Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
0000000	000000000000	0000000	0000

Intelligent Transportation Systems: Application, Challenges and Perspectives

Nourhan Bachir

Data Analysis and GIS for Impact, Economics and Business (DAGEIB) Laboratory

July 21, 2022

Nourhan Bachir

Intelligent Transportation Systems: Application, Challenges and Perspectives

(日) (四) (三) (三)

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
0000000	00000000000	000000	0000

1 Vehicular Ad Hoc Networks

2 Literature Review

- 3 Data Sets
- **4** References

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

Nourhan Bachir

Intelligent Transportation Systems: Application, Challenges and Perspectives

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
Road-man Review			

Section 0

Nourhan Bachir Intelligent Transportation Systems: Application, Challenges and Perspectives DAGEIB, Lebanon

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

3 / 36

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
Road-map			

≣। ≣ •ी९(DAGEIB, Lebanon

▲□▶ ▲圖▶ ▲≧▶ ▲≧▶

Intelligent Transportation Systems: Application, Challenges and Perspectives

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
•000000	00000000000	000000	0000

1 Vehicular Ad Hoc Networks

- **2** Literature Review
- **3** Data Sets
- **4** References

<ロト < 母 ト < 臣 ト < 臣 ト 三 の < ○</p>

Nourhan Bachir

Intelligent Transportation Systems: Application, Challenges and Perspectives

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
0000000			
Vehicular Ad Hoc Network	s in ITS		

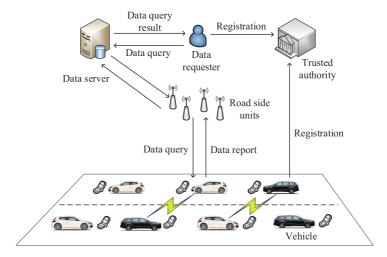
Section 1

Vehicular Ad Hoc Networks

Nourhan Bachir Intelligent Transportation Systems: Application, Challenges and Perspectives ▲ロト ▲圖ト ▲国ト ▲国ト

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
0000000			
Vehicular Ad Hoc Network	s in ITS		

Section 1


Vehicular Ad Hoc Networks

- What is VANET?
- Characteristics of VANETs
- Challenges of VANETs
- Data Collection in VANETs
- VANET Architecture
- VANET Simulators

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
0000000			
What is VANET?			

Vehicular Ad hoc Network (VANET) is a promising module of ITS. It's an emerging sub-class of Mobile Ad hoc Network (MANET) where vehicles act as mobile nodes. [GZ11]

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
000000			
What is VANET?			

Vehicular Ad hoc Network (VANET) is a promising module of ITS. It's an emerging sub-class of Mobile Ad hoc Network (MANET) where vehicles act as mobile nodes. [GZ11]

・ロト ・ 聞 ト ・ ヨト ・ ヨ

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
0000000			
Characteristics of VANETs			

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
0000000			
Characteristics of VANETs			

• higher node density,

Nourhan Bachir Intelligent Transportation Systems: Application, Challenges and Perspectives

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
0000000			
Characteristics of VANETs			

- higher node density,
- instability of wireless channel and limited bandwidth,

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
000000			
Characteristics of VANETs			

- higher node density,
- instability of wireless channel and limited bandwidth,
- predictability of vehicular pathway,

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
0000000			
Characteristics of VANETs			

- higher node density,
- instability of wireless channel and limited bandwidth,
- predictability of vehicular pathway,
- highly dynamic network topology that changes quickly and repeatedly,

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
000000			
Characteristics of VANETs			

- higher node density,
- instability of wireless channel and limited bandwidth,
- predictability of vehicular pathway,
- · highly dynamic network topology that changes quickly and repeatedly,
- sufficient energy and resources, and

8 / 36

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
000000			
Characteristics of VANETs			

- higher node density,
- instability of wireless channel and limited bandwidth,
- predictability of vehicular pathway,
- · highly dynamic network topology that changes quickly and repeatedly,
- sufficient energy and resources, and
- hard delay constraints. [PN19]

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
0000000			
Challenges of VANETs			

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
0000000			
Challenges of VANETs			

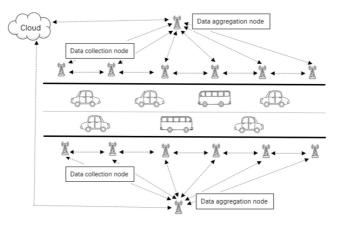
• most VANET applications are designed with real-time requirements; **timeliness** of data is very important.

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
0000000			
Challenges of VANETs			

- most VANET applications are designed with real-time requirements; timeliness of data is very important.
- communications in the VANET are affected by traffic conditions; data collection methods should be **consistent** with traffic conditions.

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
0000000			
Challenges of VANETs			


- most VANET applications are designed with real-time requirements; timeliness of data is very important.
- communications in the VANET are affected by traffic conditions; data collection methods should be **consistent** with traffic conditions.
- amount of data to be transmitted by the vehicle could be huge; data collection method should consider the network communication **overhead**.

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
00000000			
Data Collection in VANETs			

An efficient method for data collection must consider different parameters: data aggregation, latency, packet delivery ratio, packet loss, scalability, security, transmission overhead, and vehicle density as the performance parameters. [PN19]

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
00000000			
D. C.I INAMET			

Data Collection in VANETs

An efficient method for data collection must consider different parameters: data aggregation, latency, packet delivery ratio, packet loss, scalability, security, transmission overhead, and vehicle density as the performance parameters. [PN19]

(日) (四) (三) (三)

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
00000000			
VANET Architecture			

Nourhan Bachir Intelligent Transportation Systems: Application, Challenges and Perspectives ◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽ へ ⊙ > ()

Vehicular Ad Hoc Networks 000000●0	Literature Review	Data Sets 0000000	References 0000
VANET Architecture			
	Trusted authority	Internet	
Road sid	del 🔶 🌾 🕠		
	2.00 2.00		
50	8 6 8 8	0 0	

/ Con-board Application unit unit

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
0000000			
VANET Simulators			

Nourhan Bachir Intelligent Transportation Systems: Application, Challenges and Perspectives ◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽ へ ⊙ > ()

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
0000000			
VANET Simulators			

• Deploying and testing VANETs involves high cost and intensive labor.

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
0000000			
VANET Simulators			
			,

- Deploying and testing VANETs involves high cost and intensive labor.
- Simulations of VANET involve large and heterogeneous scenarios which is why some specific characteristics found in a vehicular environment must be accounted.

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
0000000			
VANET Simulators			

- Deploying and testing VANETs involves high cost and intensive labor.
- Simulations of VANET involve large and heterogeneous scenarios which is why some specific characteristics found in a vehicular environment must be accounted.
- VANET simulators provide both traffic flow simulation and network simulation.

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
0000000			
VANET Simulators			

- Deploying and testing VANETs involves high cost and intensive labor.
- Simulations of VANET involve large and heterogeneous scenarios which is why some specific characteristics found in a vehicular environment must be accounted.
- VANET simulators provide both traffic flow simulation and network simulation.

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
0000000			
VANET Simulators			

- Deploying and testing VANETs involves high cost and intensive labor.
- Simulations of VANET involve large and heterogeneous scenarios which is why some specific characteristics found in a vehicular environment must be accounted.
- VANET simulators provide both traffic flow simulation and network simulation.

Category	Tool	Release ¹
	TraNS [26]	2007
Integrated framework	MobiREAL [19]	2006
	Veins [28]	2006
	NCTUns [31]	2007
Network Simulator	ns-3 [14]	2008
	OMNET++ [30]	2006
	GrooveNet [20]	2006
	SUMO [4]	2006
Mability Conservotor	VanetMobiSim [13]	2006
Mobility Generator	MOVE [15]	2007
	CityMob [21]	2008
Scenario Generator	VERGILIUS [10]	2010

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
0000000			
VANET Simulators			

- Deploying and testing VANETs involves high cost and intensive labor.
- Simulations of VANET involve large and heterogeneous scenarios which is why some specific characteristics found in a vehicular environment must be accounted.
- VANET simulators provide both traffic flow simulation and network simulation.

Category	Tool	Release ¹	TIGER Reader
	TraNS [26]	2007	Map Description
Integrated framework	MobiREAL [19]	2006	
	Veins [28]	2006	Scenario Generator
	NCTUns [31]	2007	Traffic Pattern
Network Simulator	ns-3 [14]	2008	Mobility Simulator
	OMNET++ [30]	2006	
	GrooveNet [20]	2006	Mobility Trace
	SUMO [4]	2006	
Mobility Generator	VanetMobiSim [13]	2006	Trace Network
	MOVE [15]	2007	Analyzer Simulator
	CityMob [21]	2008	
Scenario Generator	VERGILIUS [10]	2010	Mobility Performance Metrics Metrics

Vehicular Ad Hoc Network	s Literature Review	Data Sets	References
0000000	• 0 0000000000	000000	0000

1 Vehicular Ad Hoc Networks

2 Literature Review

VANET in ITS Big Data Analytics in ITS

3 Data Sets

A References

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

Nourhan Bachir

Intelligent Transportation Systems: Application, Challenges and Perspectives

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
	00000000000		
Literature Review			

Section 2

Literature Review

Nourhan Bachir

Intelligent Transportation Systems: Application, Challenges and Perspectives

≣। ≣ ୬९୯ DAGEIB, Lebanon

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

14 / 36

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
	00000000000		
Literature Review			

Section 2

Literature Review

- VANET in ITS
- Big Data Analytics in ITS

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
0000000	00 00000 00000	0000000	0000

1 Vehicular Ad Hoc Networks

2 Literature Review VANET in ITS

Big Data Analytics in ITS

3 Data Sets

4 References

Nourhan Bachir

Intelligent Transportation Systems: Application, Challenges and Perspectives

Vehicular	Ad	Hoc	Networks	

Literature Review

Data Sets

References

Towards efficient data collection mechanisms in the vehicular ad hoc networks [PN19]

Nourhan Bachir Intelligent Transportation Systems: Application, Challenges and Perspectives DAGEIB, Lebanon

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
	00000000000		
Towards efficient data collection	mechanisms in the vehicular	r ad hoc networks [PN]	19]

• Survey data collection techniques in VANETs and evaluate them using some parameters they define.

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
	00000000000		
Towards efficient data collection	mechanisms in the vehicular	r ad hoc networks [PN]	19]

- Survey data collection techniques in VANETs and evaluate them using some parameters they define.
- Divided the techniques into 4 categories: topology-based, cluster-based, geocast-based, and fog-based and reviewed the performance of each technique.

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
	00000000000		
Towards efficient data collection	mechanisms in the vehicular	r ad hoc networks [PN]	19]

- Survey data collection techniques in VANETs and evaluate them using some parameters they define.
- Divided the techniques into 4 categories: topology-based, cluster-based, geocast-based, and fog-based and reviewed the performance of each technique.

Vehicular J	Ad	Hoc	Networks	
0000000				

Data Sets

Towards efficient data collection mechanisms in the vehicular ad hoc networks [PN19]

- Survey data collection techniques in VANETs and evaluate them using some parameters they define.
- Divided the techniques into 4 categories: topology-based, cluster-based, geocast-based, and fog-based and reviewed the performance of each technique.

Category	Author Name	Data Aggregation	Latency	Packet Delivery Ratio (PDR)	Packet Loss	Scalability	Security	Transmission Overhead	Vehicle Density
Topology- based	Pacheco-Paramo et al ⁸⁴	x	~	1	x	1	x	1	1
	Drira et al ⁸¹ Jiao et al ⁸²	√ x	√ X	X √	X √	x √	X J	√ x	X J
	Qin et al ⁸³ Turcanu et al ¹⁶	X	1	1	√ ×	1	x	X	1
	Malik and Pandey ⁸⁰ He and Zhang ²⁰	x x	1	↓ ↓	x x	x √	√ x	x x	x √
Cluster-based	Liu et al ⁸⁷ Bouali et al ⁸⁶ d'Orey et al ⁸⁵ Brik et al ¹¹ Brik et al ⁶⁴	√ X √ √	X X V X	X X X √	× × × √	5 5 5 5 5	√ √ × × ×	√ X √ √	√ √ × √ √
Geocast-based	Lee et al ⁸⁸ Delot et al ⁸⁹ Zarmehri and Aguiar ⁹⁰	x x x	× × √	\$ \$ \$	x x x	X √ √	x x x	√ X √	√ × √
Fog-based	Lai et al ⁹¹ Lai et al ⁹²	x x	\$ \$	x x	x x	J J	x x	J J	1 1

TABLE 9 An overview of the discussed data collection mechanisms and their comparison based on main metrics

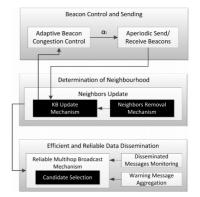
<ロト < 回 ト < 巨 ト < 巨 ト 三 三 の Q G

Literature Review

Data Sets

References

Reliable Data Dissemination Protocol for VANET Traffic Safety Applications [OMBW17]


Nourhan Bachir Intelligent Transportation Systems: Application, Challenges and Perspectives DAGEIB, Lebanon

Data Sets

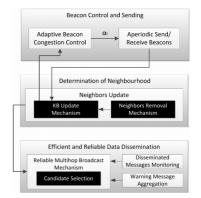
References

Reliable Data Dissemination Protocol for VANET Traffic Safety Applications [OMBW17]

The authors in this work propose a **Adaptive Data Dissemination Protocol (AddP)** in order to insure reliability in the different scenarios:

・ロト ・母ト ・ヨト ・ヨト

Nourhan Bachir


Data Sets

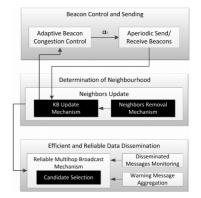
References

Reliable Data Dissemination Protocol for VANET Traffic Safety Applications [OMBW17]

The authors in this work propose a **Adaptive Data Dissemination Protocol (AddP)** in order to insure reliability in the different scenarios:

- broadcast storm scenario, in a dense network,
- frequent disconnection scenario, in a sparse network, and
- wireless communication problems (hidden node scenario).

Data Sets


References

Reliable Data Dissemination Protocol for VANET Traffic Safety Applications [OMBW17]

The authors in this work propose a **Adaptive Data Dissemination Protocol (AddP)** in order to insure reliability in the different scenarios:

- broadcast storm scenario, in a dense network,
- frequent disconnection scenario, in a sparse network, and
- wireless communication problems (*hidden node* scenario).

While also considering the delay sensitivity of safety message broadcasting; should be delivered in shortest time possible.

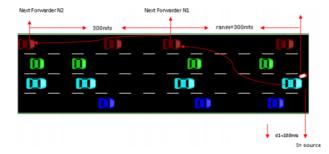
<ロト < 四ト < 回ト < 回ト

Literature Review

Data Sets

References

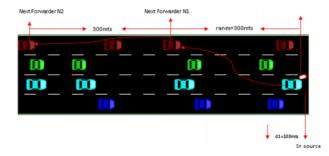
Fuzzy Logic-Based Forwarder Selection for Efficient Data Dissemination [BS21]


<ロト 4 目 ト 4 目 ト 4 目 ト 目 9 Q G</p>

Nourhan Bachir Intelligent Transportation Systems: Application, Challenges and Perspectives DAGEIB, Lebanon

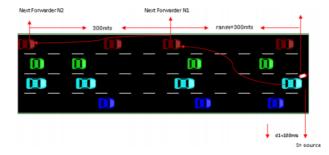
18 / 36

Data Sets


Fuzzy Logic-Based Forwarder Selection for Efficient Data Dissemination [BS21]

• The authors propose a fuzzy-based forwarding technique where distance, movement, and link quality are the three parameters used for node selection.

Data Sets


Fuzzy Logic-Based Forwarder Selection for Efficient Data Dissemination [BS21]

- The authors propose a fuzzy-based forwarding technique where distance, movement, and link quality are the three parameters used for node selection.
- Fuzzy logic has three basic steps: fuzzification, set and combination of if/then rules, and defuzzification.

Data Sets

Fuzzy Logic-Based Forwarder Selection for Efficient Data Dissemination [BS21]

- The authors propose a fuzzy-based forwarding technique where distance, movement, and link quality are the three parameters used for node selection.
- Fuzzy logic has three basic steps: fuzzification, set and combination of if/then rules, and defuzzification.
- The performance is evaluated in a freeway scenario, and the results were compared with Non-Fuzzy-based system as (Greedy forwarding protocol (GFP), Most forward within Radius (MFR), Multipoint Relay (MPR), Flooding, etc.) in terms of efficiency.

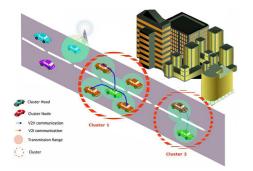
Literature Review

Data Sets

References

Dynamic Clustering Mechanism to Avoid Congestion Control in Vehicular Ad Hoc Networks Based on Node Density [RM19]

Nourhan Bachir Intelligent Transportation Systems: Application, Challenges and Perspectives ・ロト・日本・ 日本・ 日本・ うんの


DAGEIB, Lebanon

Literature Review

Data Sets

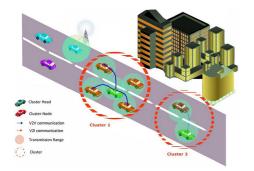
References

Dynamic Clustering Mechanism to Avoid Congestion Control in Vehicular Ad Hoc Networks Based on Node Density [RM19]

 A density-based dynamic clustering mechanism for VANET routing (DBDC) is proposed to mitigate congestion which occurs when vehicles are in the congested part while the network node is carrying more than it can handle.

(日) (四) (三) (三)

Nourhan Bachir


Intelligent Transportation Systems: Application, Challenges and Perspectives

Literature Review

Data Sets

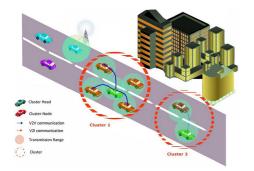
References

Dynamic Clustering Mechanism to Avoid Congestion Control in Vehicular Ad Hoc Networks Based on Node Density [RM19]

- A density-based dynamic clustering mechanism for VANET routing (DBDC) is proposed to mitigate congestion which occurs when vehicles are in the congested part while the network node is carrying more than it can handle.
- The approach is based on identifying the vehicle speed and network density which depends on the speed of the vehicle.

(日) (四) (三) (三)

Nourhan Bachir


Intelligent Transportation Systems: Application, Challenges and Perspectives

Literature Review

Data Sets

References

Dynamic Clustering Mechanism to Avoid Congestion Control in Vehicular Ad Hoc Networks Based on Node Density [RM19]

- A density-based dynamic clustering mechanism for VANET routing (DBDC) is proposed to mitigate congestion which occurs when vehicles are in the congested part while the network node is carrying more than it can handle.
- The approach is based on identifying the vehicle speed and network density which depends on the speed of the vehicle.
- Comparatively, the approach is more effective, maintains the stability of the cluster and reduces the network congestion.

Literature Review

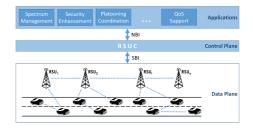
Data Sets

References

A comprehensive survey: Benefits, Services, Recent works, Challenges, Security and Use cases for SDN-VANET [SAHZI⁺20]

Nourhan Bachir Intelligent Transportation Systems: Application, Challenges and Perspectives ・ロト・日本・ 日本・ 日本・ うんの

DAGEIB, Lebanon


Literature Review

Data Sets

References

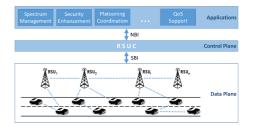
A comprehensive survey: Benefits, Services, Recent works, Challenges, Security and Use cases for SDN-VANET [SAHZI $^+$ 20]

 This review paper tries to critically evaluate some recent proposals, i.e., to use SDN as architecture applicable to realize an efficient and flexible management and control of IoV.

(日) (四) (三) (三)

Nourhan Bachir

Intelligent Transportation Systems: Application, Challenges and Perspectives

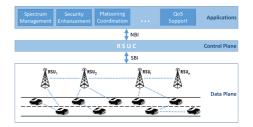

Literature Review

Data Sets

References

A comprehensive survey: Benefits, Services, Recent works, Challenges, Security and Use cases for SDN-VANET [SAHZI⁺20]

- This review paper tries to critically evaluate some recent proposals, i.e., to use SDN as architecture applicable to realize an efficient and flexible management and control of IoV.
- **SDN** can be defined as the partition between the system (control plane) and the sending capacities (data plane).


Literature Review

Data Sets

References

A comprehensive survey: Benefits, Services, Recent works, Challenges, Security and Use cases for SDN-VANET [SAHZI $^+$ 20]

- This review paper tries to critically evaluate some recent proposals, i.e., to use SDN as architecture applicable to realize an efficient and flexible management and control of IoV.
- **SDN** can be defined as the partition between the system (control plane) and the sending capacities (data plane).
- The use of separation between the control and data planes in VANET allows the network intelligence and state to be in the center.

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
0000000	000000000000000000000000000000000000000	000000	0000

2 Literature Review VANET in ITS Big Data Analytics in ITS

3 Data Sets

A References

<ロト 4 目 ト 4 目 ト 4 目 ト 目 9 Q G</p>

Nourhan Bachir

Intelligent Transportation Systems: Application, Challenges and Perspectives

DAGEIB, Lebanon

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References				
	000000000000000000000000000000000000000						
Architecture of Conducting Big Data Analytics in ITS							

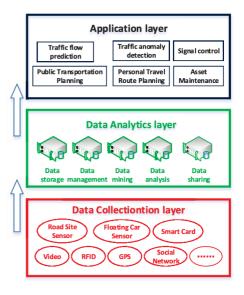
Nourhan Bachir Intelligent Transportation Systems: Application, Challenges and Perspectives

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
	000000000000000000000000000000000000000		
Architecture of Conductin	g Big Data Analytics in ITS		

Described by the work $[ZYW^+18]$ which specified its three different layers:

<ロト < 母 ト < 臣 ト < 臣 ト 三 の < C</p>

Literature Review


Data Sets

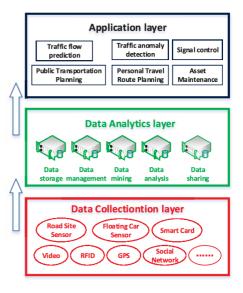
References

Architecture of Conducting Big Data Analytics in ITS

Described by the work [ZYW $^+18$] which specified its three different layers:

 Data Collection Layer: the basis which gathers the data to pass it on to the next layer using wired or wireless connections.

Literature Review


Data Sets

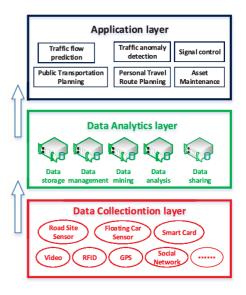
References

Architecture of Conducting Big Data Analytics in ITS

Described by the work [ZYW⁺18] which specified its three different layers:

- Data Collection Layer: the basis which gathers the data to pass it on to the next layer using wired or wireless connections.
- Data Analysis Layer: the "core layer" where data is processed, cleaned, and classified to extract hidden intuitive information

Literature Review


Data Sets

References

Architecture of Conducting Big Data Analytics in ITS

Described by the work [ZYW⁺18] which specified its three different layers:

- Data Collection Layer: the basis which gathers the data to pass it on to the next layer using wired or wireless connections.
- Data Analysis Layer: the "core layer" where data is processed, cleaned, and classified to extract hidden intuitive information
- O Application Layer: this layer is where all the results of the previous layer is applied in the different transportation circumstances.

Literature Review

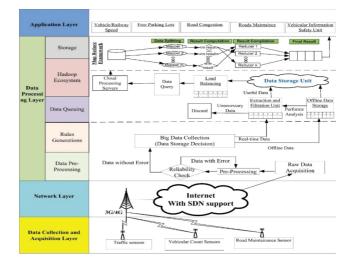
Data Sets

References

Applications: Designing a Smart Transportation System: An Internet of Things and Big Data Approach [JFK⁺19]

Nourhan Bachir Intelligent Transportation Systems: Application, Challenges and Perspectives ▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

DAGEIB, Lebanon

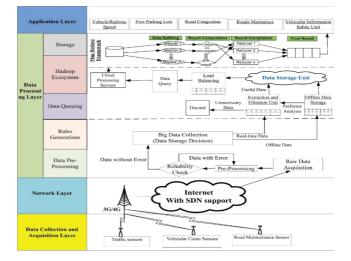

Literature Review

Data Sets

References

Applications: Designing a Smart Transportation System: An Internet of Things and Big Data Approach [JFK⁺19]

 Model for analyzing transportation data with Hadoop and Spark to handle real-time transportation data


Literature Review

Data Sets

References

Applications: Designing a Smart Transportation System: An Internet of Things and Big Data Approach $[JFK^+19]$

- Model for analyzing transportation data with Hadoop and Spark to handle real-time transportation data
- The system is divided into four layers: data collection and acquisition, network, data processing, and application

Nourhan Bachir

Literature Review

Data Sets

References

Applications: An IoT Cloud System for Traffic Monitoring and Vehicular Accidents Prevention Based on Mobile Sensor Data Processing [CGC⁺17]

Intelligent Transportation Systems: Application, Challenges and Perspectives

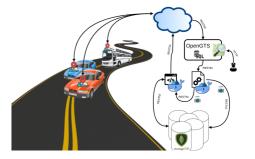

Literature Review

Data Sets

References

Applications: An IoT Cloud System for Traffic Monitoring and Vehicular Accidents Prevention Based on Mobile Sensor Data Processing [CGC⁺17]

 Deal with accidents caused by sudden slowdown especially in fast scrolling roads and highways characterised by scarce visibility.


Literature Review

Data Sets

References

Applications: An IoT Cloud System for Traffic Monitoring and Vehicular Accidents Prevention Based on Mobile Sensor Data Processing [CGC⁺17]

- Deal with accidents caused by sudden slowdown especially in fast scrolling roads and highways characterised by scarce visibility.
- Experiments showed that this system provides acceptable response times that allows drivers to receive alert messages in useful time so as to avoid the risk of possible accidents.

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
	00000000000		
Summary of works			

https://www.dropbox.com/scl/fi/1991qfy54nr8yigoclnkg/Summary.docx?dl=0&rlkey=6v8n6s56bx53u7rfugwkhrrn4

▲ロト ▲圖ト ▲国ト ▲国ト

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
0000000	00000000000	•000000	0000

2 Literature Review

3 Data Sets

4 References

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Nourhan Bachir

Intelligent Transportation Systems: Application, Challenges and Perspectives

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
		000000	
Data Sets			

Section 3

Data Sets

Nourhan Bachir

Intelligent Transportation Systems: Application, Challenges and Perspectives

≣▶ 클 ∽િલ DAGEIB, Lebanon

◆□▶ ◆圖▶ ◆厘▶ ◆厘≯

	/ehicular Ad Hoc Networks 00000000			Literature Review 000000000000			Data Sets 00●0000			References 0000		
Prov	Provided Data: OSM Data											
	Q E	Bruxelles_OSM_Trans	sportation — Featu	res Total: 61967, Filt	ered: 61967, Selecte	ed: 0					- 0	×
	/		6 ~ 6 8	ا 🗧 🗧 ک	7 🗉 🐥 🔎	1 16 16 🗶 1	1 I I I I I R					
		osm_id	code	fclass	name	ref	oneway	maxspeed	layer	bridge	tunnel	-
	1	1880377	5115	tertiary	Place Saint-Pier	NULL	В	30	0 F	F		
	2	3516009	5115	tertiary	Avenue Jean So	NULL	F	30	0 F	F		
	3	3516010	5115	tertiary	Boulevard du C	NULL	F	30	0 F	F		
	4	3516012	5115	tertiary	Boulevard du C	NULL	F	30	0 F	F		
	5	3517093	5113	primary	Quai de Willebr	N201	F	50	0 F	F		
	6	3517145	5114	secondary	Avenue du Parc	N277	в	50	0 F	F		
	7	3517238	5115	tertiary	Avenue des Eb	NULL	F	30	0 F	F		
	8	3517239	5115	tertiary	Avenue des Ro	NULL	в	30	0 F	F		
	9	3517342	5114	secondary	Place Royale	NULL	F	30	0 F	F		
	10	3517547	5114	secondary	Rue Royale - Ko	NULL	F	30	0 F	F		
	11	3517548	5114	secondary	Rue de la Loi	NULL	F	30	0 F	F		
	12	3517549	5123	living_street	Rue de la Press	NULL	F	20	0 F	F		
	13	3517550	5115	tertiary	Place des Palais	NULL	в	30	0 F	F		
	14	3517630	5123	living_street	Place Saint-GÃ	NULL	F	20	0 F	F		
	15	3517746	5123	living_street	Rue des Chartre	NULL	F	20	0 F	F		
	16	3517840	5123	living_street	Rue de la Verdu	NULL	F	20	0 F	F		
	17	3517864	5115	tertiary	Boulevard Mau	NULL	в	30	0 F	F		
	18	3517865	5124	pedestrian	Rue de Bon Sec	NULL	в	0	0 F	F		
	19	3517866	5124	pedestrian	Rue des Grands	NULL	F	0	0 F	F		
	20	3517898	5124	pedestrian	Grand-Place	NULL	В	0	0 F	F		
	21	3517919	5124	pedestrian	Rue de l'Étu	NULL	F	0	0 F	F		
	22	4016268	5131	motorway_link	NULL	NULL	F	120	0 F	F		
	23	4306773	5113	primary	Rond-Point de I	NULL	F	50	0 F	F		
	24	4306783	5113	primary	Avenue Frankli	NULL	F	50	0 F	F	DAGE	୬୯୯

24 4306783 Nourhan Bachir

Intelligent Transportation Systems: Application, Challenges and Perspectives

DAGEIB, Lebanon

Vehicul 00000		Hoc Networks	Literature Review		Data Sets 000●000		References 0000
Prov	ided	Data: Urbis Data					
	Q I	Bruxelles_Urbis_Transportation — Feature	es Total: 22845, Filtered: 2284!	5, Selected: 0	_		:
	/	X 6 2 (1, 1 × 6 1)	8 😑 🔊 🔩 🝸 🔳	🏘 💭 i 🖪 🖪	🌶 🗮 🚍 🗐 🍭		
		gml_id	beginLifes	SHAPE_Leng			-
	7	BE.BRUSSELS.BRIC.ADM.SA.89	2015-10-05T00:00:00	0.0011297914109			
	8	BE.BRUSSELS.BRIC.ADM.SA.90	2015-10-05T00:00:00	0.00032031291556			
	9	BE.BRUSSELS.BRIC.ADM.SA.91	2015-10-05T00:00:00	0.00019878989782			
	10	BE.BRUSSELS.BRIC.ADM.SA.92	2015-10-05T00:00:00	0.00076784644395			
	11	BE.BRUSSELS.BRIC.ADM.SA.93	2015-10-05T00:00:00	0.00024966187476			
	12	BE.BRUSSELS.BRIC.ADM.SA.94	2015-10-05T00:00:00	0.0025098053358			
	13	BE.BRUSSELS.BRIC.ADM.SA.95	2015-10-05T00:00:00	0.000762084163			
	14	BE.BRUSSELS.BRIC.ADM.SA.96	2015-10-05T00:00:00	0.00079311385754			
	15	BE.BRUSSELS.BRIC.ADM.SA.97	2015-10-05T00:00:00	0.0017976410939			
	16	BE.BRUSSELS.BRIC.ADM.SA.98	2015-10-05T00:00:00	0.00059636186469			
	17	BE.BRUSSELS.BRIC.ADM.SA.99	2015-10-05T00:00:00	0.0019520394395			
	18	BE.BRUSSELS.BRIC.ADM.SA.100	2015-10-05T00:00:00	0.0014262266631			
	19	BE.BRUSSELS.BRIC.ADM.SA.101	2015-10-05T00:00:00	0.0012319555633			
	20	BE.BRUSSELS.BRIC.ADM.SA.102	2015-10-05T00:00:00	0.00087738937701			
	21	BE.BRUSSELS.BRIC.ADM.SA.103	2015-10-05T00:00:00	0.0012030375371			
Nourha			2015 10 05700-00-00	0.0015452202751		DAGEN	୬ ଏ ୯ Lebanon

Nourhan Bachir

Intelligent Transportation Systems: Application, Challenges and Perspectives

DAGEIB, Lebanon

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
		0000000	
Next Step			

Section 3

Data Sets

Nourhan Bachir

Intelligent Transportation Systems: Application, Challenges and Perspectives

≣। ≣ ୬९९ DAGEIB, Lebanon

◆□▶ ◆圖▶ ◆厘▶ ◆厘≯

30 / 36

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
		0000000	
Next Step			

Nourhan Bachir Intelligent Transportation Systems: Application, Challenges and Perspectives DAGEIB, Lebanon

31 / 36

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
		0000000	
Next Step			

- Reliable Data Dissemination Protocol for VANET Traffic Safety Applications [OMBW17]
- Fuzzy Logic-Based Forwarder Selection for Efficient Data Dissemination [BS21]

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
		0000000	
Next Step			

- Reliable Data Dissemination Protocol for VANET Traffic Safety Applications [OMBW17]
- Fuzzy Logic-Based Forwarder Selection for Efficient Data Dissemination [BS21]

Nourhan Bachir Intelligent Transportation Systems: Application, Challenges and Perspectives

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
		0000000	
Next Step			

- Reliable Data Dissemination Protocol for VANET Traffic Safety Applications [OMBW17]
- Fuzzy Logic-Based Forwarder Selection for Efficient Data Dissemination [BS21]

1 Published in highly important journals

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
		0000000	
Next Step			

- Reliable Data Dissemination Protocol for VANET Traffic Safety Applications [OMBW17]
- Fuzzy Logic-Based Forwarder Selection for Efficient Data Dissemination [BS21]

- 1 Published in highly important journals
- e Recent

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
		0000000	
Next Step			

- Reliable Data Dissemination Protocol for VANET Traffic Safety Applications [OMBW17]
- Fuzzy Logic-Based Forwarder Selection for Efficient Data Dissemination [BS21]

- 1 Published in highly important journals
- e Recent
- Oeals with similar topic

31 / 36

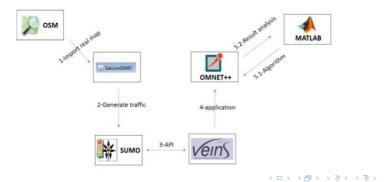
Vehicular Ad	Hoc	Networks

Literature Rev	/iew
000000000	0000

Data Sets

References

Next Step


▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● のへで

Nourhan Bachir Intelligent Transportation Systems: Application, Challenges and Perspectives DAGEIB, Lebanon 32 / 36

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
		000000	
NL . C.			

Next Step

Nourhan Bachir

Intelligent Transportation Systems: Application, Challenges and Perspectives

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
0000000	00000000000	000000	0000

1 Vehicular Ad Hoc Networks

2 Literature Review

3 Data Sets

4 References

Nourhan Bachir

Intelligent Transportation Systems: Application, Challenges and Perspectives

Vehicular Ad Hoc Netwo	rks Literature Review	Data Sets	References 0●●0
[BS21]	S. Basha and T. Shankar. Fuzzy logic based forwarder selection for effic Wireless Networks, 27, 04 2021.	ient data dissemination in v	

 [CGC⁺17] Antonio Celesti, Antonino Galletta, Lorenzo Carnevale, Maria Fazio, Aime Lay-Ekuakille, and Massimo Villari.
 An iot cloud system for traffic monitoring and vehicular accidents prevention based on mobile sensor data processing.
 IEEE Sensors Journal, PP:1–1, 11 2017.

- [GZ11] Dhananjay Gaikwad and Mukesh Zaveri.
 VANET routing protocols and mobility models: A survey, volume 197, pages 334–342.
 01 2011.
- [JFK⁺19] Bilal Jan, Haleem Farman, Murad Khan, Muhammad Talha, and Ikram Ud Din. Designing a smart transportation system: An internet of things and big data approach. IEEE Wireless Communications, 26:73–79, 08 2019.
- [OMBW17] RenÃł Oliveira, Carlos Montez, Azzedine Boukerche, and Michelle Wangham. Reliable data dissemination protocol for vanet traffic safety applications. *Ad Hoc Networks*, 63, 05 2017.
- [PN19] Behrouz Pourghebleh and Nima Navimipour. Towards efficient data collection mechanisms in the vehicular ad hoc networks. International Journal of Communication Systems, 01 2019.

34 / 36

(日) (日) (日) (日) (日)

Vehicular Ad Hoc Networks	Literature Review	Data Sets 0000000	References 0●●0

 [RM19] Regin Rajan and T. Menakadevi. Dynamic clustering mechanism to avoid congestion control in vehicular ad hoc networks based on node density. Wireless Personal Communications, 107, 08 2019.
 [SAHZI⁺20] Othman S. Al-Heety, Zahriladha Zakaria, Mahamod Ismail, Mohammed Shakir, Sameer Alani, and Hussein Alsariera. A comprehensive survey: Benefits, services, recent works, challenges, security and use cases for sdn-vanet. *IEEE Access*, PP:1–1, 05 2020.

[ZYW⁺18] Li Zhu, Fei Yu, Yige Wang, Bin Ning, and Tao Tang. Big data analytics in intelligent transportation systems: A survey. IEEE Transactions on Intelligent Transportation Systems, PP:1–16, 04 2018.

35 / 36

<ロト < 団ト < 団ト < 団ト

Vehicular Ad Hoc Networks	Literature Review	Data Sets	References
0000000	000000000000	000000	0000

Thanks!

Nourhan Bachir Intelligent Transportation Systems: Application, Challenges and Perspectives ・ロト・西ト・ヨト・ヨー シック

DAGEIB, Lebanon

36 / 36