
Chapter 17 
A Framework to Probe Uncertainties 
in Urban Cellular Automata Modelling 
Using a Novel Framework of Multilevel 
Density Approach: A Case Study 
for Wallonia Region, Belgium 
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Abstract Urban expansion models are widely used to understand, analyze and 
predict any peculiar scenario based on input probabilities. Modelling and uncer-
tainty are concomitant, and can occur due to reasons ranging from–discrepancies in 
input variables, unpredictable model parameters, spatio-temporal variability between 
observations, or malfunction in linking model variables under two different spatio-
temporal scenarios. However, uncertainties often occur because of the interplay of 
model elements, structures, and the quality of data sources employed; as input param-
eters influence the behavior of cellular automaton (CA) models. Our study aims 
to address these uncertainties. While most studies consider neighborhood effects, 
timestep and spatial resolution, our study uniquely focuses on the susceptibility of 
multi density classes and varying cell size on uncertainty. Hence this chapter offers 
a theoretical elucidation of the concepts, sources, and strategies for managing uncer-
tainty under various criteria as well as an algorithm for enumerating the model’s 
accuracy for Wallonia, Belgium. 
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17.1 Introduction 

Over the last few decades, pressures on land availability brought on by urbanization 
has become a central issue, particularly for developing countries. The enormous land 
requirement to serve a rapidly expanding urban population has presented significant 
impediments to economic prosperity, social inclusion, and environmental protection 
(Angel et al. 2021; Jiang et al. 2022). Various modelling methods have been devel-
oped in recent years to handle various urban challenges which differ in approach 
and underlying principles (Li and Gong 2016). For example, several statistical and 
geospatial urban models have been designed to analyze the relationship between 
driving forces and urban land change, and predict its future development, including 
Agent-based models (ABM) (Zhang et al. 2010), logistic regression (Mustafa et al. 
2018a), cellular automata (Almeida et al. 2003; García et al. 2013), and Conversion 
of Land use and its effects (CLUE) model (Verburg et al. 2014). Urban planners 
and decision-makers can better comprehend the environmental and socioeconomic 
elements that encourage urbanization trends thanks to the application of these urban 
development models (Batisani and Yarnal 2009). 

In general, CA is viewed as a bottom-up urban model from which emergent 
patterns of land use change are produced from ‘simple’ transition rules, which is 
in line with the core principles of complexity science; the interactions of simple 
subsystems lead to the formation of complex systems (Lu et al. 2019). Uncertainty 
can be measured through probability distribution and involves risks. Uncertainty 
with a known events of possible outcomes and quantifiable probability involves risk 
which are known as objective risks while the one whose outcomes are purely reliant 
on human judgements are known as subjective risk (Loucks et al. 2005). Model’s 
uncertainty can be a causative effect of various type of errors. The error can occur due 
to model parameters or input variables. Vardoulakis et al. (2002) has used different 
dispersion model as he suggests that it is impossible to assess the uncertainty of a 
model based on discrete values of input variables. On the other hand, Gar-On and Li 
(n.d.) in their work have experimented with errors in acquiring and applying GIS data 
sources that are used as a input variables while simulating numerous CA models, 
thus helping to achieve realistic and accurate results. 

Urban CA models, like any other urban models, are subject to numerous sources 
of uncertainty which are difficult to disentangle. Uncertainty might be viewed as a 
measure of how much we distrust the concepts and abstractions we use to represent the 
real world. An archetypal urban CA model is made up of four parts: transition rules, 
neighborhood configuration, simulation time (time step), and stochastic perturbation 
(Yeh and Li 2006). Due to the complex characteristics among each component, 
urban CA results may be sensitive to variations in parameter settings and adopted 
approaches (García et al. 2011; Li et al.  2014). These inaccuracies will spread during 
CA simulation and have an impact on the results of the simulation. In order to 
do this, the effects of source errors and error propagation on simulation outcomes 
must be assessed. While, Uncertainty is crucial because it enhances the model’s 
accuracy and account the variability in inputs, and allows folding up the uncertainty
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of input into the set ofoutput values (Sensitivity and Uncertainty–Center for Systems 
Reliability 2022). Conversely, sensitivity analysis examines the model’s resilience, 
and evaluates the influence of a model’s assumptions, thus concluding that inputs with 
greater impact on output sensitivity provide the effect of interactions between input 
components. Hence, uncertainty analysis seeks to quantify the ambiguity in a model’s 
result. The purpose of sensitivity analysis is to determine how variation in input values 
corresponds to variance in output measurements. It is done by altering one or more 
input variables, and measuring the effect on output measurements (Sensitivity and 
Uncertainty–Center for Systems Reliability 2022). 

The simplicity with which CA models may currently be integrated and 
programmed in raster-based geographic information system (GIS) systems (Kocabas 
and Dragicevic 2006), as well as with other methodologies like agent-based or multi-
criteria assessment (Batty 2016; Wu  2016), is one reason why they are receiving 
more and more focus. Simple rules can be used in CA models to produce compli-
cated patterns (Wolfram 2002). By configuring fundamental CA model components 
including cell states, cell size, neighborhood size and type, transition rules, and 
temporal increments, it is feasible to properly reflect spatial complexity and the 
dynamics of urban development change (Torrens and O’Sullivan 2022; White and 
Engelen 2000; Yen and Li 2016). Among these, spatial extent is frequently linked to a 
specific research case, preventing it from having the universal property of spatial scale 
sensitivity during CA-based land use change simulation. There haven’t been enough 
studies to date that have carried out a systematic investigation of the consequences 
of changing the CA model design’s constituent parts during the calibration process 
(Wu et al. 2019). While most papers deal with several kind of model-based or input-
oriented uncertainties and their sensitivity towards cellular automata modelling, we 
have attempted to present in our work a theoretical prototype of evaluation taking into 
consideration a multi-level density approach. It involves changing input variables and 
observing their error propagation, but under different urban built-up density classes, 
thus helping the original data to remain untouched and resulting in realistic model 
simulation outputs. 

In the remainder of the paper, we provide background information on various 
types of uncertainty analysis based on cell size, transition rules and density classes. 
In Sect. 17.3, we explain the methodology for analyzing uncertainty based on urban 
CA models in a univariate method and how it can be implemented for Wallonia region, 
Belgium. Subsequently, in Sect. 17.4 we present results and discuss the influence of 
cell size, transition rules and density class on the model output. In Sect. 17.5, we  
conclude by providing a list of future tasks that can be implemented in order to 
investigate sensitivity and uncertainty analysis using urban CA model.
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17.2 Background 

When applied to real cities, urban CA models are prone to errors and uncertainty. 
Uncertainty in geospatial data might be unavoidable when developing a realistic 
simulation. However, differing combinations of neighborhood size, type, and spatial 
resolution can have an impact on simulation outcomes. By perturbing spatial variables 
and analyzing the error terms in the simulation results, one may easily scrutinize error 
propagation in urban simulation. The variability in the model output is quantified 
by uncertainty analysis (UA), and the distribution of this uncertainty across the 
model input factors is examined by sensitivity analysis (SA) (Crosetto and Tarantola 
2010; Saltelli et al. 1999). Sensitivity analysis examines the link between input and 
output information in a model and pinpoints the sources of variation that affect 
model outputs. Uncertainty can come from a variety of sources, including errors 
and approximations in the measurement of the input data, parameter values, model 
structure, and model solution techniques. Input errors and model flaws both spread 
during the simulation process in CA simulation. 

While prior research has offered an examination of CA model behavior in relation 
to modifying the model components, several recent studies have focused on the topic 
of errors and uncertainties associated with CA models. Variations in cell size, transi-
tion rule, and multi-level density classes have been explored in the current literature. 
In order to examine how uncertainty affects simulation outcomes for the Ourthe River 
basin in Wallonia, Belgium, Mustafa et al. (2014) employed a stochastic component. 
This component addressed how randomness propagates in urban growth models. 
The model was validated using cell-to-cell allocation and validated using landscape 
matrices. The findings showed that as stochastic perturbation size grows, the accu-
racy of the model declines, starting with extremely tiny perturbations. Feng and 
Liu (2013) introduced a unique geographic-based CA model that incorporates sensi-
tivity analysis techniques to optimize transition rules that were first constructed using 
logistic regression. Menard and Marceau also explored how spatial scale affected the 
results of the CA model in relation to the spatial resolution and a typical CA neigh-
borhood layout. They expanded on their study even further and introduced VecGCA 
(Moreno et al. 2008), a new object-based geographical cellular automata model. This 
model was a versatile and effective tool for simulating changes in land use and cover 
as well as other spatiotemporal occurrences that suggested object geometry alter-
ations. VecGCA ensured a more accurate portrayal of geographic space (as well as 
growth of the items constituting it) by being independent of cell size, neighborhood 
arrangement, and landscape configuration by incorporating a dynamic neighborhood.
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17.2.1 Approaches in Evaluating Uncertainty Based on Scale 
Effects: A Multiscale Approach 

Scale may be understood as a continuum across which things, patterns, and processes 
can be seen and connected (Marceau 2014). In relative space, scale is a variable 
that is inextricably tied to the spatial entities, patterns, forms, as well as functions, 
processes, and rates under consideration. In absolute space, scale refers to a practical, 
standard system used to divide geographical space into an operational spatial unit 
(Samat 2006). Marceau (2014), on the other hand, provides a concept of scale that is 
generally accepted when discussing urban CA models and relates it to the absolute 
and relative depiction of space. 

The scale problem has been addressed using a variety of methods. It runs the 
gamut of from straightforward scale analysis methods like geographic variance, local 
variation, and texture analysis, to more intricate methods like semi-variograms and 
fractals (Chen and Henebry 2009; García-Álvarez et al. 2019a, b; Young et al. 2021; 
Zhang et al. 2019). According to earlier research by Kok and Veldkamp (2001) on  
the impact of modifying scale in a LUCC model for Central America, increasing the 
resolution from 15*15 km to 75*75 km enhanced the model’s explanatory power 
(r2) but had no discernible impact on the explanatory factors. In their study of the 
behavior of several urban development rules at various cell sizes in the well-known 
SLEUTH (Clarke 2008) model, Jantz and Goetz (2007) came to the conclusion that 
the resolution of the cells had a significant role in the performance of the model, 
and that some urban growth rules produced significantly greater growth at coarser 
resolutions than at finer ones. Although their results are highly unique to the SLEUTH 
model, the conclusion is that neighborhood effects for urban land, which are essential 
to all CA models, may vary non-linearly across scales. 

17.2.2 Scenario Description and Impacts of Uncertainty 
on Transition Rules 

Transition rules in CA model are essentially designed such that a cell’s future state 
depends on both its current state and the state of its surroundings (Liu 2008; Stevens 
et al. 2007; Ward et al.  2003). In order to characterize land-use transition potential 
of a cell, many driving mechanisms for urban landuse change have been discov-
ered, mapped, and implemented in GIS (Liu et al. 2008; Wu  2010). These driving 
forces or factors may be divided into three major groups of variables: socioeconomic, 
geophysical, and accessibility and have been listed in Table 17.1 (Chakraborty et al. 
2022; Mustafa et al. 2018a, b, c).

Many transition rules, including those based on Markov chains (Kamusoko et al. 
2009), neural networks (Li and Yeh 2010b), genetic algorithms (Shan et al. 2008), 
ant colony optimization (Liu et al. 2010), cuckoo search algorithms (Cao et al. 2015), 
particle swarm optimization (Feng et al. 2018), and data mining (Li and Yeh 2010a),
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have been developed based on various intrinsic principles of land use conversion. 
Although a CA-Markov only models land use changes using a constant time step 
(Pontius and Malanson 2007), one significant advantage is that it simultaneously 
predicts the trajectory of land use change among various categorical states (Li et al. 
2016). It also simulates spatio-temporal dynamic changes (Jenerette and Wu 2001)

Table 17.1 Varied metrics of senstivity analysis used in the past 

S.No Publication Metric Aspect Study area KEY strength 

1 Jantz and 
Goetz (2007) 

Scale 
Sensitivity 

Scale Washington, 
DC–Baltimore 

Scale as an 
integral issue 
during each 
phase of a 
modelling effort 

2 Kocabas and 
Dragicevic 
(2006) 

Neighborhood 
sensitivity 

Neighborhood San Diego 
region, USA 

Exploratory 
method of 
sensitivity 
analysis that can 
be used in a 
gen-eral context 
to examine and 
assess CA model 
errors and 
uncertainties 

3 Feng and Liu 
(2013) 

Transition 
sensitivity 

Transition rules Shanghai, China Model the 
multiple land-use 
changes and 
spatial ecological 
processes using 
SA optimisation 
algorithm 

4 Ménard and 
Marceau 
(2016) 

Scale 
sensitivity 

Scale Maskoutains 
region (Quebec, 
Canada) 

Finer exploration 
of cell size 
sensitivity by 
using a stochastic 
geographic 
cellular automata 
(GCA) model 

5 Moreno et al. 
(2008) 

Neighborhood 
sensitivity 

Neighborhood Quebec, Canada Size sensitivity 
by allowing the 
representation of 
space as a 
collec-tion of 
geographic 
objects by 
im-plementing a 
novel 
VectorGCA

(continued)
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Table 17.1 (continued)

S.No Publication Metric Aspect Study area KEY strength

6 Samat (2006) Scale 
sensitivity 

Scale Seberang Perai 
region, Penang 
State, Malaysia 

GIS based CA 
model using 
multi-criteria 
evaluation 
(MCE) suitability 
index map 

7 Ward et al. 
(2003) 

Transition 
sensitivity 

Transition rules Queensland, 
Australia 

Address strategic 
planning and 
management 
issues by 
integrating 
regional and local 
scale models 

8 Wu (2010) Transition 
sensitivity 

Transition rules Guangzhou, 
South China 

Stochastic CA 
model for 
rural–urban land 
conversion using 
Monte Carlo 
process

that attempt to improve the simulation accuracy as much as possible. Mustafa et al. 
(2021) forecasted future land use changes in New York City by introducing a multi-
objective Markov Chain Monte Carlo (MO-MCMC) that considered multiple allo-
cation objectives. They concluded that the model can bring analytical and simula-
tion approaches into the planning process, and simulate trade-offs between different 
LULC visions. 

17.3 Materials and Methods 

17.3.1 Study Area 

Wallonia, located in the southern part of Belgium, accounts for 55% of total area 
of the country with a coverage of 16,844 km2 (Mustafa et al. 2018a), as shown 
in Fig. 17.1. It predominantly consists of the French speaking area and is mostly 
characterized by peri-urban areas. Despite its large areal extent, Wallonia comprises 
of only one third of the total Belgian population. The important urban centers of 
Wallonia are Liege, Mons, Namur, and Charleroi. The urban density of the region 
has a peculiar pattern of sparse settlements in most of the outskirts with populated 
inhabitants mostly in the metropolitan centers (Li et al. 2015).

This area mostly stretches from Eastern part (e.g., Liege) along the industrial 
zones to the west in Mons. Wallonia, with its urban development design, makes it
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Fig. 17.1 Wallonia region (southern Belgium) with population grid per sq.km

useful for studying dispersed urbanization patterns. It is also an area that has been 
less researched in the CA urban growth literature. Hence this region was selected for 
modelling urban densification, along with its associated uncertainties. 

17.3.2 Conceptual Framework 

In Fig. 17.2, we show our conceptual method which includes our diverse datasets and 
modelling structures. This includes our previous study that used a novel approach. 
In this work (Mustafa et al. 2018b), a temporal Monte Carlo method (TMC) was 
proposed to study the uncertainty over time for Liege, Wallonia, with a study being 
conducted between year 1990 and 2010 for a short term simulation This is different 
from other models that use randomness in order to study uncertainity. Further, this 
model was subsequently extended for a longer term till year 2100.

Our literature study showed that the basic necessities for a standard CA model 
involved implementing neighborhood effect, transition rules and cell size for simu-
lating development in future. García-Álvarezet al. (2019a, b) and Gar-On Yeh usually 
concentrate on technical uncertainty, which takes into account usual errors related to 
spatial scale or raster data classification. While it is evident from literature that uncer-
tainty can be due to input variables, it is important to note that driving factors are 
also crucial. A range of socioeconomic, physical, accessibility and environmental 
variables have been considered, which when calibrated using a logit model, can
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Fig. 17.2 Conceptual methodological framework for uncertainty analysis. Source partly adapted 
from (Loucks et al. 2005)

help provide better validation. Therefore, while most studies have the tendency of 
following a traditional input-based or model-based study, it is imperative to consider 
uncertainties of spatial allocation as well (Mustafa et al. 2018b). 

By observing the land use pattern at time t and time t + 1, the calibration process 
aims to derive the coefficients or parameter values for CA transition rules. Using a 
multinomial logistic model, the likelihood of development may be determined when 
there are numerous factors. The probability is calculated by comparing land use 
changes in CA over a longer time period than one cycle. The estimated transition 
probability of a randomly chosen cell is compared with a uniform random number 
within a dynamic range at each time-step. The methodologies of Wu et al. as well 
as Mustafa et al. (2018a), were used to determine the transition probabilities (2002). 
Mathematically, the transition probability P for cell i at time-step t can be calculated 
as follows: 

Pi t = (
Pid

) × (
Pin

)t × con(.) 

where
(
Pi t

)
is the urbanization probability based on driving forces, (Pin)t is the 

neighborhood interaction, and con(.) Is restrictive constant for land use change. 
Hence, as a part of our previous research, we attempted to carry out the study on a 

vector based Cadastral data which was further converted into raster format at a scale 
of 100*100 m representing different density classes for urban built up development. 
Since most of the uncertainty studies on CA model involves urban expansion as their 
phenomenon, It is crucial to take into account the uncertainty that occurs as a result
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of change in density classes of different combinations across time and space. This is 
the main objective for our hypothesis. 

17.4 Observation and Assessments 

In this section, we highlight the different strategies that have been suggested till 
now, with ultimate goal for dealing with uncertainty analysis using CA. The purpose 
of CA models is to truly portray urban and land-use patterns by reflecting their 
changes over time. Considering that complexity is a state between order and chaos, 
and that creating complexity necessitates the introduction of the proper amount of 
randomness in the models, it becomes vital to assess the best strategy for doing so. 
Different strategies are consequently required for a thorough analysis of uncertainty 
because there is no single method that can analyze all sorts of uncertainty. For this 
reason, the paper explored the uncertainty analysis in a multivariate approach. 

Comparing the model’s predictions to actual data in order to determine its level 
of uncertainty is the process of validating a cellular automata (CA) model of urban 
expansion. This might involve contrasting the simulated urban land-use patterns, 
population density, and other spatial aspects of the city with actual data in the context 
of urban growth modelling. Comparing the simulated land-use patterns to satellite 
imagery or other remote sensing data is a typical method for evaluating a CA model 
of urban expansion (Chaudhuri and Clarke 2014) This may be done by visualizing 
a comparison between the satellite picture and the generated land-use map. Another 
strategy is to contrast crucial model statistics with actual data, such as the percentage 
of urban land. 

Comparing the model’s predictions against those of other models or data sources 
is another method of model validation. An official census or other sources of demo-
graphic information can be used to compare the model’s estimates of population 
density, for instance. The model’s performance may also be evaluated in relation to 
other urban growth models that employ other techniques or premises. By repeatedly 
running the model with various initial conditions or parameter values and comparing 
the outcomes, the degree of uncertainty may be assessed. This can assist pinpoint 
the model’s sources of uncertainty and show how sensitive the model is to changes 
in the inputs. 

Although transition rules and transition probability are essential to CA modelling, 
CA models are also influenced by neighborhood configuration and scaling behavior, 
as well as scaling behaviors of transition probability (Dahal and Chow 2015; Feng 
and Tong 2018). As a result, even though transition rules and transition probability 
are crucial to CA modelling, they are not the only factors that have an impact on 
simulation results (Gao et al. 2020). However, there is a relationship between model 
performance and the amount of change across the simulation time. As discussed 
previously, typical CA models include a variety of intrinsic model uncertainties that 
are connected to the neighborhood, cell size, computation time, transition rules, and 
model parameters (Gar-On Yeh and Li n.d.).
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Fig. 17.3 The hits, misses, false alarms during the validation time interval for Liege metropolitan

When applied to a local context, such as Wallonia, Mustafa et al.(2018b) proposed 
a Time Monte Carlo (TMC) method to introduce randomness in land use change 
models with the aim of modelling spatial allocation uncertainty. By analysing (a) 
the hits (H) which indicate that the areas of expansion on the observed map were 
simulated as expansion, it evaluated the allocation performance; (b) misses (M) 
that indicate that the areas of expansion on the observed map were simulated as no 
changes; (c) false alarms (FA), indicating that the no-changes in the observed map 
were simulated as expansion; and (d) correct rejections (CR), indicating that the 
areas of no-change in the observed map were simulated correctly (Fig. 17.3). 

Mustafa et al. (2018b) further transformed the transition probability of each cell 
by comparing it with the largest available probability at each time-step, following 
Wu’s (2010) study. Mathematically it can be written as: 

Pi
′t = Pi t exp

[
δ(1 − Pi t /max

(
Pt

)]

where Pi
′t is the updated transition probability for cell i at time-step t, Pi t is the 

original probability, δ is a dispersion term, and max(Pt ) finds the maximum transition 
probability at time-step t. The dispersion term in a cellular automata (CA) simulation 
is used to measure the degree of variation or spread in the density of the system at 
different levels. The density of a CA system refers to the number of active or “on” 
cells at a given time, and the dispersion term is used to measure how this density 
varies across different spatial scales or levels. This information can then be used 
to influence the behavior of the simulation, for example by adjusting the rules for
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Fig. 17.4 2030 and 2100 
simulations for different 
configurations for Liege 
metropolitan
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cell activation or interaction based on the observed density variations. The skewed 
probability curve’s form is controlled by the dispersion parameter. 

To further investigate the model’s performance, different values of δ have been 
used to generate future urban patterns for 2030 and 2100 (Fig. 17.4). At early time-
steps (like 2030), the proposed TMC model generates simulations that are comparable 
to the outcomes from deterministic models, with minor changes. However, the model 
generates results different from a deterministic-equation based simulation model as 
it predicts further into the future. 

17.5 Conclusion 

In this study, we demonstrate the uncertainty with regards to CA model for analyzing 
urban complexities. This uncertainty is mostly a result of different cell size, neigh-
borhood dynamics and transition rules. Which is why the uncertainty can be model 
input-based or model parameter based. Because our work involves urban densifica-
tion, it is crucial to understand the effect of density classes on uncertainty. Hence, 
we proposed a theoretical framework explaining the establishment of uncertainty in 
models through past works carried out for Liege. We employed the TMC model to 
evaluate uncertainty, and forecasted urban development for 2030 and 2100. In our 
future research, we will extend the current study that shows uncertainty resulting 
from applying a CA model based on multi-level urban density to a larger area. 
Further, as a part of our future work, we intended to apply the model uncertainty 
for simulating residential densification. Finally, a simplified CA-MCMC (Cellular 
Automata Monte Carlo) simulation could be used for other parts of Belgium, for 
example the Brussels capital region, and Flemish and Wallon Brabant. Also, unlike 
the usual variables that are commonly used for such studies (e.g., cell neighborhood 
and cell size), novel variables like cell density was applied in our study. Thus, going 
forward this research framework will facilitate in adding a different dimension to 
uncertainty studies in urban modeling, specifically in studying densification while 
achieving valid simulation results. 

Funding: This research was funded by the INTER program and co-funded by the Fond National de 
la Recherche, Luxembourg (FNR) and the Fund for Scientific Research-FNRS, Belgium (F.R.S— 
FNRS), T.0233.20,—‘Sustainable Residential Densification’ project (SusDens, 2020–2023). 
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