the action a. A natural solution is to add these conditioning variables c as
an additional vector input to the neural network g and to parameterise β as another neural
network. In this particular case, Equation (4.32) can be re-expressed as follows:

G(x|c; θ) :=
∫ x

0

g(t, c; θg)dt+ β(c; θβ) , (4.33)

where the parameters of the monotonic transformation are θ = θg ∪ θβ. Evaluating the
function G requires solving an integral. This operation is performed numerically via the
Clenshaw-Curtis quadrature, for the sake of efficiency.

In the scope of the distributional RL methodology at hand, the QF of the random return
Z which takes as inputs quantile fractions τ ∈ [0, 1] can be parameterised by a UMNN as
F−1
Z (τ |s, a; θ) := G(τ |s, a; θ). Modelling the CDF of the random return Z requires the output

to be bounded in [0, 1], which is achieved by passing the output of the UMNN through a
sigmoid function σ: FZ(z|s, a; θ) := σ(G(z|s, a; θ)). Modelling the random return PDF
pZ(z|s, a; θ) can be done via normalizing flows [78]. More precisely, it is achieved by using a
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fixed latent distribution pY and exploiting the property that there exists a unique continuous
monotonic function f satisfying the following equation (change of variables theorem) [75]:

pZ(z|s, a; θ) = pY (f(z|s, a; θ))
∣∣∣∣∂f∂z

∣∣∣∣ . (4.34)

The representation of pZ is achieved by modelling the function f with a UMNN and fixing
pY to an isotropic normal distribution. With such a representation, drawing samples from
pZ is performed by drawing samples from pY and applying the function f−1. This requires
inverting the UMNN, which can be done numerically by using any inversion method such as
a binary search, since the inverse of a monotonic function is also monotonic.

Implementation details about UMNN for distributional RL

As previously indicated, the UMNN requires the solving of an integral, which may be a
computationally expensive operation. For the sake of efficiency, this integral is numerically
computed via the Clenshaw-Curtis quadrature. This technique presents the key advantage of
converging exponentially fast for Lipshitz functions. In practice, a few function evaluations
are required for reaching satisfying accuracy, and these operations present the advantage of
being executable in parallel. This makes the complete forward computation of the UMNN
quite efficient. Regarding the backward pass, the Leibniz rule can be used to make it more
memory efficient. This technique enables to compute the derivative of an integral with respect
to its inputs as the integral of the derivatives. For the interested reader, more details about
the complete implementation of both forward and backward computations can be found in
Appendix B of the research paper originally introducing the UMNN architecture [75].

Another key operation which has to be efficiently implemented is the computation of the
expectation of the random return Zπ. Indeed, this important quantity will be repeatedly
evaluated in distributional RL, since the decision-making policy π selects the action max-
imising the expectation of the random return. The methodology employed for that purpose is
described hereafter for the three different probability distribution representations considered.

PDF representation. The PDF of the random return Zπ is modelled with a UMNN as
pZπ(z) = g(z)σ′ (∫ z

0
g(t)dt+ β

)
, where the function σ′(·) denotes the PDF of a normal distri-

bution (or equivalently the derivative of a sigmoid function). Consequently, the expectation
of the random return Zπ can be expressed as follows:

E [Zπ] =

∫ zmax

zmin

zg(z)σ′
(∫ z

0

g(t)dt+ β

)
dz . (4.35)

A straightforward but inefficient solution would be to independently solve each inner
integral for different values of the return z. Instead, for improved efficiency, these inner
integrals are solved simultaneously by making use of the same neural network evaluation
multiple times. The UMNN is first evaluated at evenly separated points between zmin and
zmax, and a composite Simpson’s rule is then applied to approximate the inner integrals.
Afterwards, the expectation of the random return Zπ is finally computed by estimating the
outer integral using a Monte Carlo approach.
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CDF representation. The CDF of the random return Zπ can be modelled with a UMNN as
FZπ(z) = σ

(∫ z

0
g(t)dt+ β

)
, where the function σ(·) is a sigmoid function (or equivalently the

CDF of a normal distribution). Consequently, the PDF of the random return can be directly
derived as pZπ(z) = g(z)σ′ (∫ z

0
g(t)dt+ β

)
, and the expectation of the random return Zπ can

be evaluated by following the methodology described in the previous paragraph.

QF representation. When the random return Zπ probability distribution is represented
through its QF, no particular improvement is implemented and the expectation is estimated
using Monte Carlo, similarly to the state-of-the-art QR-DQN, IQN and FQF algorithms.

4.4.3 Unconstrained monotonic deep Q-network algorithm

This section presents the unconstrained monotonic deep Q-network (UMDQN) algorithm, a
novel generic distributional RL algorithm based on the methodology previously introduced in
Section 4.4.1 and taking advantage of the UMNN architecture for representing the continuous
probability distribution of the random return. More precisely, this research work details three
versions of the generic UMDQN distributional RL algorithm: the UMDQN-KL, UMDQN-C
and UMDQN-W algorithms, which respectively learn the continuous PDF, CDF and QF of
the random return Zπ by minimising the KL divergence, Cramer distance and Wasserstein
distance. Consequently, in contrast to previous works on distributional RL, the proposed
approach presents the key advantage of offering a choice regarding the representation of the
probability distribution together with the probability metric to work with. An illustration
of these three novel distributional RL algorithms is provided in Figure 4.5.

CNN-FFN UMNN

Return 𝑧
Actions

Returns

CNN-FFN UMNN

Quantile fraction 𝜏
Actions

Returns

UMDQN-KL

UMDQN-C

UMDQN-W

CNN-FFN UMNN

State 𝑠

Embedded state 𝑠!

Return 𝑧
Actions

Returns

NF

𝜎
State 𝑠

State 𝑠

Embedded state 𝑠!

Embedded state 𝑠!

Figure 4.5: Illustration of the three versions of the UMDQN algorithm in the context of Atari games.
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The UMDQN algorithm is an off-policy and value iteration DRL algorithm which is based
on the same procedure as the popular DQN algorithm for generating trajectories and learning
from that information. Numerous experiences e = (s, a, r, s′) are generated by sequentially
interacting with the environment and are stored into an experience replay memory of fixed
size with a first-in-first-out (FIFO) replacement policy. Additionally, a target network, whose
parameters are denoted θ−, is used for fixing the Bellman probability distribution to be learnt
and is updated at regular intervals. As far as exploration is concerned, it is ensured through
the use of the ϵ-greedy technique. At regular intervals during the interaction between the
agent and its environment, batches of experiences are sampled from the replay memory to
compute Monte Carlo estimates of an approximation of the loss defined in Equation (4.10)
and perform stochastic gradient descent.

In fact, three important approximations are made regarding the loss previously defined
in Equation (4.10). The first one results from the evaluation of the loss in expectation over
the distribution of state-action pairs sampled from the environment. The second approxi-
mation originates from the computation of the expectation Es′,r in Equations (4.12), (4.14),
(4.16) outside the probability metric L. The last approximation comes from the estimation
of the two expectations Es,a and Es′,r using Monte Carlo with the experiences sampled from
the replay memory. The second approximation may potentially introduce a bias, as it has
already been demonstrated for the Wasserstein distance [73]. However, there is a solution
for this probability metric in particular: the (conditional) quantile regression method [88].
This approach is claimed to allow for the unbiased stochastic approximation of the QF, and
is adopted in the QR-DQN, IQN and FQF algorithms.

The learning process of the UMDQN algorithm is rigorously described in Algorithm 3.
Within this description, GZ(·|s, a; θ) denotes the random return probability distribution
modelled by a UMNN with parameters θ for the state-action pair (s, a), the operator T π

is defined in Equation (4.36) and reproduces the effect of the distributional Bellman operator
on GZ(·|s, a; θ) in line with Equations (4.12), (4.14) and (4.16), the function L computes the
error according to the probability metric selected, and X is a discretisation of the domain of
the function representing probability distribution of the random return. The policy π selects
the action maximising the expectation of the random return Zπ learnt so far.

T πGZ(x|s, a; θ) =


1
γ
GZ

(
x−r
γ

∣∣s′, π(s′); θ) if the UMNN models a PDF,

GZ

(
x−r
γ

∣∣s′, π(s′); θ) if the UMNN models a CDF,

r + γGZ(x|s′, π(s′); θ) if the UMNN models a QF.

(4.36)

Algorithm 3 Learning process of the UMDQN algorithm

Sample a batch of Ne experiences e = (s, a, r, s′) from the replay memory.
Determine for each experience the next optimal action a′ = π(s′) = argmaxa∈A E [GZ(s

′, a; θ−)].
Compute the loss L̂ = 1

Ne

∑
s,a,r,s′

[∑
x∈X [L (TπGZ(x|s, a; θ−), GZ(x|s, a; θ))]

]
.

Optimise the UMNN parameters θ according to the resulting gradients ∇L̂.
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Implementation details about the UMDQN algorithm

To end this important section about the novel distributional RL algorithm introduced,
some implementation details are shared together with the detailed pseudocodes for the three
versions of the UMDQN algorithm presented. More precisely, the UMDQN-KL, UMDQN-C
and UMDQN-W are thoroughly explained in Algorithms 4, 5 and 6, respectively.

Modelling the probability distribution of the random return for a terminal state may be
tricky and deserves a brief discussion. In this case, the RL agent shall not receive any future
rewards, and the random return distribution degenerates into a Dirac distribution shifted
by the value of the last reward. In practice, such a particular probability distribution may
be quite difficult to approximate with a DNN, depending on the distribution representation
(PDF, CDF, QF). Additionally, this may potentially lead to numerical instabilities when
computing the loss. For these reasons, this research work makes the choice to smooth out
the Dirac distribution whenever appropriate. For the UMDQN-KL algorithm learning a
PDF, a normal distribution with a tiny standard deviation is used as a replacement for the
problematic Dirac distribution. For the UMDQN-C algorithm which is based on the random
return CDF, the step function with infinite slope is supplanted by a smoother version with a
large constant slope. Finally, the case of the UMDQN algorithm is left untouched since the
QF of a Dirac distribution is trivial to model with a DNN (constant function).

As previously explained in this section, the loss defined in Equation (4.10) is approximated
in the UMDQN algorithm, which may introduce a bias. This problem has already been
demonstrated for the Wasserstein distance [73] and a solution has been proposed [81]: the
(conditional) quantile regression method [88]. Without going into too much detail, this
alternative approach is based on the quantile regression loss, which is an asymmetric convex
loss function respectively penalising overestimation and underestimation errors with weights
τ and 1 − τ , with τ ∈ [0, 1] being a quantile fraction. The UMDQN-W algorithm takes
advantage of this methodology, similarly to the state-of-the-art QR-DQN, IQN and FQF
distributional RL algorithms. In fact, to ensure smoothness at zero, a slightly modified
quantile regression loss is used by these algorithms, the quantile Huber loss which is defined
for the error x ∈ R as the following:

ρκτ (x) =
∣∣τ − 1{x<0}

∣∣ Hκ(x)

κ
, (4.37)

Hκ(x) =

{
1
2
x2 if |x| ≤ κ,

κ(|x| − 1
2
κ) otherwise, (4.38)

where the threshold κ is a parameter to be tuned. An illustration of the quantile Huber loss
with κ = 1 is provided in Figure 4.6 below. This alternative loss function is evaluated on the
pairwise temporal difference (TD) errors δij expressed as follows:

δij = r + γF−1
Zπ (τj|s′, π(s′))− F−1

Zπ (τi|s, a) . (4.39)

110



Huber loss H1(x)

Quantile Huber loss ρ1
τ (x) with τ = 0.75

Quantile Huber loss ρ1
τ (x) with τ = 0.1

Figure 4.6: Illustration of the quantile Huber loss.

Algorithm 4 UMDQN-KL algorithm
Initialise the experience replay memory M of capacity C.
Initialise the main UMNN weights θ (Xavier initialisation).
Initialise the target UMNN weights θ− = θ.
for episode = 0 to N do

for t = 0 to T , or until episode termination do
Acquire the state s from the environment E .
With probability ϵ, select a random action a ∈ A.
Otherwise, select a = argmaxa′∈A E [GZ(s, a

′; θ)].
Interact with the environment E with action a to get the next state s′ and the reward r.
Store the experience e = (s, a, r, s′) in M .
if t%T ′ = 0 then

Randomly sample from M a minibatch of Ne experiences ei = (si, ai, ri, s
′

i).
Derive a discretisation of the domain X by sampling Nz returns z ∼ U([zmin, zmax]).
for i = 0 to Ne do

for all z ∈ X do
if s

′

i is terminal then
Set yi(z) =

1
σ
√
2π

exp
(
− 1

2

(
z−µ
σ

)2)
with µ = ri and σ = zmax−zmin

Nz
.

else
Set yi(z) =

1
γ GZ

(
z−ri
γ

∣∣∣∣s′

i, argmaxa′
i∈A E

[
GZ(s

′

i, a
′

i; θ
−)

]
; θ−

)
.

end if
end for

end for
Compute the loss LKL(θ) =

∑Ne

i=0

(∑
z∈X yi(z) log

(
yi(z)

GZ(z|si,ai;θ)

))
.

Clip the resulting gradient in the range [0, 1].
Update the main UMNN parameters θ using the ADAM optimiser.

end if
Update the target UMNN parameters θ− = θ every N− steps.
Anneal the ϵ-greedy exploration parameter ϵ.

end for
end for
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Algorithm 5 UMDQN-C algorithm
Initialise the experience replay memory M of capacity C.
Initialise the main UMNN weights θ (Xavier initialisation).
Initialise the target UMNN weights θ− = θ.
for episode = 0 to N do

for t = 0 to T , or until episode termination do
Acquire the state s from the environment E .
With probability ϵ, select a random action a ∈ A.
Otherwise, select a = argmaxa′∈A E [GZ(s, a

′; θ)].
Interact with the environment E with action a to get the next state s′ and the reward r.
Store the experience e = (s, a, r, s′) in M .
if t%T ′ = 0 then

Randomly sample from M a minibatch of Ne experiences ei = (si, ai, ri, s
′

i).
Derive a discretisation of the domain X by sampling Nz returns z ∼ U([zmin, zmax]).
for i = 0 to Ne do

for all z ∈ X do
if s

′

i is terminal then

Set yi(z) =

{
0 if z < ri,

1 otherwise.
else

Set yi(z) = GZ

(
z−ri
γ

∣∣∣∣s′

i, argmaxa′
i∈A E

[
GZ(s

′

i, a
′

i; θ
−)

]
; θ−

)
.

end if
end for

end for
Compute the loss LC(θ) =

∑Ne

i=0

(∑
z∈X (yi(z)−GZ(z|si, ai; θ))2

)1/2

.
Clip the resulting gradient in the range [0, 1].
Update the main UMNN parameters θ using the ADAM optimiser.

end if
Update the target UMNN parameters θ− = θ every N− steps.
Anneal the ϵ-greedy exploration parameter ϵ.

end for
end for
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Algorithm 6 UMDQN-W algorithm
Initialise the experience replay memory M of capacity C.
Initialise the main UMNN weights θ (Xavier initialisation).
Initialise the target UMNN weights θ− = θ.
for episode = 0 to N do

for t = 0 to T , or until episode termination do
Acquire the state s from the environment E .
With probability ϵ, select a random action a ∈ A.
Otherwise, select a = argmaxa′∈A E [GZ(s, a

′; θ)].
Interact with the environment E with action a to get the next state s′ and the reward r.
Store the experience e = (s, a, r, s′) in M .
if t%T ′ = 0 then

Randomly sample from M a minibatch of Ne experiences ei = (si, ai, ri, s
′

i).
Sample Nτ values for the first quantile fraction τi ∼ U([0, 1]).
Sample Nτ values for the second quantile fraction τj ∼ U([0, 1]).
for k = 0 to Ne do

for i = 0 to Nτ do
for j = 0 to Nτ do

yk(τj) =

{
rk if s

′

k terminal,

rk + γ GZ

(
τj
∣∣s′

k, argmaxa′
k∈A E

[
GZ(s

′

k, a
′

k; θ
−)

]
; θ−

)
otherwise.

end for
δij(k) = yk(τj)−GZ(τi|sk, ak; θ).

end for
end for
Compute the loss LW (θ) =

∑Ne

k=0

(∑Nτ

i=0 Ej

[
ρκτi(δij(k))

])
.

Clip the resulting gradient in the range [0, 1].
Update the main UMNN parameters θ using the ADAM optimiser.

end if
Update the target UMNN parameters θ− = θ every N− steps.
Anneal the ϵ-greedy exploration parameter ϵ.

end for
end for
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4.5 Results

4.5.1 Benchmark environments

The performance assessment methodology adopted by this research work to evaluate the
performance of the UMDQN distributional RL algorithm includes four different types of
benchmark environments, which are illustrated in Figures 4.7, 4.8 and 4.9:

• A stochastic grid world environment,

• A set of classic control environments,

• A set of Atari games,

• A set of MinAtar games.

The first benchmark environment is a stochastic grid world designed in the scope of this
particular research on distributional RL. It consists of a 7 × 7 grid world, an environment
which is commonly taken into consideration for analysing and evaluating the performance of
RL algorithms. The objective of the agent is simply to reach a certain target location which
is fixed, while avoiding a fixed trap. The particularity of this grid world is that both the
transition and reward functions are stochastic (pT and pR), in order to better highlight the
impact of the distributional RL approach. In addition to evaluating the policy performance,
this specific environment will also be particularly useful for visualising and interpreting the
random return probability distributions learnt by the distributional RL algorithm. More
details about this benchmark environment can be found in the underlying MDP, which can
be defined as the following:

• S ∈ {0, ..., 6} × {0, ..., 6}, a state s being composed of the two coordinates of the agent
within the grid,

• A = {RIGHT, UP, LEFT, DOWN}, with an action a being a moving direction,

• pR(r|s, a) ∼ N (µ, σ2) where:

– µ = 1 if the agent reaches the target location (terminal state),
– µ = −1 if the agent falls into the trap (terminal state),
– µ = 0 otherwise,
– σ = 0.1 at anytime,

• pT (s
′|s, a) associates a 50% chance to move twice in the chosen direction instead of once,

while keeping the agent within the 7× 7 grid world (no border crossing allowed),

• p0 associates the exact same probability to all states s0 ∈ S, except for the two states
corresponding to the trap and target locations which have a null probability,

• γ = 0.5.
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The next type of benchmark environment is a set of four classic control problems from
OpenAI Gym [89]: CartPole, Acrobot, MountainCar and LunarLander. Despite the general
preference of the distributional RL community for Atari games over these simpler environ-
ments, the classic control problems remain particularly valuable and popular benchmarks for
evaluating RL algorithms. Moreover, these environments are promoted by the article [90]
which proposes an alternative set of benchmarks which are less computationally intensive.
That particular work being quite interesting and well received by the RL research commu-
nity, this thesis chapter adopts its suggestions. More details about the four classic control
problems considered in this research work are provided hereafter:

• CartPole-v0: The objective is to balance a pole attached by a non-actuated joint to a
cart moving along a frictionless track. The state is composed of four continuous values:
the cart position, the cart velocity, the pole angle and the pole velocity at the tip. The
agent’s action is either to push the cart to the left or to the right. A reward of +1 is
received for each time step with the pole remaining balanced. An episode terminates
when the pole angle is more than ±12◦ or when the cart reaches the edge of the display,
but also if the episode length is greater than 200.

• Acrobot-v1: This system is composed of a double-jointed pendulum, with the joint
between the two links being actuated. The objective is to swing the pendulum so that
the end of the outer link reaches a given height. The state is a six-dimensional vector
describing the system’s angles and velocities. To achieve its goal, the agent has three
actions at its disposal: either applying no torque, or applying a fixed torque to the left
or to the right. The agent is given a reward of -1 for each time step before achieving
the objective position. An episode either terminates when this objective is achieved or
when the episode length exceeds 500.

• MountainCar-v0: The objective is to drive an underpowered car up a steep hill. To
achieve that goal, the agent has to learn to leverage potential energy by driving back
and forth for gaining momentum. The state consists of both the position and velocity
of the car. The agent’s action can either be to push the car to the left, do nothing or
push the car to the right. A reward of -1 is received at each time step until the goal
position is eventually reached. An episode terminates when this particular position is
achieved, or if the episode length is greater than 200.

• LunarLander-v2: This environment consists of a simulated 2D world within which the
objective is to safely land a lander with a limited amount of fuel on a target location.
The RL state is composed of 8 values: the two coordinates of the lander, its linear
velocities in the horizontal and vertical directions, its angle and angular velocity, as well
as two booleans representing whether each leg is in contact with the ground or not.
To achieve its objective, the agent has access to four actions: do nothing, fire the left
orientation engine, fire the main engine and fire the right orientation engine. A reward
between +100 and +140 is received for safely landing and coming to rest at the desig-
nated location. Additionally, a crash results in receiving a -100 reward, while coming
to rest induces a reward of +100. There is also a +10 reward generated for each leg
with ground contact. Finally, rewards of -0.3 and -0.03 are respectively obtained for
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each time step firing the main and side engines. The termination of an episode occurs
when the lander crashes or gets outside of the viewport, or when the lander is no longer
awake (meaning that it does not move nor collide with any other body).

The third type of benchmark environment is a set of three Atari games from the Atari-57
benchmark [53]: Pong, Boxing and Freeway. The evaluation and analysis of distributional
RL algorithms are generally performed on the complete Atari-57 benchmark, which offers a
relevant performance assessment methodology but also presents some important drawbacks
for distributional RL. Indeed, these environments are mostly deterministic and require a
tremendous amount of computational power. Since the original publication of the Atari-57
benchmark, diverse evaluation methodologies have progressively appeared. In this research
work, the best practices proposed by the article [91] are adopted. Moreover, the mostly
deterministic transitions within Atari games are made stochastic by using the sticky action
generalisation technique (stochastic transitions, but still deterministic rewards). This last
addition makes the Atari environments considered slightly more complex compared to the
ones from previous publications in distributional RL. In practice, the implementation adopted
is the {}NoFrameskip from OpenAI gym [89], together with the following wrappers:

• Formatting of a frame to 84 × 84 pixels,

• Normalisation of the values of the pixels,

• Clipping of the reward to {+1, 0, −1},
• Sending of the episode termination signal when all the agent’s lives are lost,

• Execution of a random number of NOOP actions at the beginning of an episode (max 30),

• Execution of sticky actions with a 0.25 probability,

• Frame skipping and maximisation operation with period 4,

• Stacking of the final 4 frames.

The last type of benchmark environment is a set of five MinAtar games [92]: Asterix,
Breakout, Freeway, Seaquest and SpaceInvaders. These environments are miniaturised and
slightly simplified versions of five Atari games representative of the complete Atari-57 suite.
The objective behind these MinAtar environments is to make RL experimentation around
Atari games much more accessible and efficient. To do so, MinAtar reduces the representation
complexity of five representative Atari games, while avoiding as much as possible altering
the mechanics of the original games. The alternative state representation is of dimension
10 × 10 × n and binary, where n is the number of channels representing a game-specific
object. Moreover, MinAtar games include stochasticity in the form of sticky actions and
randomised spawn locations, which is particularly important for analysing distributional RL
algorithms. Finally, this alternative benchmark is also promoted by the same article [90] as
a replacement for the Atari-57 benchmark in order to achieve more inclusive DRL research.
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To end this section about the performance assessment methodology, an argument for by-
passing the full Atari-57 benchmark generally adopted in research works about distributional
RL is presented. As previously hinted, the computational cost associated with this particular
benchmark is significant. In this case, two entire weeks’ worth of computations are required
for training one RL agent on a single Atari game using the UMDQN algorithm with hardware
acceleration enabled (NVIDIA RTX 2080 Ti). Therefore, running this novel distributional
RL algorithm for five different random seeds on the full Atari-57 benchmark would approx-
imately require 57 ∗ 5 ∗ 14 ≃ 4000 days when having access to a single GPU, without even
considering the hyperparameters tuning phase. It naturally becomes totally impracticable
without parallelisation with numerous GPUs. Although the UMDQN algorithm presents the
drawback of being slightly more computationally expensive compared to the state-of-the-art
distributional RL algorithms, the previous conclusion remains in line with findings from the
scientific literature. For instance, the simpler DQN algorithm takes roughly 1425 days to fully
train for all Atari games using specialised hardware (NVIDIA Tesla P100) [90]. Because this
problem creates a real barrier to entry for modest laboratories having access to a limited
amount of computational power, it is repeatedly discussed by the RL research community.
For this reason, the present research work adopts a different yet insightful set of benchmark
environments for evaluating distributional RL algorithms, for more inclusive DRL research.

Figure 4.7: Illustration of some benchmark environments with, from left to right, the stochastic grid world
and the Atari games Pong, Boxing and Freeway.

Figure 4.8: Illustration of some benchmark environments with, from left to right, the CartPole, Acrobot,
MountainCar and LunarLander classic control problems.
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Figure 4.9: Illustration of some benchmark environments with all the MinAtar games.

4.5.2 Experiments reproducibility

In order to ensure the reproducibility of the experiments presented in this research work,
this section provides the main hyperparameters adopted. Additionally, the complete code
used for generating the results discussed in the next section is made publicly available at the
following link:

https://github.com/ThibautTheate/Unconstrained-Monotonic-Deep-Q-Network-
algorithm.

The most important criterion taken into account for the selection/tuning of these hyper-
parameters is the fair comparison between the DRL algorithms studied, while considering
at the same time the values reported by the state-of-the-art distributional RL algorithms.
First of all, Table 4.3 provides a brief description of the hyperparameters to be tuned in the
scope of this research work. Then, Table 4.4 presents the domain X selected for the different
benchmark environments studied (lower and upper bounds). Finally, Tables 4.5, 4.6, 4.7
and 4.8 present the hyperparameters used for generating the results for all the benchmark
environments previously presented in Section 4.5.1.

A complicated choice when it comes to hyperparameters tuning concerns the domain X .
Firstly, is it fairer to have the same lower bound zmin and upper bound zmax for the domain X
for all the benchmark environments as it is generally done in scientific literature, or slightly
tune these two hyperparameters for each environment? Secondly, if tuned, how to efficiently
select relevant values for these two bounds without requiring complicated analyses? This
research work makes the choice to specialise the domain X for each benchmark environment.
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This decision is motivated by the diversity of the environments, with completely different
ranges for the random return. For each control problem, a short analysis is performed to
estimate the minimum and maximum returns based on the shape of the reward probability
distribution pR.

Let’s consider for instance the CartPole environment. Knowing that a +1 reward is
obtained at each time step until episode termination and that the discount factor is equal
to 0.99, it is possible to estimate the lower and upper bounds for the returns. In the worst
case, the agent totally fails and the episode ends after a few time steps, meaning that the
minimum return is close to 0. On the contrary, if the agent manages to continuously keep
the pole balanced, the maximum return can be estimated as the following:

zmax =
∞∑
i=0

0.99i ≃ 100 .

After consideration of a small margin, an appropriate domain X is obtained for this particular
control problem. The same analysis can be repeated for the other benchmark environments,
resulting in Table 4.4.

Table 4.3: Description of the main hyperparameters associated with the distributional RL algorithms studied.

Hyperparameter Description

Network structure Structure of the DNN representing the random return Zπ (neurons per layer).
Discount factor Discount factor γ adopted for the Q-learning update.
Learning rate Learning rate of the DL optimiser (ADAM).
Optimiser epsilon Epsilon of the DL optimiser (ADAM) to improve numerical stability.
Main update frequency Frequency T ′ (in number of steps) at which the main network is updated.
Target update frequency Frequency N− (in number of steps) at which the target network is updated.
Replay memory capacity Capacity C (in number of experiences) of the experience replay memory M .
Batch size Size of the batch Ne (in experiences) used for each gradient descent iteration.
ϵ-greedy start Initial value of ϵ, for the ϵ-greedy exploration technique.
ϵ-greedy end Final value of ϵ, for the ϵ-greedy exploration technique.
ϵ-greedy decay Exponential decay (in steps) of ϵ, for the ϵ-greedy exploration technique.
ϵ-greedy test Value of ϵ when testing the policy, for the ϵ-greedy exploration technique.
Number of z values Number of returns Nz used for representing distributions (PDF and CDF).
Number of τ values Number of quantile fractions Nτ used for representing distributions (QF).
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Table 4.4: Domain X set for the different benchmark environments.

Benchmark environment Lower bound of X Upper bound of X
Stochastic grid world -2 2
Atari Pong -5 5
Atari Boxing -1 10
Atari Freeway -1 10
CartPole -10 110
Acrobot -110 10
MountainCar -110 10
LunarLander -150 200
MinAtar Asterix -1 10
MinAtar Breakout -1 10
MinAtar Freeway -1 10
MinAtar Seaquest -1 10
MinAtar SpaceInvaders -1 20

Table 4.5: Hyperparameters selected for the stochastic grid world benchmark environment.

Hyperparameter UMDQN-KL UMDQN-C UMDQN-W

Network structure [128]DNN + [128]UMNN [128]DNN + [128]UMNN [128]DNN + [128]UMNN
Discount factor 0.5 0.5 0.5
Learning rate 10−4 10−4 10−4

Optimiser epsilon 10−5 10−5 10−5

Main update frequency 1 1 1
Target update frequency 1000 1000 1000
Replay memory capacity 104 104 104

Batch size 32 32 32
ϵ-greedy start 1.0 1.0 1.0
ϵ-greedy end 0.01 0.01 0.01
ϵ-greedy decay 104 104 104

ϵ-greedy test 0.001 0.001 0.001
Number of z values 200 200 -
Number of τ values - - 200
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Table 4.6: Hyperparameters selected for the Atari games benchmark environments.

Hyperparameter UMDQN-KL UMDQN-C UMDQN-W

Network structure DQN + [128]UMNN DQN + [128]UMNN DQN + [128]UMNN
Discount factor 0.99 0.99 0.99
Learning rate 5× 10−5 5× 10−5 5× 10−5

Optimiser epsilon 10−5 10−5 10−5

Main update frequency 4 4 4
Target update frequency 104 104 104

Replay memory capacity 105 105 105

Batch size 32 32 32
ϵ-greedy start 1.0 1.0 1.0
ϵ-greedy end 0.01 0.01 0.01
ϵ-greedy decay 106 106 106

ϵ-greedy test 0.001 0.001 0.001
Number of z values 200 200 -
Number of τ values - - 200

Table 4.7: Hyperparameters selected for the classic control benchmark environments.

Hyperparameter UMDQN-KL UMDQN-C UMDQN-W

Network structure [128]DNN + [128]UMNN [128]DNN + [128]UMNN [128]DNN + [128]UMNN
Discount factor 0.99 0.99 0.99
Learning rate 10−4 10−4 10−4

Optimiser epsilon 10−5 10−5 10−5

Main update frequency 1 1 1
Target update frequency 1000 1000 1000
Replay memory capacity 104 104 104

Batch size 32 32 32
ϵ-greedy start 1.0 1.0 1.0
ϵ-greedy end 0.01 0.01 0.01
ϵ-greedy decay 104 104 104

ϵ-greedy test 0.001 0.001 0.001
Number of z values 200 200 -
Number of τ values - - 200
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Table 4.8: Hyperparameters selected for the MinAtar games benchmark environments.

Hyperparameter UMDQN-KL UMDQN-C UMDQN-W

Network structure DQN + [128]UMNN DQN + [128]UMNN DQN + [128]UMNN
Discount factor 0.99 0.99 0.99
Learning rate 5× 10−5 5× 10−5 5× 10−5

Optimiser epsilon 10−5 10−5 10−5

Main update frequency 4 4 4
Target update frequency 104 104 104

Replay memory capacity 105 105 105

Batch size 32 32 32
ϵ-greedy start 1.0 1.0 1.0
ϵ-greedy end 0.01 0.01 0.01
ϵ-greedy decay 106 106 106

ϵ-greedy test 0.001 0.001 0.001
Number of z values 200 200 -
Number of τ values - - 200

4.5.3 Results discussion

Probability distribution analysis. Besides the evaluation of the resulting policy performance,
it is important to rigorously assess the correctness of the probability distributions learnt by
a distributional RL algorithm. In fact, such a valuable investigation is generally lacking in
the scientific literature. As previously hinted, this particular analysis is performed on the
stochastic grid world environment. Since the underlying control problem is relatively easy
to solve from a human perspective, an optimal policy π∗ can be manually derived without
any algorithm for that environment. This property significantly eases the assessment of the
soundness of the random return probability distributions learnt. Once the optimal policy is
available, the true probability distributions of the random return can be effectively estimated
via Monte Carlo. The same operation should also be performed with the policy learnt by the
distributional RL algorithm, since incorrect probability distributions could also be caused
by suboptimal policies. Based on this methodology, Figure 4.10 graphically compares the
probability distributions learnt by the three versions of the UMDQN algorithm (PDF, CDF
and QF) with the true random return distributions associated with an optimal policy for a
particular state of the environment. Although the PDF and CDF respectively learnt by the
UMDQN-KL and UMDQN-C algorithms are not entirely accurate, they remain qualitatively
very similar to the true random return distribution, with among others the multimodality
preserved (see blue line). This key observation not only validates the soundness of the proba-
bility distributions learnt, but also confirms that these two distributional RL algorithms can
effectively learn an optimal policy for this benchmark environment. Conversely, the error
made by the UMDQN-W algorithm learning the QF of the random return is much more
concerning. In this case, it is clear that the distribution multimodality is no longer preserved
for instance (see blue line). Additional analyses reveal that this difference does not originate
from a suboptimal policy learnt by the distributional RL algorithm. In fact, this critical
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observation is consistent with Equations (4.15) and (4.16) together with the explanation
provided in Section 4.4.1 regarding the learning of the QF on the basis of the distributional
Bellman operator. The expectation of the random return is preserved, but the probability
distribution higher-order moments are not. As previously explained, this problem is not spe-
cific to the UMDQN-W algorithm and applies to several state-of-the-art distributional RL
algorithms. To illustrate that claim, Figure 4.10 plots the probability distributions of the
random return learnt by the CDQN, QR-DQN, IQN and FQF algorithms, that do all achieve
an optimal policy for the stochastic grid world environment. On the one hand, the CDQN
algorithm learning the categorical PDF of the random return based on the KL divergence
achieves satisfying results, which is in line with the previous observation for the UMDQN-KL
algorithm. On the other hand, the QR-DQN, IQN and FQF algorithms clearly show their
limitations for accurately modelling the QF of the random return. Therefore, this particular
learning methodology adopted by several state-of-the-art distributional RL algorithms should
only be considered when the objective is to learn policies maximising the expectation of the
random return, but should instead be discarded when the intention is to exploit the complete
probability distribution, for learning risk-sensitive policies for instance.
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Figure 4.10: Comparison of the random return probability distributions (PDF, CDF and QF) respectively
learnt by the UMDQN-KL, UMDQN-C and UMDQN-W algorithms (plain lines) with the true random return
probability distributions (PDF, CDF and QF) estimated via Monte Carlo and associated with an optimal
policy (dotted lines), for a particular state of the stochastic grid world environment.
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Figure 4.11: Comparison of the random return probability distributions learnt by the CDQN, QR-DQN,
IQN and FQF state-of-the-art algorithms (plain lines) with the true random return probability distributions
estimated via Monte Carlo and associated with an optimal policy (dotted lines), for a particular state of the
stochastic grid world environment.

Policy performance. As far as the quality of the decision-making policies π learnt by the
distributional RL algorithms is concerned, Figure 4.12 presents the results achieved by the
three versions of the UMDQN algorithm for all the benchmark environments introduced in
Section 4.5.1. The policy performance plotted is the cumulative reward achieved by the RL
agent over one full episode. For the sake of reliability, the results are averaged over five
different random seeds and the variance is highlighted. Moreover, for improved readability,
a moving average operation is performed to further smooth the curves. Taking into account
their respective strengths and weaknesses detailed hereafter, it is quite difficult to identify a
clear winner overall in terms of policy performance among the three versions of the UMDQN
algorithm, even though the UMDQN-KL algorithm certainly lags behind the other two. Since
the same function approximator class is used, this conclusion also stands for the distribution
representations and the probability metrics underneath the distributional RL algorithms. An
argument for potentially explaining this observation is the fact that a neural network may
more efficiently model the PDF, CDF or QF of the random return distributions depending
on the characteristics of these particular probability distributions, such as the multimodality
or the values of the moments. Another hypothesis is to point out the approximation of
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Figure 4.12: Performance of the UMDQN algorithm for the benchmark environments studied.
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the loss defined in Equation (4.10), whose effect is not yet sufficiently understood for the
different distribution representations and probability metrics, but also potentially depending
on the control problem itself. This is an important open research question for distributional
RL. Therefore, based on these observations, the distribution representation of the random
return together with the probability metric should ideally be hyperparameters to be tuned
depending on the environment and the control problem at hand. This claim contrasts with
the current trend observed in distributional RL research, with the focus being mainly set
on the QF and Wasserstein distance, as illustrated by the recent QR-DQN, IQN and FQF
algorithms. For this reason, the present research work calls for a reconsideration of all
distribution representations and probability metrics for future research in distributional RL.

UMDQN-KL algorithm. Even though the distributional Bellman operator T π has been
proven theoretically to not be a contraction mapping in the KL divergence, Figures 4.10
and 4.12 empirically show that this probability metric can still lead to the learning of both
valuable decision-making policies and relevant random return probability distributions. This
important observation suggests that the contraction property is not a necessary condition
for converging towards the correct random return probability distribution in practice. Still,
the learning process of the UMDQN-KL algorithm has been observed to be fairly less stable
compared to other distributional RL algorithms. For several benchmark environments, the
learning process may even suddenly stop with the performance entirely collapsing without
subsequent recovery, as illustrated in Figure 4.12m. Additional experiments suggest that
the occurrence of this problematic behaviour for a given environment is strongly tied to the
domain X specified as hyperparameter (lower and upper bounds). A too restrained domain
inevitably leads to truncated and hence incorrect probability distributions for the random
return Zπ. On the contrary, if the domain is too wide, it may lead to numerical instabilities
in the regions of the domain with almost no mass due to the definition of the KL divergence
(limx→0+ log(x) = −∞). Nevertheless, appropriately setting the hyperparameters associated
with this domain X may be a particularly challenging task since it is strongly dependent
on the control problem and because the probability distributions of the random return Zπ

may significantly vary with different state-action pairs (s, a) as well as during the learning
process. Another interesting observation about the UMDQN-KL algorithm is related to the
asymmetry of the KL divergence (LKL(A,B) ̸= LKL(B,A)). Empirically, the learning of
valuable policies is observed with the loss LKL(T πZπ, Zπ) but not with LKL(Z

π, T πZπ).

UMDQN-C algorithm. Although this second distributional RL algorithm also requires the
specification of hyperparameters associated with the domain X , it is empirically observed to
be far more stable and performing compared to the UMDQN-KL algorithm. This behaviour
may potentially be explained by the distributional Bellman operator T π being a contraction
in the Cramer distance, but also by the fact that the loss to learn from is symmetric and
does not numerically explode around regions of the domain with no probability density.
Still, a relevant domain X has to be specified to expect reliable and satisfying results from
the UMDQN-C algorithm, meaning that the full range of the returns has to be rigorously
approximated beforehand. This requirement is probably the main weakness of this particular
distributional RL algorithm. In Figure 4.12, relevant domains X are adopted to ensure a fair
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and interesting comparison. The UMDQN-C algorithm may be the top-performing solution
at first glance, but its performance inevitably decreases with less accurate domains.

UMDQN-W algorithm. Regarding the performance of the decision-making policies learnt,
this third distributional RL algorithm may probably be the most versatile of the UMDQN
algorithms, for two reasons. Firstly, the distributional Bellman operator T π is a contraction
mapping in the Wasserstein distance. Secondly, learning the QF of the random return Zπ

does not require the challenging specification of the returns domain X , since the QF takes
inputs bounded in the range [0, 1]. Nevertheless, as previously explained in this section, the
UMDQN-W algorithm is no longer an acceptable solution when it comes to the accuracy of
the probability distributions learnt. Consequently, this distributional RL algorithm should
only be considered for learning decision-making policies maximising the expectation of the
random return, but not taking advantage of the full probability distributions.

Comparison with state-of-the-art distributional RL algorithms

To end the discussion of the results, the policy performance achieved by the UMDQN
algorithm is briefly compared with that of the state-of-the-art distributional RL algorithms.
More precisely, the DQN [55], CDQN [73], QR-DQN [81], IQN [82] and FQF [83] are evalu-
ated alongside the three versions of the UMDQN algorithm on the benchmark environments
previously described in Section 4.5.1. This additional analysis is solely provided for the sake
of completeness, but does not represent a core contribution of the present research work.
Indeed, the primary objective of this research is to empirically derive new insights about
the distributional RL approach, but not to introduce a novel distributional RL algorithm
outperforming the state-of-the-art algorithmic solutions on a given testbench.

This empirical comparison on policy performance is summarised in Figure 4.13 hereafter.
In a similar way to the former plots, the results are averaged over five different random
seeds for better reliability, and post-processed using the moving average technique to further
smooth the curves. Nevertheless, for the sake of readability, the performance variance of the
distributional RL algorithms is no longer depicted on the plots.

Since the full Atari-57 benchmark [53] has not been taken into consideration for evaluating
the novel UMDQN distributional RL algorithm proposed, this research work does not make
any claim regarding the top-performing solution for this particular benchmark. However, it
is enlightening to observe that the UMDQN algorithm achieves an impressive performance
which is on par with the state-of-the-art distributional RL algorithms on the benchmark
environments adopted in this research work. Indeed, the UMDQN algorithm consistently
ranks in the top three in terms of decision-making policy performance for all these control
problems. In the author’s opinion, this result consolidates the soundness of the proposed
approach together with the relevance of the conclusions drawn by this research work.
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Figure 4.13: Comparison of the UMDQN algorithm with the state-of-the-art distributional RL algorithms.
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4.6 Conclusions

This fourth thesis chapter introduces the unconstrained monotonic deep Q-network (UMDQN)
distributional RL algorithm, by combining a new methodology for learning the probability
distribution of the random return independently of its representation with the UMNN archi-
tecture for modelling these distributions. Taking advantage of some properties of this novel
distributional RL algorithm, the experiments conducted yield three important observations.
Firstly, the choice of the probability distribution representation coupled with the choice of
the probability metric have to ideally be dependent on the control problem, since no clear
winner could be identified among the three versions of the UMDQN algorithm for the set
of benchmark environments studied. This result contrasts with the current dominant trend
in distributional RL research, that primarily focuses on the QF and Wasserstein distance.
Secondly, the methodology adopted by several state-of-the-art algorithms for learning the QF
of the random return involves an important approximation, which results in the learning of
inaccurate probability distributions. This approach remains totally sound when attempting
to learn decision-making policies maximising the expectation of the random return. On the
contrary, it should be discarded when aiming to take advantage of other characteristics of the
random return distribution, for instance with risk-sensitive policies. Thirdly, the contraction
mapping property for the distributional Bellman operator is not a necessary condition to
learn the correct probability distribution of the random return, but may still be beneficial.
This observation highlights the existing gap between theory and practice in distributional
RL, and encourages future research on the distributional Bellman operator as well as on the
convergence of distributional RL algorithms in general.

To conclude this thesis chapter, several avenues for future work are suggested. Firstly, the
gap highlighted in this research work between theory and practice in distributional RL could
be narrowed by deriving theoretical guarantees and properties for the UMDQN algorithm.
Secondly, building on the qualitative analysis of the probability distributions learnt that is
conducted in this research work, an innovative performance assessment methodology could
be designed to quantitatively evaluate the accuracy of the random return distributions learnt
by a distributional RL algorithm, independently of the resulting policy performance. Thirdly,
the approximation in Equation 4.16 for the learning of the QF based on the distributional
Bellman equation deserves more research, in order to acquire a better understanding of the
problem and potentially find an alternative solution. Fourthly, the performance achieved
by the UMDQN algorithm is expected to be significantly improved by implementing the
enhancements from the Rainbow algorithm [56]: multi-step learning [57], double Q-learning
[58], prioritised experience replay [59], duelling architecture [60] and noisy networks [62].
Lastly, a promising evolution of the UMDQN algorithm could be to concurrently manage
different distribution representations and probability metrics, and intelligently combine this
information to further improve the performance of the distributional RL algorithm.
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Nothing in life is to be feared, it is only to be understood. Now is the time to
understand more, so that we may fear less.

— Marie Curie
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Chapter 5

Risk-Sensitive Policy with Distributional
Reinforcement Learning

Figure 5.1: Illustration of Chapter 5 that is entitled Risk-Sensitive Policy with Distributional Reinforcement
Learning, created by a generative art AI [1].
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Chapter overview

Classical reinforcement learning techniques are generally concerned with the design
of decision-making policies driven by the maximisation of the expected outcome.
Nevertheless, this approach does not take into consideration the eventual risk that
is associated with the actions taken, which may be critical in certain applications.
To address that issue, the present research work introduces a novel methodology
based on distributional reinforcement learning to derive sequential decision-making
policies that are sensitive to the risk, the latter being modelled by the tail of the
return probability distribution. The core idea is to replace the Q function generally
standing at the core of learning schemes in RL by another function taking into
account both the expected return and the risk. Named risk-based utility function U ,
it can be extracted from the random return distribution Z that is naturally learnt
by any distributional RL algorithm. This enables the spanning of the complete
potential trade-off between risk minimisation and expected return maximisation,
in contrast to fully risk-averse methodologies. Fundamentally, this thesis chapter
presents a truly practical and accessible solution for learning risk-sensitive policies
with minimal modification to the original distributional RL algorithm, and with an
emphasis on the interpretability of the resulting decision-making process.

This thesis chapter is primarily based on the following scientific publication [5]:

Thibaut Théate and Damien Ernst. Risk-Sensitive Policy with Distributional Re-
inforcement Learning. Algorithms, 16(7):325, 2023.

State

Distributional RL algorithm

Random return

Probability

ReturnU Q

Z
Risk

Figure 5.2: General illustration of the novel technical solution presented in this thesis chapter entitled Risk-
Sensitive Policy with Distributional Reinforcement Learning.
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5.1 Introduction

As previously explained in this thesis, the reinforcement learning (RL) approach is concerned
with the learning process of a sequential decision-making policy on the basis of interactions
between an agent and its environment [64]. More precisely, the training is based on the
rewards acquired by the agent from the environment as a consequence of its actions. Within
that particular context, the objective is to identify the actions maximising the discounted
sum of rewards, which is also named return. There exist multiple sound approaches based
on the RL paradigm, and key successes/milestones have been achieved throughout the years
of research. Nevertheless, these RL algorithms present the key weakness of mostly relying on
the expectation of the return, not on its complete probability distribution. For instance, the
popular Q-learning approach is based on the modelling of the Q function, which can in fact
be seen as an estimation of the expected return [51].

While focusing exclusively on the expectation of the return has proven to be perfectly
sound for numerous applications, this approach however exhibits clear limitations for other
decision-making problems. Indeed, some areas of application may also require to properly
mitigate the risk associated with the actions taken [93]. Market environments, on which the
present doctoral thesis focuses, belong to this category. Additionally, one could for instance
mention the healthcare [94] and finance [2] sectors, but also robotics in general [95] especially
autonomous driving [96]. Such a requirement for risk management may not only be true for
the decision-making policy, but potentially also for the exploration policy during the learning
process. Moreover, properly taking into consideration the risk may be particularly convenient
in environments characterised by substantial uncertainty.

The present research work suggests taking advantage of the distributional RL approach,
belonging to the Q-learning category, in order to learn risk-sensitive policies. As previously
explained in Chapter 4, a distributional RL algorithm focuses on the complete probability
distribution of the random return rather than only its expectation [61]. Such an approach
presents three key advantages. Firstly, it enables the learning of a richer representation of
the environment, which may lead to an increase in the decision-making policy performance.
Secondly, the distributional RL approach contributes to improve the explainability of the
decision-making process, which is critical in machine learning to avoid black-box models.
Lastly and most importantly for this research work, it makes the convenient derivation of
decision-making policies but also exploration strategies that are sensitive to the risk possible.

The core idea promoted by this research work is the use of the risk-based utility function,
denoted U , as a replacement for the popular Q function for action selection. In fact, it may
be seen as an extension of the Q function taking into consideration the risk, which is assumed
to be represented by the worst returns achievable by a policy. Therefore, the function U is to
be derived from the complete probability distribution of the random return Z, which is learnt
by any distributional RL algorithm. The single modification to that RL algorithm to learn
risk-sensitive policies is to employ the utility function U rather than the expected return Q
for both exploration and decision-making. This enables the proposed approach to become a
very practical and interpretable RL solution for achieving risk-sensitive decision making.
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5.2 Literature review

The core objective of the classical RL approach is to learn optimal decision-making policies
without any concerns about risk or safety [64]. In this generic case, the resulting policies are
said to be risk-neutral. Nevertheless, as previously explained, there are numerous real-world
applications requiring to take into consideration the risk in order to ensure safer decision
making [93]. In fact, two main methodologies can be identified for achieving safe RL. Firstly,
the optimality criterion pursued can be modified so that a safety factor is included. Secondly,
the exploration process during the training phase can be altered based on a risk metric [97].
These techniques give rise to risk-sensitive or risk-averse policies.

Scientific research on risk-sensitive RL has been particularly active for the past decade.
Various relevant risk criteria have been studied for that purpose. The most popular ones are
undoubtedly the mean-variance [98, 99, 100] and the (Conditional) Value at Risk (CVaR)
[101, 102, 103]. Innovative techniques have been introduced for both policy gradient [104,
105, 106] and value iteration [107, 108, 109, 110, 111] approaches, with the solutions proposed
covering both discrete and continuous action spaces. Additionally, risk-sensitive methodolo-
gies have also been investigated in certain niche sub-fields of RL, such as robust adversarial
RL [112], but also multi-agent RL [113].

Focusing on the value iteration methodology, the novel distributional RL approach [61]
has been a key breakthrough, by giving access to the full probability distribution of the
random return. To begin with, [108] suggests to achieve risk-sensitive decision-making via
a distortion risk measure. Applied on top of the IQN distributional RL algorithm, this is
in fact equivalent to changing the sampling distribution of the quantiles. In such a setting,
assigning more weight to lower quantiles results in a more risk-averse objective. In [109], a
novel actor-critic framework is presented, based on the distributional RL approach for the
critic component. The latter work is extended to the offline setting in [110], since training
RL agents online may be prohibitive because of the risk inevitably induced by exploration.
One can finally mention [111] that introduces the Worst-Case Soft Actor Critic (WCSAC)
algorithm, which is based on the approximation of the probability distribution of accumu-
lated safety-costs in order to achieve risk control. More precisely, a certain level of CVaR,
estimated from the distribution, is regarded as a safety constraint.

In light of this scientific literature, the novel solution introduced in this research work
presents key advantages. Firstly, the methodology proposed is relatively simple and can be
applied on top of any distributional RL algorithm with minimal modification to the original
algorithm. Secondly, the proposed approach enables to span the entire potential trade-off
between risk minimisation and expected return maximisation. Indeed, according to the user’s
needs, the decision-making policy learnt can be risk-averse, risk-neutral or in between the two
(risk-sensitive). Lastly, the new solution presented contributes to improve the interpretability
of the decision-making policy learnt.
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5.3 Theoretical background

5.3.1 Markov decision process

Traditionally in RL, the interactions between the agent and its environment are modelled
as a Markov decision process (MDP). In fact, an MDP is a 6-tuple (S, A, pR, pT , p0, γ)
where S and A respectively are the state and action spaces, pR(r|s, a) is the probability
distribution from which the reward r ∈ R is drawn given a state-action pair (s, a), pT (s′|s, a)
is the transition probability distribution, p0(s0) is the probability distribution over the initial
states s0 ∈ S, and γ ∈ [0, 1[ is the discount factor. The RL agent makes some decisions
according to its policy π : S → A, which is assumed deterministic in this research work,
mapping the states s ∈ S to the actions a ∈ A.

5.3.2 Distributional reinforcement learning

As previously explained in Chapter 4, in classical Q-learning RL, the core idea is to model
the state-action value function Qπ : S × A → R of a policy π. This important quantity
Qπ(s, a) represents the expected discounted sum of rewards obtained by executing an action
a ∈ A in a state s ∈ S and then following a policy π:

Qπ(s, a) = E
st,rt

[
∞∑
t=0

γtrt

]
, (s0, a0) := (s, a), at = π(st). (5.1)

The key to the learning process is the Bellman equation [52], that the Q function satisfies:

Qπ(s, a) = E
s′,r

[r + γQπ(s′, π(s′))] . (5.2)

In classical RL, the main objective is to determine an optimal policy π∗ which can be
defined based on the optimal state-action value function Q∗ : S ×A → R as follows:

Q∗(s, a) = E
s′,r

[
r + γmax

a′∈A
Q∗(s′, a′)

]
, (5.3)

π∗(s) ∈ argmax
a∈A

Q∗(s, a) . (5.4)

The optimal policy π∗ maximises the expected return (discounted sum of rewards). In
this research work, an alternative objective criterion will be presented in the next section for
achieving optimality in a risk-sensitive RL setting.

The distributional RL approach goes a step further by modelling the complete probability
distribution over returns instead of only its expectation [61], as illustrated in Figure 5.3.
To this end, let the reward R(s, a) be a random variable distributed under pR(·|s, a), the
state-action value distribution Zπ ∈ Z (also called state-action return distribution function)
of a policy π is a random variable defined as the following:

Zπ(s, a)
D
=

∞∑
t=0

γtR(st, at) , (s0, a0) := (s, a), at = π(st), st+1 ∼ pT (·|st, at), (5.5)
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where A
D
= B denotes the equality in probability distribution between the random variables

A and B. Consequently, the state-action value function Qπ is the expectation of the random
return Zπ. Equivalent to the expected case, there exists a distributional Bellman equation
that recursively describes the random return Zπ of interest:

Zπ(s, a)
D
= R(s, a) + γP πZπ(s, a) , (5.6)

P πZπ(s, a) :
D
= Zπ(s′, a′) , s′ ∼ pT (·|s, a), a′ = π(s′), (5.7)

where P π : Z → Z is the transition operator. Finally, one can define the distributional
Bellman operator T π : Z → Z together with the distributional Bellman optimality operator
T ∗ : Z → Z as follows:

T πZπ(s, a)
D
= R(s, a) + γP πZπ(s, a) , (5.8)

T ∗Z∗(s, a)
D
= R(s, a) + γZ∗ (s′, π∗(s′)) , s′ ∼ pT (·|s, a). (5.9)

As thoroughly explained in Chapter 4, a distributional RL algorithm may be characterised
by two core features. Firstly, both representation and parameterisation of the random return
probability distribution have to be selected. There exist multiple solutions for representing
a unidimensional distribution, such as the probability density function (PDF), cumulative
distribution function (CDF) or quantile function (QF). In practice, deep neural networks
(DNNs) are generally used for the approximation of these particular functions. The second
key feature relates to the probability metric adopted for comparing two distributions, such
as the Kullback-Leibler (KL) divergence, the Cramer distance or the Wasserstein distance.
More precisely, the role of the probability metric in distributional RL is to quantitatively
compare two probability distributions of the random return so that a temporal difference
(TD) learning method is applied, in a similar way to the mean squared error between Q
values in classical RL. Moreover, the probability metric plays an even more important role
as different metrics offer distinct theoretical convergence guarantees for distributional RL.
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Value function 𝑄గ

Figure 5.3: Intuitive graphical comparison between classical RL and distributional RL.
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5.4 Methodology

5.4.1 Objective criterion for risk-sensitive RL

As explained in the previous section, the objective in classical RL is to learn a decision-making
policy π ∈ Π that maximises in expectation the discounted sum of rewards. Formally, this
objective criterion can be expressed as the following:

maximise
π

E

[
∞∑
t=0

γtrt

]
. (5.10)

In order to effectively take into consideration the risk and value its mitigation, this research
work presents an update for the former objective. In fact, coming up with a generic definition
for the risk is not trivial since the risk is generally dependent on the decision-making problem.
In the present research work, it is assumed that the risk is assessed on the basis of the worst
returns achievable by a policy π. Therefore, a successful decision-making policy should ideally
maximise the expected discounted sum of rewards while avoiding low values for the worst-case
returns. The latter requirement is approximated with a new constraint attached to the former
objective defined in Equation (5.10): the probability of having the policy achieving a return
lower than a certain minimum value should not exceed a given threshold. Mathematically,
the alternative objective criterion proposed for risk-sensitive RL can be expressed as follows:

maximise
π

E

[
∞∑
t=0

γtrt

]
,

such that p

[
∞∑
t=0

γtrt ≤ Rmin

]
≤ ϵ ,

(5.11)

where:

• p[⋆] denotes the probability of the event ⋆,

• Rmin is the minimum acceptable return (from a risk mitigation perspective),

• ϵ ∈ [0, 1] is the threshold probability not to be exceeded.

5.4.2 Practical modelling of the risk

As previously hinted, this research work assumes that the risk associated with a certain action
is related to the worst achievable returns when executing that particular action and then
following a given decision-making policy π. In such a context, the distributional RL approach
becomes particularly interesting, by providing access to the full probability distribution of the
random return Zπ. Therefore, the risk can be efficiently assessed by examining the so-called
tail of the learnt probability distribution. Moreover, the constraint in Equation (5.11) can
be approximated through popular recognised risk measures such as the Value at Risk (VaR)
and Conditional Value at Risk (CVaR). Illustrated in Figure 5.4, these two risk measures are
mathematically expressed as the following:
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VaRρ(Z
π) = inf {z ∈ R : FZπ(z) ≥ ρ} , (5.12)

CVaRρ(Z
π) = E [z | z ≤ VaRρ(Z

π)] , (5.13)

where FZπ represents the CDF of the random return Zπ.

More generally, this research work introduces the state-action risk function Rπ : S×A → R
of a decision-making policy π, which is the equivalent of the Q function for the risk. More
precisely, that function Rπ(s, a) quantifies the riskiness of the discounted sum of rewards
obtained by executing an action a ∈ A in a state s ∈ S and then following a policy π:

Rπ(s, a) = Rρ [Z
π(s, a)] , (5.14)

where:

• Rρ : Z → R is a function extracting risk features from the random return probability
distribution Zπ, such as VaRρ or CVaRρ,

• ρ ∈ ]0, 1[ is a parameter corresponding to the cumulative probability associated with the
worst returns, generally between 0% and 10%. In other words, this parameter controls
the size of the random return distribution tail from which the risk is estimated.

5.4.3 Risk-based utility function

In order to pursue the objective criterion defined in Equation (5.11) for risk-sensitive RL,
this research work introduces a new concept: the state-action risk-based utility function.
Denoted Uπ(s, a), the utility function assesses the quality of an action a ∈ A in a certain
state s ∈ S, in terms of expected performance and risk, assuming that the policy π is followed
afterwards. In fact, the intent is to extend the popular Q function so that the risk is taken
into consideration, by taking advantage of the risk function defined in Section 5.4.2. More
precisely, the utility function Uπ is built as a linear combination of the Qπ and Rπ functions.

Return

Probability

𝜌

VaRCVaR

Random return 𝑍గ

Risk modelling

Expected return 𝑄గ

Figure 5.4: Illustration of the risk modelling adopted in this research work, on the basis of the probability
distribution of the random return Zπ learnt by a distributional RL algorithm.
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Figure 5.5: Illustration of the risk-based utility function Uπ for a random return probability distribution,
with the parameter α = 0.75 in this case.

Formally, the risk-based utility function Uπ : S × A → R of a decision-making policy π is
defined as the following:

Uπ(s, a) = α Qπ(s, a) + (1− α) Rπ(s, a) (5.15)
= α E [Zπ(s, a)] + (1− α) Rρ [Z

π(s, a)] , (5.16)

where α ∈ [0, 1] is a parameter controlling the trade-off between expected performance and
risk. If α = 0, the utility function will be maximised with a fully risk-averse decision-making
policy. On the contrary, if α = 1, the utility function degenerates into the Q function
quantifying the performance on expectation (risk-neutral). Figure 5.5 graphically describes
the newly introduced risk-based utility function Uπ, which moves along the x-axis between
the quantities Rπ and Qπ when modifying the value of the parameter α.

5.4.4 Risk-sensitive distributional RL algorithm

In most applications, the motivation for choosing the distributional RL approach over the
classical one is related to the improved expected performance that results from the learning
of a richer representation of the environment. Despite having access to the full probability
distribution of the random return, only the expectation is exploited to derive policies:

π(s) ∈ argmax
a∈A

E [Zπ(s, a)]︸ ︷︷ ︸
Qπ(s,a)

. (5.17)

Nevertheless, the random return Zπ does also contain valuable information about the risk,
which could be exploited to learn risk-sensitive decision-making and exploration policies. The
present research work suggests to achieve risk-sensitive distributional RL by maximising the
utility function Uπ, derived from Zπ, instead of the expected return Qπ when selecting actions.
This alternative operation would be performed during both exploration and exploitation.
Even though maximising the utility function is not exactly equivalent to the optimisation
of the objective criterion defined in Equation (5.11), it is a relevant step towards achieving
risk-sensitive RL. Consequently, a risk-sensitive policy π can be derived as follows:

π(s) ∈ argmax
a∈A

Uπ(s, a) . (5.18)
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Algorithm 7 Risk-sensitive distributional RL algorithm
Initialise the experience replay memory M of capacity C.
Initialise both the main and target DNN weights θ = θ−.
for episode = 0 to N do

for time step t = 0 to T , or until episode termination do
Acquire the state s from the environment E .
With probability ϵ, select a random action a ∈ A.
Otherwise, select the action a = argmaxa′∈A Uπ(s, a′; θ).
Execute action a in environment E to get the next state s′ and the reward r.
Store the experience e = (s, a, r, s′) in M .
Randomly sample from M a minibatch of Ne experiences ei = (si, ai, ri, s

′

i).
for i = 0 to Ne do

Distributional Bellman equation: Zπ(si, ai; θ)
D
= ri + γZπ(si+1, argmaxa′

i∈A Uπ(si+1, a
′
i; θ

−); θ−).
end for
Compute the resulting loss L(θ), according to the probability metric selected.
Update the main DNN parameters θ using a deep learning optimiser with learning rate Lr.
Update the target DNN parameters θ− = θ every N− steps.
Anneal the ϵ-greedy exploration parameter ϵ.

end for
end for

Throughout the learning phase, a classical Q-learning algorithm is expected to progres-
sively converge towards the optimal value function Q∗ that naturally arises from the optimal
decision-making policy π∗. In a similar way, the proposed risk-sensitive RL algorithm jointly
learns the optimal policy π∗ and the optimal state-action risk-based utility function U∗. More
formally, the latter two are mathematically defined as the following:

U∗(s, a) = α E [Z∗(s, a)] + (1− α) Rρ [Z
∗(s, a)] , (5.19)

Z∗(s, a)
D
= R(s, a) + γZ∗ (s′, π∗(s′)) , (5.20)

π∗(s) ∈ argmax
a∈A

U∗(s, a) . (5.21)

The novel methodology proposed by this research work to effectively learn risk-sensitive
decision-making policies based on the distributional RL approach is summarised as follows.
Firstly, select any distributional RL algorithm that learns the full probability distribution
of the random return Zπ. Secondly, leave the learning process unchanged except for action
selection, which involves the maximisation of the utility function Uπ rather than the expected
return Qπ. This adaptation is the single change to the distributional RL algorithm, occurring
at two different locations within the algorithm: i. the generation of new experiences by
interacting with the environment, ii. the learning of the random return Zπ based on the
distributional Bellman equation. However, this adaptation has no consequence on the random
return Zπ itself learnt by the distributional RL algorithm, only on the actions derived from
that probability distribution. To end this section, Algorithm 7 details the proposed solution
in a generic way, with the required modifications being highlighted in colour.
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5.5 Performance assessment methodology

5.5.1 Benchmark environments

This research work introduces some novel benchmark environments to assess the soundness
of the proposed methodology to design risk-sensitive policies based on the distributional RL
approach. These environments consist of three toy problems that are specifically designed to
highlight the importance of taking into consideration the risk for a decision-making policy.
More precisely, the control problems are built in such a way that the optimal policy will
differ depending on whether the objective is to solely maximise the expected performance or
to also mitigate the risk. This behaviour is achieved by including relevant stochasticity in
both the state transition function pT and the reward function pR. Moreover, the benchmark
environments are designed to be relatively straightforward in order to ease the analysis and
understanding of the decision-making policies learnt. This simplicity ensures the accessibility
of the experiments as well, since distributional RL algorithms generally require a considerable
amount of computing power. Figure 5.6 illustrates these three benchmark environments, and
highlights the optimal paths to be learnt depending on the objective pursued.

The first benchmark environment presented is named risky rewards. It consists of a 3× 3
grid world within which an agent has to reach one of two objective areas, that are equidistant
from its fixed initial location. The difficulty of this control problem lies in the choice of
the objective area to target, because of the stochasticity present in the reward function.
Reaching the first objective area yields a reward with a lower value in expectation and a
limited deviation from that average. On the contrary, reaching the second objective location
yields a reward that is higher in expectation, at the cost of an increased risk. Formally, the
underlying MDP can be described as the following:

• S ∈ {0, 1, 2} × {0, 1, 2}, a state s being composed of the two coordinates of the agent
within the grid,

• A = {RIGHT, DOWN, LEFT, UP}, with an action a being a moving direction,

• pR(r|s, a) ∼ N (µ, σ2) where:

– µ = 0.3 and σ = 0.1 if the agent reaches the first objective location (terminal state),
– µ = 1.0 and σ = 0.1 with a 75% chance, and µ = −1.0 and σ = 0.1 with a 25%

chance if the agent reaches the second objective location (terminal state),
– µ = −0.1 and σ = 0.1 otherwise,

• pT (s
′|s, a) associates a 100% chance to move once in the chosen direction, while keeping

the agent within the 3× 3 grid world (crossing a border is prohibited),

• p0 associates a probability of 1 to the state s = [1, 0], which is the position of the agent
depicted in Figure 5.6,

• γ = 0.9.

143



?

(a) Risky rewards
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?

(c) Risky grid world

Figure 5.6: Illustration of the benchmark environments introduced in this research work for the performance
assessment of risk-sensitive decision-making policies. The optimal objective locations/paths in terms of risk
mitigation and expected return maximisation are respectively highlighted in green and orange.

The second benchmark environment studied is named risky transitions. It consists of a
3× 3 grid world within which an agent has to reach one of two objective areas as quickly as
possible, in the presence of a stochastic wind. The agent is initially located in a fixed area
that is very close to an objective, but the required move to reach that goal is in opposition
to the wind direction. Following that path results in a reward that is higher in expectation,
but there is a risk to be repeatedly countered by the stochastic wind. On the contrary, the
longer path is safer but yields a lower reward on average. For the sake of completeness, the
underlying MDP can be described as the following:

• S ∈ {0, 1, 2} × {0, 1, 2}, a state s being composed of the two coordinates of the agent
within the grid,

• A = {RIGHT, DOWN, LEFT, UP}, with an action a being a moving direction,

• pR(r|s, a) ∼ N (µ, σ2) where:

– µ = 1.0 and σ = 0.1 if the agent reaches an objective location (terminal state),
– µ = −0.3 and σ = 0.1 otherwise,

• pT (s
′|s, a) associates a 100% chance to move once in the chosen direction AND a 50%

chance to get pushed once to the left by the stochastic wind, while keeping the agent
within the 3× 3 grid world (crossing a border is prohibited),

• p0 associates a probability of 1 to the state s = [1, 0], which is the position of the agent
depicted in Figure 5.6,

• γ = 0.9.
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The last benchmark environment presented is denominated risky grid world. This control
problem can be viewed as a combination of the two environments previously described since
it integrates both stochastic rewards and transitions. It consists once again of a 3 × 3 grid
world within which an agent, initially located in a fixed area, has to reach a fixed objective
location as quickly as possible. To achieve that goal, three paths are available. The agent
may choose the shortest path to the objective location that is characterised by a stochastic
trap, or get around this risky situation by taking a significantly longer route. This bypass
can be done from the left or from the right, another critical choice in terms of risk because
of the stochastic wind that may push the agent to the left. Once again, the optimal path
is therefore dependent on the objective criterion to pursue. More precisely, the underlying
MDP can be described as the following:

• S ∈ {0, 1, 2} × {0, 1, 2}, a state s being composed of the two coordinates of the agent,

• A = {RIGHT, DOWN, LEFT, UP}, with an action a being a moving direction,

• pR(r|s, a) ∼ N (µ, σ2) where:

– µ = 1.0 and σ = 0.1 if the agent reaches the objective location (terminal state),
– µ = −0.2 and σ = 0.1 with a 75% chance, and µ = −2.0 and σ = 0.1 with a 25%

chance if the agent reaches the stochastic trap location (terminal state),
– µ = −0.2 and σ = 0.1 otherwise,

• pT (s
′|s, a) associates a 100% chance to move once in the chosen direction AND a 25%

chance to get pushed once to the left by the stochastic wind, while keeping the agent
within the 3× 3 grid world (crossing a border is prohibited),

• p0 associates a probability of 1 to the state s = [1, 0], which is the position of the agent
depicted in Figure 5.6,

• γ = 0.9.

5.5.2 Risk-sensitive distributional RL algorithm analysed

The distributional RL algorithm selected to assess the soundness of the proposed approach for
learning risk-sensitive policies is the Unconstrained Monotonic Deep Q-Network with Cramer
(UMDQN-C) [3] previously introduced in Chapter 4. Basically, this particular distributional
RL algorithm models the CDF of the random return in a continuous way by taking advantage
of the Cramer distance for deriving the TD-error. Additionally, the probability distributions
learnt are ensured to be perfectly valid thanks to the specific architecture exploited to model
the random return: Unconstrained Monotonic Neural Network (UMNN) [75]. The latter has
been demonstrated to be a universal approximator of continuous monotonic functions, which
is particularly convenient for representing CDFs. In Chapter 4, the UMDQN-C algorithm
has been shown to achieve great results, both in terms of policy performance and in terms of
random return probability distribution quality. This second feature motivates the selection of
this specific distributional RL algorithm to conduct the following experiments, since accurate
random return probability distributions are required to properly estimate the risk.
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As previously explained in Section 5.4.2, the proposed methodology requires the choice
of a relevant function Rρ for extracting risk features from the random return probability
distribution learnt Zπ. In the following experiments, the Value at Risk (VaR) is adopted
to estimate the risk. This choice is motivated by both the popularity of that risk measure
in practice and by the efficiency of computation. Indeed, this quantity can be conveniently
derived from the CDF of the random return learnt by the UMDQN-C algorithm, as indicated
mathematically in Equation (5.12).

The resulting novel risk-sensitive distributional RL algorithm is denominated Risk-Sensitive
Unconstrained Monotonic Deep Q-Network with Cramer (RS-UMDQN-C). For the sake of
clarity, Algorithm 8 provides its detailed pseudo-code. Basically, this new RL algorithm is
the result of the application of the methodology described in Algorithm 7 to the UMDQN-C
algorithm introduced in Chapter 4, with the Value at Risk being selected as risk measure.

Algorithm 8 RS-UMDQN-C algorithm
Initialise the experience replay memory M of capacity C.
Initialise the main UMNN weights θ (Xavier initialisation).
Initialise the target UMNN weights θ− = θ.
for episode = 0 to N do

for t = 0 to T , or until episode termination do
Acquire the state s from the environment E .
With probability ϵ, select a random action a ∈ A.
Otherwise, select a = argmaxa′∈A U(s, a′; θ), with U(s, a′; θ) = α E [Z(s, a′; θ)] + (1− α) VaRρ [Z(s, a′; θ)].
Interact with the environment E with action a to get the next state s′ and the reward r.
Store the experience e = (s, a, r, s′) in the experience replay memory M .
Randomly sample from M a minibatch of Ne experiences ei = (si, ai, ri, s

′
i).

Derive a discretisation of the domain X by sampling Nz returns z ∼ U([zmin, zmax]).
for i = 0 to Ne do

for all z ∈ X do
if s

′
i is terminal then

Set yi(z) =

{
0 if z < ri,

1 otherwise.
else

Set yi(z) = Z

(
z−ri
γ

∣∣∣∣s′
i, argmax

a
′
i∈A U(s

′
i, a

′
i; θ

−); θ−
)

.

end if
end for

end for
Compute the loss LC(θ) =

∑Ne
i=0

(∑
z∈X (yi(z)− Z(z|si, ai; θ))

2)1/2.
Clip the resulting gradient in the range [0, 1].
Update the main UMNN parameters θ using the ADAM optimiser with learning rate Lr.
Update the target UMNN parameters θ− = θ every N− steps.
Anneal the ϵ-greedy exploration parameter ϵ.

end for
end for
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To conclude this section, ensuring the reproducibility of the results in a transparent way
is particularly important to this research work. In order to achieve this, Table 5.1 provides
a brief description of the key hyperparameters used in the experiments. Moreover, the entire
experimental code is made publicly available at the following link:

https://github.com/ThibautTheate/Risk-Sensitive-Policy-with-Distributional-
Reinforcement-Learning.

Table 5.1: Description of the main hyperparameters used in the experiments.

Hyperparameter Symbol Value

DNN structure - [128, 128]
Learning rate Lr 10−4

Deep learning optimiser epsilon - 10−5

Replay memory capacity C 104

Batch size Ne 32
Target update frequency N− 103

Random return resolution Nz 200
Random return lower bound zmin −2
Random return upper bound zmax +2
Exploration ϵ-greedy initial value - 1.0
Exploration ϵ-greedy final value - 0.01
Exploration ϵ-greedy decay - 104

Risk coefficient ρ 10%
Risk trade-off α 0.5

5.6 Results

The experiments conducted in the scope of this research work are subdivided into two parts.
Firstly, the performance achieved by the resulting decision-making policies is quantitatively
assessed in Section 5.6.1. Secondly, the probability distributions naturally learnt by the novel
risk-sensitive distributional RL algorithm are analysed in Section 5.6.2.

5.6.1 Decision-making policy performance

To begin with, the performance achieved by the decision-making policies π learnt has to
be evaluated, both in terms of expected outcome and risk. For comparison purposes, the
results obtained by the well-established DQN algorithm, a reference without any form of risk
sensitivity, are presented alongside those of the newly introduced RS-UMDQN-C algorithm.
It shall also be mentioned that these two RL algorithms achieve very similar results when
risk sensitivity is disabled (α = 1 for the RS-UMDQN-C algorithm). Such a behaviour is
expected and validates the risk-neutral version of the proposed methodology.
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In the following, two analyses are presented. Firstly, the probability distribution of the
(non discounted) cumulative reward of a learnt policy π, denoted Sπ ∈ Z, is investigated.
More precisely, the expectation E[·], the risk function Rρ[·] and the utility function U [·] of
that random variable Sπ are derived for each RL algorithm studied and compared. Secondly,
this research work introduces a novel easy-to-interpret performance indicator Rs ∈ [−1, 1]
for evaluating the risk sensitivity of the decision-making policies learnt, by taking advantage
of the simplicity of the benchmark environments presented in Section 5.5.1. In fact, it is
made possible by the simple assessment from a human perspective of the relative riskiness of
a path in the grid world environments studied. If the optimal path in terms of risk is chosen
(green arrows in Figure 5.6), a positive score Rs = +1 is awarded. On the contrary, the
riskier path but optimal in expectation (orange arrows in Figure 5.6) yields a negative score
Rs = −1. If no objective nor trap areas are reached within the time allowed, a neutral score
Rs = 0 is delivered. Therefore, the evolution of this performance indicator provides valuable
information about the convergence of the RL algorithms towards the different possible paths
as well as about the stability of the learning process. Formally, let τ = {st, at}t∈[0,T ] with
st ∈ S and at ∈ A be a trajectory defined over a time horizon T < 10 (ending with a
terminal state, and subject to an upper bound), and let τ+ and τ− respectively be the sets of
trajectories associated to the green and orange paths in Figure 5.6. Based on these definitions,
the risk-sensitivity Rs of a policy π is a random variable that can be assessed via Monte Carlo
as the following:

Rs(π) =


+1 if π produces trajectories {st, at}t∈[0,T ] ∈ τ+ with at = π(st),
−1 if π produces trajectories {st, at}t∈[0,T ] ∈ τ− with at = π(st),
0 otherwise.

(5.22)

Following the methodology previously explained, the first results on policy performance
are summarised in Table 5.2, which compares the decision-making policies learnt by both the
DQN and RS-UMDQN-C algorithms, in terms of expected outcome and risk. The second
results on policy performance are compiled in Figure 5.7, plotting the evolution of the risk-
sensitivity performance indicator Rs during the training phase. It can be clearly observed
from these two analyses that the proposed approach is effective in learning decision-making
policies that are sensitive to the risk for relatively simple environments. Indeed, as expected,
the DQN algorithm yields policies that are optimal in expectation whatever the level of
risk incurred. In contrast, the RS-UMDQN-C algorithm is able to leverage both expected
outcome and risk in order to learn decision-making policies that produce a slightly lower
expected return with a significantly lower risk level. This allows the proposed methodology
to significantly outperform the risk-neutral RL algorithm of reference with respect to the
performance indicator of interest U [Sπ] in Table 5.2. Finally, it is also encouraging to observe
from Figure 5.7 that the learning process seems to be quite stable for relatively simple
environments, despite having to maximise a much more complicated function.
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Table 5.2: Comparison of the expectation E[·], risk function Rρ[·] and risk-based utility function U [·] of the
cumulative reward Sπ achieved by the decision-making policies π learnt by both the well-established DQN
algorithm and the newly introduced RS-UMDQN-C algorithm.

Benchmark environment DQN RS-UMDQN-C

E [Sπ] Rρ [S
π] U [Sπ] E [Sπ] Rρ [S

π] U [Sπ]

Risky rewards 0.3 -1.246 -0.474 0.1 -0.126 -0.013
Risky transitions 0.703 0.118 0.411 0.625 0.346 0.485
Risky grid world 0.347 -1.03 -0.342 0.333 0.018 0.175
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Figure 5.7: Evolution of the risk-sensitivity performance indicator Rs (expected value of the random variable)
achieved by the decision-making policies π learnt by both the well-established DQN algorithm and the newly
introduced RS-UMDQN-C algorithm during the training phase.
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Figure 5.8: Visualisation of the random return probability distributions Zπ naturally learnt by the newly
introduced RS-UMDQN-C algorithm for typical states of the benchmark environments, together with the
value, risk and utility functions derived (Qπ, Rπ and Uπ).

150



5.6.2 Probability distribution visualisation

As previously claimed, an important advantage of the proposed solution is the enhanced
interpretability of the decision-making process. Indeed, understanding and motivating the
decisions outputted by the resulting policy π is greatly facilitated by having access to the
probability distributions of the random return jointly learnt. In addition, the analysis and
comparison of the value, risk and utility functions (Qπ, Rπ and Uπ) associated with different
actions provide a valuable summary about the decision-making process, but also about the
control problem itself. Moreover, such an analysis may be particularly important to correctly
tune the risk trade-off parameter α according to the user’s risk aversion.

As an illustration, Figure 5.8 displays some random return probability distributions Zπ

that are learnt by the RS-UMDQN-C algorithm jointly to the risk-sensitive policy π. More
precisely, a single relevant state is selected for analysis for each benchmark environment.
This choice is based on the importance of the next decision in following a clear path, either
maximising the expected outcome or mitigating the risk. Firstly, it can be observed that the
risk-sensitive distributional RL algorithm does manage to accurately learn the probability
distribution of the random return, qualitatively from a human perspective. In particular,
the multimodality purposely designed to create risky situations appears to be well preserved.
Such a result is particularly encouraging since this feature is essential to the success of the
proposed solution, by ensuring the accurate estimation of the risk as defined in Section 5.4.2.
This observation is in line with the findings of Chapter 4 introducing the UMDQN algorithm,
and suggests that the solution introduced to achieve risk-sensitivity does not significantly alter
the properties of the original distributional RL algorithm. Secondly, as previously explained,
Figure 5.8 highlights the relevance of each function introduced (Qπ, Rπ and Uπ) for making
and motivating a decision made by a RL algorithm. Their analysis truly contributes to the
understanding of the potential trade-off between expected performance maximisation and
risk mitigation for a given decision-making problem, as well as the extent to which different
values of the important parameter α leads to divergent policies.
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5.7 Conclusion

This doctoral thesis chapter introduces a straightforward yet efficient solution to learning
risk-sensitive decision-making policies on the basis of the distributional RL approach. The
proposed methodology presents key advantages. Firstly, it is perfectly compatible with any
distributional RL algorithm, and requires minimal modification to the original algorithm.
Secondly, the simplicity of the approach truly contributes to the interpretability and ease of
analysis of the resulting risk-sensitive policies, a particularly important feature to avoid black-
box machine learning models. Lastly, the solution presented enables to cover the complete
potential trade-off between expected outcome maximisation and risk minimisation. The first
experiments conducted on three relevant toy problems yield promising results, which may be
viewed as a proof of concept for the accessible and practical solution introduced.

To conclude this thesis chapter, some interesting leads can be suggested as future work.
Firstly, the research conducted is exclusively empirical and does not study any theoretical
guarantees about the resulting risk-sensitive distributional RL algorithms. Among others,
the study of the convergence of these algorithms would be a relevant future research direction.
Secondly, building on the promising results achieved, the solution presented should definitely
be evaluated on more complex environments, for which the risk should ideally be mitigated.
Lastly, the approach could be extended to not only mitigate the risk but also to completely
discard actions that would induce an excessive level of risk, in order to increase compliance
with the objective criterion originally defined in Section 5.4.1 for risk-sensitive RL.
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The important thing is to never stop questioning.
— Albert Einstein
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Chapter 6

Matching of Everyday Power Supply and
Demand with Dynamic Pricing: Problem
Formalisation and Conceptual Analysis

Figure 6.1: Illustration of Chapter 6 entitled Matching of Everyday Power Supply and Demand with Dynamic
Pricing: Problem Formalisation and Conceptual Analysis, created by a generative art AI [1].
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Chapter overview

The ongoing energy transition is expected to significantly increase the share of
renewable energy sources whose production is intermittent in the electricity mix.
Apart from key benefits, this development has the major drawback of generating
a mismatch between power supply and demand. The innovative dynamic pricing
approach may contribute to mitigating that critical problem by taking advantage
of the flexibility offered by the demand side. At its core, this idea consists in
providing the consumer with a price signal which is evolving over time, in order
to influence its consumption. This novel approach involves a challenging decision-
making problem that can be summarised as follows: how to determine a price
signal maximising the synchronisation between power supply and demand under
the complex constraints of maintaining the producer/retailer’s profitability while
also benefiting the final consumer at the same time? As a contribution, this thesis
chapter presents a detailed formalisation of this particular decision-making problem.
Moreover, the research work discusses the diverse algorithmic components necessary
to efficiently design a dynamic pricing policy: different forecasting models together
with an accurate statistical modelling of the demand response to dynamic prices.

This thesis chapter is primarily based on the following scientific publication [6]:

Thibaut Théate, Antonio Sutera, and Damien Ernst. Matching of everyday power
supply and demand with dynamic pricing: Problem formalisation and conceptual
analysis. Energy Reports, 9:2453–2462, 2023.
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Figure 6.2: General illustration of the methodology presented in this thesis chapter entitled Matching of
Everyday Power Supply and Demand with Dynamic Pricing: Problem Formalisation and Conceptual Analysis.
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6.1 Introduction

Climate change is undeniably a major challenge facing humanity in the 21st century [114].
An ambitious transformation is required in all sectors to significantly lower their respective
carbon footprints. Electricity generation is no exception, with the burning of fossil fuels,
mainly coal and gas, being by far the dominant power source in the world today [115]. This
sector has to undergo an important transformation of the global electricity mix by promoting
power sources with a significantly lower carbon footprint. Belonging to that category are nu-
clear power, hydroelectricity, biomass or geothermal energy which are relatively controllable,
but also the energy directly extracted from wind and sun which is conversely intermittent
in nature. Since wind turbines and photovoltaic panels are expected to play a key role in
the energy transition, solutions are required to address their variable production. Interesting
technical avenues are the interconnection of power grids [116] and the development of storage
capacities such as batteries, pumped hydroelectricity or hydrogen [117]. Another promising
and innovative solution is to rationally influence the behaviour of consumers through the use
of dynamic pricing (DP), so that power supply and demand are better synchronised. In fact,
the core idea is to take advantage of the flexibility offered by the power demand side.

The dynamic pricing approach consists in continuously adapting the electricity price that
the final consumer has to pay in order to influence its consumption behaviour. Basically,
when demand exceeds supply, the price would be increased in order to take down consump-
tion. Conversely, a reduced power price would be provided when there is excessive production
compared to consumption. From a graphical perspective, the objective is not only to shift
the daily consumption curve but also to change its shape in order to better overlap with the
intermittent production curve of renewable energy sources, as illustrated in Figure 6.3.

The innovative dynamic pricing approach relies on two important assumptions. Firstly,
the final consumer has to be equipped with a smart metering device to measure its production
in real-time and with communication means for the price signal. Secondly, the final consumer
has to be able to provide a certain amount of flexibility regarding its power consumption.
Moreover, it has to be sufficiently receptive to the incentives offered to reduce its electricity
bill in exchange for a behaviour change. If these important requirements are met, the major
strength of the dynamic pricing approach is its potential benefits for both the consumer and
the producer/retailer. Moreover, these benefits would not only be in terms of economy, but
also potentially in terms of ecology and autonomy. In fact, dynamic prices may be seen as a
mechanism rewarding the flexibility of the demand side.

The contributions of this research work are twofold. Firstly, the complex decision-making
problem faced by a producer/retailer willing to develop a dynamic pricing strategy is pre-
sented and rigorously formalised. Secondly, the diverse algorithmic components required
to efficiently design a dynamic pricing policy are thoroughly discussed. To the authors’
knowledge, demand response via dynamic pricing has received considerable attention from
the research community, but from the perspective of the demand side alone. Therefore, the
present research may be considered as a pioneer work studying dynamic pricing from the
perspective of the supply side for taking advantage of the flexibility of the power consumers.
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Figure 6.3: Illustration of the dynamic pricing approach’s potential to shift and change the shape of a
typical daily consumption curve (blue) so that there is a better synchronisation with the daily intermittent
production of renewable energy sources (red).

6.2 Literature review

Over the last decade, the management of the power demand side in the scope of the energy
transition has received increasing attention from the research community. In fact, there exist
multiple interesting generic approaches when it comes to demand response. Without get-
ting into too many details, the scientific literature includes several surveys summarising and
discussing the different techniques available together with their associated challenges and
benefits [118, 119, 120, 121, 122]. In this research work, the focus is exclusively set on the
demand response induced by dynamic electricity prices.

As previously mentioned, the scientific literature about demand response via dynamic
pricing is primarily focused on the perspective of the demand side. Multiple techniques
have already been proposed to help the consumer provide flexibility and take advantage of
small behavioural changes to lower its electricity bill. For instance, [123] presents a power
scheduling method based on a genetic algorithm to optimise residential demand response
via an energy management system, so that the electricity cost is reduced. In [124], a tech-
nique based on dynamic programming is introduced for determining the optimal schedule
of residential controllable appliances in the context of time-varying power pricing. One can
also mention [125] that proposes an energy sharing model with price-based demand response
for microgrids of peer-to-peer prosumers. The approach is based on a distributed iterative
algorithm and has been shown to lower the prosumers’ costs as well as to improve the sharing
of photovoltaic energy. More recently, (deep) reinforcement learning techniques have been
proven to be particularly relevant for controlling the residential demand response in the par-
ticular context of dynamic power prices [126, 127].
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On the contrary, the question of inducing a relevant residential demand response based
on a dynamic pricing approach from the perspective of the supply side has not received a lot
of attention from the research community yet. Still, there are a few works in the scientific
literature about the mathematical modelling of the demand response caused by dynamic
power prices, which is a key element in achieving the former objective. To begin with, [128]
presents a simulation model highlighting the evolution of electricity consumption profiles
when shifting from a fixed tariff to dynamic power prices. A similar goal is pursued by [129]
which introduces a fully data-driven approach relying on the data collected by smart meters
and exogenous variables. The resulting simulation model is based on consumption profiles
clustering and conditional variational autoencoders. Alternatively, [130] presents a functional
model of residential power consumption elasticity under dynamic pricing to assess the impact
of different electricity price levels, based on a Bayesian probabilistic approach. In addition
to these mathematical models, one can also mention some real-life experiments conducted
to assess the responsiveness of the residential electricity demand to dynamic pricing [131, 132].

6.3 Problem formalisation

This section presents a mathematical formalisation of the challenging sequential decision-
making problem related to the dynamic pricing approach for inducing a relevant residential
demand response. To begin with, the contextualisation considered for studying this partic-
ular problem is briefly described, followed by an overview of the decision-making process.
Then, a discretisation of the continuous timeline is introduced. Subsequently, the formal
definition of a dynamic pricing policy is presented. Lastly, the input and output spaces of a
dynamic pricing policy are described, together with the objective criterion.

6.3.1 Contextualisation

As previously hinted, the present research work focuses on the interesting real-case scenario of
a producer/retailer whose production portfolio is composed of an important share of renew-
able energy sources such as wind turbines and photovoltaic panels. Because of the substantial
intermittency of these generation assets, a strong connection to the different energy markets
is required in order to fully satisfy its customers regardless of the weather. Nevertheless, the
consumers are assumed to be well informed and willing to adapt their behaviour in order to
consume renewable energy rather than electricity purchased on the market whose origin may
potentially be unknown. Within this particular context, the benefits of the dynamic pricing
approach taking advantage of the consumers’ flexibility are maximised. Indeed, the insignifi-
cant marginal cost associated with these intermittent renewable energy sources coupled with
their low carbon footprint make this innovative approach interesting from an economical
perspective for both supply and demand sides, but also in terms of ecology. Moreover, the
autonomy of the producer/retailer is expected to be reinforced by lowering its dependence
on the energy markets. Concurrently, the problematic dependence on fossil fuels such as coal
and gas will be reduced as well.
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In this research work, the predicted difference between power production and consumption
is assumed to be fully secured in the day-ahead electricity market. Also called spot market,
the day-ahead market has an hourly resolution and is operated once a day for all hours of the
following day via a single-blind auction. In other words, trading power for hour H of day D
has to be performed ahead on day D− 1 between 00:00 AM (market opening) and 12:00 AM
(market closure). Therefore, assuming that the trading activity occurs just before market
closure, the energy is at best purchased 12 hours (for delivery at 00:00 AM of day D) up to
35 hours (for delivery at 11:00 PM of day D) before the actual delivery of power. Apart from
the day-ahead electricity market, it is assumed that there are no trading activities on the
future/forward nor intraday markets. Nevertheless, if there remains an eventual mismatch
between production and consumption at the time of power delivery, the producer/retailer
would be exposed to the imbalance market. In this case, the so-called imbalance price has
to be inevitably paid as compensation for pushing the power grid off balance.

6.3.2 Decision-making process overview

The decision-making problem studied in this research work is characterised by a particularity:
a variable time lag between the moment a decision is made and when it becomes effective.
As previously hinted, any remaining difference between production and consumption after
demand response has to ideally be traded on the day-ahead market. The purpose of this as-
sumption is to limit the exposure of the producer/retailer to the imbalance market. For this
reason, the complete price signal sent to the consumer on day D has to be generated before
the closing of the day-ahead market at midday on day D − 1. Additionally, it is assumed
that the price signal cannot be refreshed afterwards.

Basically, the decision-making problem at hand can be formalised as follows. The core
objective is to determine a decision-making policy, denoted Π, mapping at time τ input
information of diverse nature Iτ to the electricity price signal Sτ to be sent to the consumers
over a future time horizon well-defined:

Sτ = Π(Iτ ), (6.1)

where:

• Iτ represents the information vector gathering all the available information of diverse
nature at time τ which may be helpful to make a relevant dynamic pricing decision,

• Sτ represents a series of electricity prices generated at time τ and shaping the dynamic
price signal over a well-defined future time horizon.

In fact, the dynamic pricing approach from the perspective of the supply side belongs to a
particular class of decision-making problems: automated planning and scheduling. Contrarily
to conventional decision-making outputting one action at a time, planning decision-making is
concerned with the generation of a sequence of actions. In other words, a planning decision-
making problem requires to synthesise in advance a strategy or plan of actions over a certain
time horizon. Formally, the decision-making has to be performed at a specific time τ about
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a control variable over a future time horizon beginning at time τi > τ and ending at time
τf > τi. In this case, the decision-making is assumed to be performed on day D − 1 just
before the closing of the day-ahead market at 12:00 AM to determine the price signal to be
sent to the consumers throughout the entire following day D (from 00:00 AM to 11:59 PM).

In the next sections, a more accurate and thorough mathematical formalisation of the
dynamic pricing problem from the perspective of the supply side is presented. Moreover, the
planning problem previously introduced is cast into a sequential decision-making problem.
Indeed, this research work intends to focus on a decision-making policy outputting a single
price from the signal Sτ at a time based on a subset of the information vector Iτ . Such an
important choice naturally comes with both its advantages and limitations.

6.3.3 Timeline discretisation

Theoretically, the dynamic power price signal sent to the consumer could be continuously
changing over time. More realistically, the present research work adopts a discretisation of
the continuous timeline so that the electricity price is adapted at regular intervals. Formally,
this timeline is discretised into a number of time steps t spaced by a constant duration ∆t. If
the duration ∆t is too large, the synchronisation improvement between supply and demand
will probably be of poor quality. Conversely, lowering the value of the duration ∆t increases
the complexity of the decision-making process, and a too high update frequency may even
confuse the consumer. There is a trade-off to be found concerning this important parameter.
In this research work, the dynamic price signal is assumed to change once per hour, meaning
that ∆t is equal to one hour. This choice is motivated by the hourly resolution of the day-
ahead market, which has proven to be an appropriate compromise over the years for matching
power production and consumption. Another relevant discretisation choice could be to have
a price signal which is updated every quarter of an hour. In the rest of this research work,
the increment (decrement) operations t+ 1 (t− 1) are used to model the discrete transition
from time step t to time step t+∆t (t−∆t), for the sake of clarity.

6.3.4 Dynamic pricing policy

Within the context previously described, a dynamic pricing planning policy Π consists of the
set of rules adopted to make a decision regarding the future price signal sent to the power
consumers over the next day. In fact, this research work makes the choice to decompose
this planning policy into a set of 24 dynamic pricing decision-making policies π, each one
outputting a single electricity price for one hour of the following day. Mathematically, such
a dynamic pricing strategy can be defined as a programmed policy π : X → Y , either
deterministic or stochastic, which outputs a decision yt ∈ Y for time step t based on some
input information xt ∈ X so as to maximise an objective criterion. The input xt can be
derived from the information vector Iτ associated with the decision-making for time step t,
after some potential preprocessing operations. Concerning the output, the price signal Sτ is
composed of a sequence of 24 dynamic pricing policy outputs yt.
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Figure 6.4: Illustration of the formalised decision-making problem related to dynamic pricing from the
perspective of the supply side. The notations xt and yt represent the inputs and outputs of a dynamic
pricing policy π, which are not shown concurrent on the timeline since the decision-making occurs hours
before the application of the dynamic pricing signal. The time axis of the four plots represents the complete
following day for which the dynamic prices are generated. The mathematical notations pFt , cFt and λF

t

respectively represent the forecast production, consumption and day-ahead market price for time step t. The
quantity c′t is the predicted consumption at time step t after taking into account the dynamic pricing signal.

In the rest of this research work, the time at which the decision-making does occur should
not be confused with the time at which the dynamic price signal is active, meaning charging
for energy consumption. The proposed formalisation assumes that the time step t refers to
the time at which the dynamic price is active, not decided. Therefore, the decision-making
of the dynamic pricing policy π for time step t (yt = π(xt)) is in fact performed hours in
advance of time step t. This particularity is illustrated in Figure 6.4 describing the formalised
decision-making problem related to dynamic pricing from the perspective of the supply side.

6.3.5 Input of a dynamic pricing policy

The input space X of a dynamic pricing policy π comprises all the available information which
may help to make a relevant decision about future electricity prices so that an appropriate
demand response is induced. Since the decision-making occurs 12 up to 35 hours in advance
of the price signal activation, this information mainly consists of forecasts and estimations
that are subject to uncertainty. As depicted in Figure 6.4, the dynamic pricing policy input
xt ∈ X refers to the decision-making occurring at time τ = t − h with h ∈ [12, 35] about
the dynamic pricing signal delivered to the consumer at time step t. In fact, the quantity
Iτ may be seen as the information contained in the 24 inputs xt for t ∈ {τ + 12, ..., τ + 35}.
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Formally, the input xt ∈ X is decided to be defined as the following:

xt = {P F
t , CF

t , ΛF
t , Yt, M}, (6.2)

where:

• P F
t = {pFt+ϵ ∈ R+ | ϵ = −k, ..., k} represents a set of forecasts for the power production

within a time window centred around time step t and of size k,

• CF
t = {cFt+ϵ ∈ R+ | ϵ = −k, ..., k} represents a set of forecasts for the power consumption

within a time window centred around time step t and of size k,

• ΛF
t = {λF

t+ϵ ∈ R | ϵ = −k, ..., k} represents a series of forecasts for the day-ahead market
prices within a window centred around time step t and of size k,

• Yt = {yt−ϵ ∈ R | ϵ = 1, ..., k} represents the series of k previous values for the dynamic
price signal sent to the final consumer,

• M is a mathematical model of the demand response that can be expected from the
consumption portfolio, together with the required input information associated.

6.3.6 Output of a dynamic pricing policy

The output space Y of a dynamic pricing policy π solely includes the future price signal to be
sent to the consumer. Formally, the dynamic pricing policy output yt ∈ Y , which represents
the electricity price to be paid by the consumer for its power consumption at time step t,
can be mathematically defined as follows:

yt = et, (6.3)

where et ∈ R represents the dynamic electricity price to be paid by the demand side for its
power consumption at time step t. Out of the scope of this research work is the presentation
of this price signal so that the impact on the final consumer is maximised. Indeed, to achieve
better results, the way of communicating the output of the dynamic pricing policy has to be
adapted to the audience, be it humans with different levels of electricity market expertise or
algorithms (energy management systems).

6.3.7 Objective criterion

The dynamic pricing approach can provide multiple benefits, in terms of economy, ecology
but also autonomy. Consequently, the objective criterion to be maximised by a dynamic
pricing policy π is not trivially determined. In fact, several core objectives can be identified:

• maximising the match between supply and demand,

• minimising the carbon footprint of power generation,

• minimising the electricity costs for the consumer,

• maximising the revenue of the producer/retailer.
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Although some objectives do overlap, these four criteria are not completely compatible.
For instance, maximising the synchronisation between power supply and demand may be
equivalent to minimising the carbon footprint associated with the generation of electricity.
Indeed, the production portfolio of the producer/retailer being mainly composed of inter-
mittent renewable energy sources, its energy is likely to have a reduced carbon footprint
compared to the electricity that can be purchased on the day-ahead market whose origin is
unknown. On the contrary, maximising the revenue of the producer/retailer will obviously
not lead to a minimised electricity bill for the consumer. This research work makes the
choice to prioritise the maximisation of the synchronisation between supply and demand,
and equivalently the minimisation of the carbon footprint, while translating the other two
core objectives into relevant constraints. Firstly, the power costs for the consumer have to
be reduced with respect to the situation without dynamic pricing. Secondly, the profitability
of the producer/retailer has to be guaranteed.

Formally, the objective criterion to be optimised by a dynamic pricing policy π can be
mathematically defined as the following. First of all, the main target to evaluate is the
synchronisation between supply and demand, which can be quantitatively assessed through
the deviation ∆T . This quantity has to ideally be minimised, and can be mathematically
expressed as follows:

∆T =
T−1∑
t=0

|pt − ct|, (6.4)

where:

• t = 0 corresponds to the first electricity delivery hour of a new day (00:00 AM),

• T is the time horizon considered, which should be a multiple of 24 to have full days,

• pt is the actual power production (not predicted) from the supply side at time step t,

• ct is the actual power consumption (not predicted) from the demand at time step t.

Afterwards, the first constraint concerning the reduced power costs for the consumer has
to be modelled mathematically. This is achieved via the electricity bill BT paid by the
consumer over the time horizon T , which can be expressed as the following:

BT =
T−1∑
t=0

ct yt . (6.5)

As previously explained, the consumer power bill BT should not exceed that obtained
without dynamic pricing. In that simpler case, the consumer is assumed to pay a price et,
which can for instance be a fixed tariff or a price indexed on the day-ahead market price. The
situation without dynamic pricing is discussed in more details in Section 6.5. Consequently,
the first constraint can be mathematically expressed as follows:

T−1∑
t=0

ct yt ≤
T−1∑
t=0

ct et , (6.6)
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where ct is the actual electrical power consumption (not predicted) from the demand side at
time step t without any dynamic pricing mechanism.

Then, the second constraint is about the profitability of the producer/retailer, which is
naturally achieved if its revenue exceeds its costs. The revenue RT of the producer/retailer
over the time horizon T can be mathematically expressed as the following:

RT =
T−1∑
t=0

[
ct yt − (c′t − pFt ) λt − (ct − pt) it

]
, (6.7)

where:

• λt is the actual power price (not predicted) on the day-ahead market at time step t,

• it is the actual imbalance price (not predicted) on the imbalance market at time step t,

• c′t is the predicted power consumption at time step t after the demand response to the
dynamic prices, based on the demand response mathematical model M.

The first term simply corresponds to the payment of the customers for their electricity
consumption. The second term can either be a revenue or a cost induced by the predicted
mismatch between supply and demand, which is traded on the day-ahead market. The last
term is the cost or revenue caused by the remaining imbalance between supply and demand,
which has to be compensated in the imbalance market.

The total costs incurred by the producer/retailer at each time step t can be decomposed
into both fixed costs FC and marginal costs MC . In this particular case, the marginal
costs of production are assumed to be negligible since the production portfolio is composed
of intermittent renewable energy sources such as wind turbines and photovoltaic panels.
Therefore, the second constraint can be mathematically expressed as follows:

T−1∑
t=0

[
ct yt − (c′t − pFt ) λt − (ct − pt) it

]
≥ FC T . (6.8)

Finally, the complete objective criterion to be optimised by a dynamic pricing policy π
can be mathematically expressed as the following:

minimise
π

T−1∑
t=0

|pt − ct|,

subject to RT ≥ FC T ,

BT ≤
T−1∑
t=0

ct et .

(6.9)
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6.4 Algorithmic components discussion

This section presents a thorough discussion about the different algorithmic modules required
to efficiently design a dynamic pricing policy from the perspective of the supply side. Firstly,
the three necessary forecasting blocks are rigorously analysed. Secondly, the mathematical
modelling of the demand response induced by dynamic power prices is discussed. Lastly, the
proper management of uncertainty is considered.

In parallel, for the sake of clarity, Figure 6.5 highlights the interconnections between the
different algorithmic components in the scope of a dynamic pricing policy from the perspective
of the supply side. Moreover, Algorithm 9 provides a thorough description of the complete
decision-making process for the dynamic pricing problem at hand. The complexity of the
variable time lag between decision-making and application is highlighted. Assuming that
the decision-making occurs once a day at 12:00 AM just before the closing of the day-ahead
market for all hours of the following day, the dynamic price at time step t is decided hours in
advance at time step t−[12 + (t%24)], with the symbol % representing the modulo operation.
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Figure 6.5: Illustration of the decision-making process related to dynamic pricing from the perspective of the
supply side, with the connections between the different algorithmic components highlighted.
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Algorithm 9 Dynamic pricing complete decision-making process
The decision-making occurs once per day just before the closing of the day-ahead market at 12:00 AM of day D− 1
for all hours of the following day D.
The decision-making for the dynamic price of time step t actually occurs in advance at time step t− [12 + (t%24)].
for τ = −12 to T − 12 do

Check whether the time is 12:00 AM to proceed to the decision-making phase.
if (τ + 12)%24 = 0 then

for t = τ + 12 to τ + 35 do
Gather the available information for production forecasting xP

t = {WF
t , AF

t , IPt }.
Gather the available information for consumption forecasting xC

t = {WF
t , Tt, ICt }.

Gather the available information for day-ahead market price forecasting xM
t = {xP

t , xC
t , GF

t , Mt, IMt }.
Forecast production at time step t: pFt = FP

(
xP
t

)
.

Forecast consumption at time step t: cFt = FC

(
xC
t

)
.

Forecast the day-ahead market price at time step t: λF
t = FM

(
xM
t

)
.

end for
for t = τ + 12 to τ + 35 do

Gather the input information for the dynamic pricing policy xt = {PF
t , CF

t , ΛF
t , Yt, M}.

Make a dynamic pricing decision for time step t: yt = π(xt).
end for
Announce the dynamic prices for all hours of the following day {yt | t = τ + 12, ..., τ + 35}.

end if
end for

6.4.1 Power production forecasting

The first forecasting block to be discussed concerns the production of intermittent renewable
energy sources such as wind turbines and photovoltaic panels. Having access to accurate
predictions about the future output of the production portfolio is key to the performance of
a dynamic pricing policy from the perspective of the supply side. As previously explained
in Section 6.3, the forecasts have to be available one day ahead before the closing of the
day-ahead electricity market for all hours of the following day. Naturally, the generation
of such predictions introduces uncertainty, a complexity that has to be seriously taken into
consideration in order to design sound dynamic pricing policies.

Formally, the forecasting model associated with the output of the production portfolio is
denoted FP . Its input space XP comprises every piece of information that may potentially
have an impact on the generation of electricity from intermittent renewable energy sources
such as wind turbines and photovoltaic panels for a particular time period of interest. Its
output space YP is composed of a forecast regarding the power generation from the production
portfolio for that same time period. Mathematically, the forecasting model input xP

t ∈ XP

and output yPt ∈ YP at time step t can be expressed as follows:

xP
t = {W F

t , AF
t , IPt }, (6.10)

yPt = pFt , (6.11)
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where:

• W F
t represents various weather forecasts that are related to the power production of

intermittent renewable energy sources such as wind turbines and photovoltaic panels
(wind speed and direction, solar irradiance, etc.) at the time step t,

• AF
t represents predictions about the available capacity of the production portfolio at time

step t, that is impacted by scheduled maintenance, repairs, or other similar constraints,

• IPt represents any additional information that may help to accurately forecast the future
power generation of the producer/retailer’s production portfolio at time step t.

In the scientific literature, the current state-of-the-art approach for forecasting the power
production of intermittent renewable energy sources is primarily based on deep learning
techniques together with some data cleansing processes and data augmentation approaches.
The best architectures are recurrent neural networks (RNN), convolutional neural networks
(CNN) and transformers [133, 134, 135, 136, 137].

6.4.2 Power consumption forecasting

The objective of the next important forecasting model deserving a discussion is to accurately
predict the future power demand of the consumption portfolio before any demand response
phenomenon is induced. Since the main goal of a dynamic pricing policy is to maximise the
synchronisation between supply and demand, power load forecasts are of equal importance to
electricity generation predictions. Similarly to the latter, the portfolio consumption forecasts
are assumed to be generated one day ahead before the closing of the day-ahead market for all
24 hours of the following day. Additionally, the uncertainty associated with these predictions
has to be carefully taken into account for the success of the dynamic pricing policy.

From a more formal perspective, the forecasting model responsible for predicting the future
electricity load of the consumption portfolio is denoted FC . Its input space XC includes all
the information that may have an influence on the residential electricity consumption for
a time period of interest. Its output space YC comprises a forecast of the power used by
the consumption portfolio for that same time period. Mathematically, the consumption
forecasting model input xC

t ∈ XC and output yCt ∈ YC at time step t are expressed as follows:

xC
t = {W F

t , Tt, ICt }, (6.12)

yCt = cFt , (6.13)
where:

• W F
t represents various weather forecasts that are related to the residential electricity

consumption (temperature, hygrometry, etc.) at the time step t,

• Tt represents characteristics related to the time step t (hour, weekend, season, holiday),

• ICt represents supplementary information that could potentially have an influence on
the residential power consumption at time step t.
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Similarly to renewable energy production forecasting, the state-of-the-art solutions for
accurately predicting the residential electricity load in the short term are mostly related to
deep learning techniques with preprocessed augmented data: RNN, CNN, and transformers
[138, 139, 140, 141, 135].

6.4.3 Market price forecasting

The last forecasting block to be discussed concerns the future day-ahead electricity market
prices. Contrarily to the forecasting of power production and consumption, the market price
predictions are not critical to the success of a dynamic pricing policy from the perspective
of the supply side. Still, having access to quality forecasts for the future day-ahead market
prices remains important in order to satisfy the constraints related to the profitability of
the producer/retailer as well as the reduced electricity costs for the consumer. Once again,
the predictions are assumed to be made just before the closing of the day-ahead market.
Moreover, the uncertainty associated with these forecasts has to be taken into consideration.

Formally, the forecasting model related to the future day-ahead electricity market prices
is denoted FM . Its input space XM includes every single piece of information which may
potentially explain the future electricity price on the day-ahead market for a certain hour.
Its output space YM comprises a forecast of the day-ahead market price for that same hour
of interest. Mathematically, both forecasting model input xM

t ∈ XM and output yMt ∈ YM

at time step t can be expressed as follows:

xM
t = {xP

t , xC
t , GF

t , Mt, IMt }, (6.14)

yMt = λF
t , (6.15)

where:

• GF
t represents forecasts about the state of the power grid as a whole (available production

capacity, transmission lines, etc.) at the time step t,

• Mt represents diverse information in various markets related to energy (power, carbon,
oil, gas, coal) in neighbouring geographical areas at time step t,

• IMt represents any extra piece of information that may potentially help to predict the
future electricity price on the day-ahead market at time step t.

Once again, the scientific literature reveals that the state-of-the-art approach for day-
ahead power market price forecasting mostly involves recent innovative machine learning
techniques [142, 143, 144, 145, 146].
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6.4.4 Demand response modelling

When it comes to designing a dynamic pricing policy from the perspective of the supply side,
another essential algorithmic component is the mathematical modelling of the residential
demand response to dynamic prices. Indeed, to make relevant dynamic pricing decisions, an
estimation of the impact of the electricity price on the consumer’s behaviour is necessary.
More precisely, two important characteristics have to be studied:

The residential power consumption elasticity. This particular quantity measures the
average percentage change of the residential power consumption in response to a percentage
change in the electricity price. In other words, the elasticity captures the willingness of the
consumer to adapt its behaviour when the price of electricity either increases or decreases.
This elasticity is critical to the dynamic pricing approach, since it assesses the receptiveness
of the consumers to dynamic prices. In fact, the residential power consumption elasticity can
be considered as a quantitative indicator of the potential of the dynamic pricing approach.

The electricity load temporal dependence. Time plays an important role in power
consumption. Firstly, the consumer’s behaviour is highly dependent on the time of the day.
The tendency to adapt this behaviour is also expected to be time-dependent. Therefore, the
residential power consumption elasticity has to be a function of the time within a day, among
other things. Secondly, a higher electricity price does not simply reduce the demand as with
other commodities, but rather shifts part of the consumption earlier and/or later in time.
This phenomenon reflects a complex temporal dependence for power consumption, which has
to be accurately modelled in order to design a performing dynamic pricing policy.

Formally, the mathematical model of the residential demand response to dynamic prices
is denoted M. Its input space XD is composed of the predicted power consumption before
any demand response, of the dynamic prices to be sent to the consumers for several hours
before and after the time period analysed, together with information about that time period.
Its output space YD comprises the predicted power consumption after demand response to
dynamic prices for that same time period. Mathematically, both demand response model
input xD

t ∈ XD and output yDt ∈ YD at time step t can be expressed as the following:

xD
t = {CF

t , Y ′
t , Tt}, (6.16)

yDt = c′t, (6.17)

where Y ′
t = {yt+ϵ ∈ R | ϵ = −k, ..., k} is the dynamic price signal within a time window of

size k and centred around time step t for which the demand response is analysed.

As far as the scientific literature about the modelling of demand response to dynamic
prices is concerned, this interesting topic has not received a lot of attention from the research
community yet. Still, there exist a few sound works presenting demand response models and
assessing the receptiveness of the consumers to dynamic power prices [128, 129, 130, 131, 132],
as explained in Section 6.2.
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6.4.5 Uncertainty discussion

As previously hinted, a dynamic pricing policy has to make its decision on the basis of
imperfect information. Indeed, multiple forecasts for the electricity price, production and
consumption have to be generated 12 up to 35 hours in advance. Naturally, these predictions
comes with a certain level of uncertainty that should not be neglected. Moreover, accurately
modelling the residential demand response to dynamic prices is a particularly challenging
task. Because of both the random human nature and the difficulty to perfectly capture the
consumers’ behaviour within a mathematical model, a notable level of uncertainty should
also be taken into consideration at this stage. Therefore, multiple sources of uncertainty can
be identified in the scope of the dynamic pricing decision-making problem at hand, and a
proper management of this uncertainty is necessary.

A stochastic reasoning is recommended to make sound dynamic pricing decisions despite
this substantial level of uncertainty. Typically, instead of considering each uncertain variable
(production, consumption, market price, demand response) with a probability of 1, the full
probability distributions behind these quantities have to be estimated and exploited. Based
on this more complete information, the risk associated with uncertainty may be mitigated.
Among others, such a claim refers to the methodology introduced in Chapter 5 of the thesis.
Additionally, safety margins may also contribute to reduce this risk, but potentially at the
expense of a lowered performance. In fact, there generally exists a trade-off between raw
performance and risk, in line with the adage: With great risk comes great reward.

6.5 Performance assessment methodology

The present section introduces a methodology for quantitatively assessing the performance
of a dynamic pricing policy in a comprehensive manner. As explained in Section 6.3.7, three
disjoint objectives can be clearly identified. For the sake of completeness, this research work
presents three quantitative indicators, one for each objective. The relative importance of
these indicators is left to the discretion of the reader according to his or her main intention
among the different goals previously defined.

Basically, the performance indicators introduced are based on the comparison with the
original situation without any dynamic pricing mechanism. In this case, the power consumer
is assumed to be fully ignorant about the mismatch problem between supply and demand.
No information is provided to the customers of the producer/retailer, which consequently
have an uninfluenced consumption behaviour. The price of electricity et is freely determined
by the power producer/retailer. For instance, it could be a fixed tariff, or a price indexed on
the day-ahead market price, in line with the following equation:

et = α λt + β , (6.18)

where α and β are parameters to be set by the retailer of electricity.
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Firstly, the impact of a dynamic pricing policy on the synchronisation between power
supply and demand can be assessed through the performance indicator S quantifying the
relative evolution of the deviation ∆T . This quantity, expressed in %, can be mathematically
expressed as the following:

S = 100
∆T −∆T

∆T

, (6.19)

∆T =
T−1∑
t=0

|pt − ct| , (6.20)

where ∆T represents the lack of synchronisation between power supply and demand without
any dynamic pricing mechanism. Therefore, the quantity S has to ideally be maximised, with
a perfect synchronisation between supply and demand leading to a value of 100% reduction
in deviation. On the contrary, a negative value for the indicator S reflects a deterioration of
the situation, caused by the dynamic pricing policy.

Secondly, in a similar way, the consequences for the consumer regarding its electricity bill
can be evaluated with the performance indicator B that informs about the relative evolution
of this power bill. Also expressed in %, it can be mathematically computed as follows:

B = 100
BT −BT

BT

, (6.21)

where BT =
∑T−1

t=0 ct et represents the electricity bill paid by the consumer in the absence of
a dynamic pricing mechanism. Since the performance indicator B represents the percentage
reduction in costs, it has to ideally be maximised as well.

Lastly, following the same methodology, the enhancement in terms of revenue for the
producer/retailer can be efficiently quantified thanks to the performance indicator R. This
quantity, expressed in %, represents the relative evolution of the producer/retailer’s revenue
and can be mathematically expressed as follows:

R = 100
RT −RT

RT

, (6.22)

RT =
T−1∑
t=0

[
ct et − (cFt − pFt ) λt − (ct − pt) it

]
, (6.23)

where RT represents the producer/retailer’s revenue without dynamic pricing. Following the
same trend as the two previous performance indicators, the quantity R has to be maximised.
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6.6 Conclusion

This thesis chapter presents a detailed formalisation of the decision-making problem faced
by a producer/retailer willing to adopt a dynamic pricing approach, in order to induce an
appropriate residential demand response. This is an important research work for the energy
transition because it contributes to the development of intermittent renewable energy sources,
by improving the synchronisation between their production and the power demand. Three
key challenges are highlighted by this formalisation work to eventually achieve a practical
solution. Firstly, the objective criterion to be maximised by a dynamic pricing policy is not
trivially defined, since different goals that are not really compatible can be clearly identified.
Secondly, the implementation of a performing dynamic pricing policy requires challenging
algorithmic components: different forecasting blocks but also a mathematical model of the
residential demand response to dynamic prices. Thirdly, the dynamic pricing decisions have
to be made on the basis of imperfect information, because this particular decision-making
problem is highly conditioned by the actual uncertainty about the future.

To end this thesis chapter, some avenues for future work are briefly discussed. In fact,
the natural extension of the present research is to design, implement and evaluate in practice
innovative dynamic pricing policies based on the formalisation carried out. This research
work exclusively focuses on the philosophy and conceptual analysis of the approach, which
is an essential step. Nevertheless, there remain diverse practical concerns that should be
properly addressed to achieve a successful dynamic pricing decision-making policy. To go
further, an exhaustive analysis of the scientific literature about each algorithmic component
discussed in Section 6.4 is firstly welcomed, in order to identify and intelligently reproduce the
state-of-the-art techniques within the context of interest. Secondly, different methodologies
have to be thoroughly investigated for the design of the dynamic pricing policy itself. One
can for instance mention, among others, stochastic optimisation techniques but also the
deep reinforcement learning (RL) approach. In particular, a risk-sensitive distributional
RL solution, as described in Chapter 5 could be a relevant fit. Finally, the dynamic pricing
policies designed should be rigorously evaluated, analysed and compared by taking advantage
of real-life experiments.
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Education is the most powerful weapon which you can use to change the world.
— Nelson Mandela
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Chapter 7

Conclusion

Figure 7.1: Illustration of the conclusion chapter of the thesis, created by a generative art AI [1].
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7.1 Key contributions

To summarise, the ultimate objective of the present doctoral thesis is to delve into complex
sequential decision-making problems related to markets and to design innovative algorithmic
solutions by taking advantage of advanced AI techniques. In order to accomplish this goal, a
comprehensive approach has been adopted, encompassing three distinct classes of research.
Firstly, applied research is conducted, with a primary focus on developing novel AI-driven
algorithmic solutions to tackle sequential decision-making problems encountered in energy
and stock markets. Secondly, fundamental research is undertaken in distributional RL, which
exhibits promising potential for effectively addressing the dynamics of market environments.
Lastly, sustainable research is carried out, by formalising a decision-making problem within
electricity markets, which is essential to drive the energy transition forward. In the following,
the main contributions of the thesis are summarised, with additional details being available
at the conclusion of each chapter.

The conducted applied research concentrates on three intricate sequential decision-making
problems derived from the stock and the energy markets. One primary contribution of the
thesis is the meticulous formalisation of each problem, accompanied by a comprehensive
discussion of the key assumptions involved. Another major contribution lies in the design
and elucidation of innovative AI-based algorithmic solutions aimed at effectively tackling
the studied decision-making problems. Firstly, the long-term power procurement problem
in the forward electricity markets is addressed, using a novel procurement policy relying on
DL forecasting techniques and on the new mathematical concept of procurement uniformity.
Secondly, an advanced DRL approach is presented as a promising solution to the algorithmic
trading problem of determining the optimal trading position in the stock market. Lastly, the
sequential decision-making problem associated with piloting a storage device in the intraday
energy market is also tackled with a DRL methodology. To finish with the key contributions
resulting from the applied research, the experiments and analyses conducted highlight the
main limitations of the DRL approach in the context of market environments.

The fundamental research undertaken is motivated by the recognition of the limitations
inherent in the DRL methodology when it comes to addressing decision-making problems
within market environments. More precisely, the thesis makes three primary contributions
to the distributional RL approach. Firstly, the research work introduces a novel distributional
RL algorithm that leverages a particular DL architecture, which has been demonstrated to
be a universal approximator of continuous monotonic functions. Moreover, this algorithm
presents the significant advantage of supporting the learning of three, valid, and continuous
representations of the random return distribution. Secondly, the doctoral thesis highlights
an important limitation of a probability metric (Wasserstein distance) that is employed in
several state-of-the-art distributional RL algorithms. Lastly, a novel intuitive methodology
is presented for effectively learning risk-sensitive decision-making policies. This approach is
specifically designed to be compatible with any distributional RL algorithm, and to enhance
the interpretability of the resulting policies.
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The last key contribution of the thesis is associated to the sustainable research carried out.
This contribution involves the comprehensive formalisation of an important decision-making
problem within the electricity markets in the context of the energy transition. In addition, a
thorough discussion is provided regarding the essential algorithmic components required to
effectively address this challenging problem. More precisely, the thesis investigates a dynamic
pricing approach aimed at inducing an appropriate residential demand response, which could
significantly improve the synchronisation between power consumption and the production of
electricity from intermittent renewable energy sources.

7.2 Future work

This doctoral thesis represents a valuable contribution to the ongoing important research
focused on addressing intricate real-world challenges using innovative DRL techniques. Even
though the presented findings demonstrate promising advancements, there remains ample
opportunity for further improvements. This section offers a concise summary of key concepts
that could be considered and explored as avenues for future work. Further ideas and details
may be found at the conclusion of each chapter of the dissertation.

First and foremost, a valuable undertaking would involve completing the research loop
initiated by the thesis. This manuscript provides a comprehensive exploration of complex
sequential decision-making problems related to markets. On the basis of the experiments
conducted together with the resulting analyses, the thesis identifies key challenges associated
with the application of the DRL approach in market environments. These important findings
motivate the introduction of novel techniques based on the distributional RL methodology
for addressing some of these challenges. In order to complete the research cycle, it would be
interesting to rigorously assess the benefits of these new algorithmic solutions through their
evaluation on the challenging market-related decision-making problems studied. The reason
for this omission is the author’s decision to allocate the remaining time to give the thesis a
more sustainable dimension.

Secondly, future research endeavours are strongly encouraged to combat the extremely
limited observability of market environments by augmenting the information available in the
input space. Indeed, the poor observability of these environments significantly harms the
performance of DRL algorithmic solutions. By allocating additional resources, a broader
range of data could be investigated. In addition to incorporating technical and macroeco-
nomic data, leveraging the information embedded within news holds substantial promise.
This assertion arises from the recognition that markets ultimately reflect the expectations of
market participants, which are generally influenced by or encapsulated within diverse news
sources. In that regard, a well-designed AI-driven sentiment analysis solution is anticipated
to offer valuable insights, by autonomously processing large volumes of news data.
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Thirdly, risk-sensitive RL is an interesting area of research that deserves greater attention
from the academic community. As elucidated in this thesis, effective risk management and
mitigation are imperative across various fields of application, and particularly in markets.
Consequently, there is a pressing demand for the development of more sophisticated risk-
sensitive RL algorithms, alongside the establishment of insightful benchmarks to evaluate
their performance. Furthermore, an augmentation of the theoretical foundations underlying
risk-sensitive RL would undoubtedly contribute to a better comprehension and utilisation of
these important techniques.

Fourthly, extensive research is required to alleviate a key weakness of the DRL approach:
the black-box model. While DRL techniques excel at learning performing decision-making
policies, they suffer from a severe lack of interpretability. In numerous fields of application
including market contexts, this deficiency is not acceptable since it is capital to comprehend
the decisions from a human standpoint and assess their reliability. Even though this thesis
strives to contribute positively, substantial efforts are still required to solve this problem.

Fifthly, it is essential to enhance the adaptability of DRL techniques to establish them
as a reliable solution for decision-making problems in market contexts. Indeed, the dynamic
nature of market environments, which are continuously evolving and can even undergo major
regime shifts, demands a high level of robustness. Therefore, further research is imperative
to improve the capability of DRL models to learn and adapt in real-time, effectively updating
the decision-making policies as new data progressively becomes available.

Lastly, the algorithmic solutions presented in this thesis are expected to be conveniently
improved by integrating a multitude of recent advancements in AI and, more specifically,
ML. A notable boost in performance is anticipated with more advanced DL models, such as
residual connections, CNN, LSTM and transformers, among others. Moreover, the research
community in RL has introduced various tricks and techniques to improve the original DRL
algorithms. A great example is the Rainbow algorithm, which is a compilation of diverse
enhancements to the DQN algorithm. By adopting a similar approach and considering these
various augmentations, a substantial increase in performance may potentially be achieved for
the algorithmic solutions introduced.

To end this section, it is important to acknowledge that the aforementioned exploration of
ideas for future works is not an exhaustive compilation. The research topic examined, which
involves the application of the DRL approach to real-world issues, is particularly extensive in
its scope. Consequently, there is a multitude of other opportunities for contributing to this
important research endeavour.
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7.3 Author’s closing words

In concluding the present doctoral thesis, I am filled with a profound sense of satisfaction.
The arduous journey I undertook, the countless hours of research, and the myriad challenges
that I encountered along the way have ultimately shaped me into the person I am today.
This extraordinarily fulfilling experience has been nothing short of transformative, leaving
an enduring imprint on my intellectual and personal growth. In addition to greatly expanding
my knowledge and expertise, pursuing a doctoral degree has significantly fostered resilience,
perseverance, and critical thinking, among others. Without a doubt, this background will
prove invaluable in shaping my future endeavours.

This thesis stands as the culmination of years of dedicated research. Besides the numerous
personal benefits, it is my sincere hope that the insights presented within these pages will
serve as a catalyst for further research, innovation, and transformative action. I strongly
believe that the sharing of knowledge possesses the power to bring about substantial and
meaningful change. May this research work inspire fellow researchers, ignite new avenues of
inquiry, and pave the way for breakthroughs yet to come. At the very least, I am profoundly
thankful to the readers for their interest in my research work.

As I bid farewell to this influential chapter of my professional life, I eagerly embrace the
prospects that lie ahead. Among the multitude of opportunities, I am particularly motivated
to contribute to one of the paramount challenges confronting humanity in the 21st century:
the energy transition. This aligns perfectly with my unwavering convictions to combat climate
change and strive for a more sustainable and resilient future...
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