In-depth characterization of complex molecules using GC×GC-TOFMS

<u>Kinjal Bhatt</u>^b*, Marco Beccaria ^{a,b}, Marco Pipao ^{c,d}, Yun Zou ^b, Pierre-Hugues Stefanuto ^b, Giorgia Purcaro ^e, Anna Luiza Mendes Siqueira ^f, Adrien Maniquet ^f, Marco Piparo ^{d,e}, Pierre Giusti ^{c,d}, Jean-François Focant ^b

a) University of Ferrara, Department of Chemical, Pharmaceutical, and Agricultural Sciences, Ferrara, Italy c) TotalEnergies One Tech, R&D, Downstream Processes & Polymers, Total Research and Technologies, France e) Analytical Chemistry Lab, Gembloux Agro-Bio Tech, University of Liege, Gembloux, 5030, Belgium

b) Organic and Biological Analytical Chemistry Group, University of Liege, Liege, Belgium d) International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, France f) TotalEnergies One Tech, R&D, Fuels & Lubricants, Solaize Research Center, Solaize, France

Background

- Plastic waste production is increasing at an alarming rate. •
- Pyrolysis is a promising method for plastic waste management that ulletinvolves breaking down the material's macromolecular structure into small molecules and producing various types of hydrocarbons.
- Plastic pyrolysis oil can provide monomers, fuel, and chemicals, but ulletthere are still bottlenecks limiting its industrial applications.
- An advanced molecular description is necessary to enhance the ulletconversion and valorization processes.

Figure 1:(A) FM-GC×GC-LR-EI-TOFMS chromatogram of plastic pyrolysis oil; (B–C) Expansion of the red-dotted line in Fig. 1A in the range of C₁₄ -C₂₈; B: GC×GC distribution of linear hydrocarbons (saturated, mono-, and di-unsaturated); (C) GC×GC distribution of polyolefins hydrocarbons (POH): saturated (POSH), mono- (POMH) and di-unsaturated (PODH) (D) Expansion of the black-dotted line in Fig. 1A in the range of C_{21} - C_{23} ; chemical class separation according to the carbon group.

similar MS fragmentation patterns with EI, even if lower kinetic energies than 70 eV is applied, making their identification a difficult task.

- The use of LRI as an additional identification filter can help to rule in/out compound identities during the identification process, but not always this information is available, nor when a most common non-polar column is used as a ¹D column.
- With the increasing number of carbons, the number of isomers grows exponentially.

Chemical structure prediction by PTV-GC×GC-EI/PI-HRTOFMS (A) (B) mono-olefins n-alkanes di-olefins **GC×GC-PI-HRTOFMS - POHs characterization** C17 **C16 C15 C14 C13** Figure 2: (A) GC×GC-PI-HRTOFMS investigation of carbon range of C12–C18. (B) On the right: zoom of the C_{12} group, where each color number corresponds to saturated

(yellow), mono-unsaturated (blue), or di-unsaturated (red) hydrocarbons (C) same chemical classes for the C_{12} group in the carbon range of C_{12} – C_{18} . Peak 1–13 (black/bold): PI-MS spectra and pattern fragmentations of the analytes numbered in the C12 group

Figure 3: GC×GC-PI-HRTOFMS of C24–C25 POHs eluted between the C18–C20 linear hydrocarbon groups.

some olefin structures were predicted but not accurately identified, prediction was based on the relative intensity of fragment ions

Conclusion

- Identification of main chemical classes was performed by GC×GC-EI-TOFMS, but presence of several isomeric species and homologs series didn't allow reliable molecular identification, except for few compounds that showed both MS% > 800 & LRI ±20. The identification of several isomers was conducted by the interpretation of PI mass spectra from GC×GC-HRTOFMS, leading to •
 - a putative identification of molecules not previously identified using the most common EI-MS approach.
- The structured chromatographic separation provided a sort of chemical fingerprint composed of different chemical classes from which different levels of information can be extrapolated^[1].

Reference: [1] Beccaria, Marco, et al. "Analysis of Kinjal Bhatt mixed plastic pyrolysis oil by comprehensive twodimensional gas chromatography coupled with kinjal.bhatt@uliege.be low-and high-resolution time-of-flight mass ikinjalbhatt@gmail.com spectrometry with the support of soft ionization." Talanta 252 (2023): 123799.

