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Abstract
Although radiation level is a serious concern which requires continuous monitoring, many existing systems are designed to
perform this task. Radiation early warning system (REWS) is one of these systems which monitor the gamma radiation level in
air. Such system requires high manual intervention, depends totally on experts’ analysis, and has some shortcomings that can be
risky sometimes. In this paper, the approach called RIMI (refining incoming monitored incidents) will be introduced which aims
to improve this system while becoming more autonomous with keeping the final decision to the experts. A new method is
presented which will help in changing this system to become more intelligent while learning from past incidents of each specific
system.
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Introduction

Radiation level is one of the most critical hazards that must be
taken care of due to its catastrophic and persistent consequences on
the environment, humans, and the other living things. Radioactive
incidents and disasters such as Chernobyl (Jelewska and
Krawczak 2018), Fukushima (International Atomic Energy
Agency 2015), and the most recent one at Russian nuclear missile
test site (Kramer 2019) raised a serious concern. These events have
given rise to the need for continuous monitoring of the radiation
level in the air. Since the artificial radionuclides can be transported
with radioactive plume for long distances, it is important to

monitor the radioactivity level within widespread geographical
locations to detect any unwanted exposure. The continuous mon-
itoringwould greatly help in taking a proactivemeasure thatwould
eventually raise an alert upon an occurrence of incidence.
Therefore, many countries around the world raised the idea of
developing several techniques for monitoring the radiation level
in the environment to detect any abnormal release or discharge
(Szegvary et al. 2007). These countries developed a national envi-
ronmental radiation monitoring programs to establish radiation
baseline level and determine trend of radiation level (Stöhlker
et al. 2019). Air monitoring was one of the main scopes of these
programs (El Samad et al. 2016).
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There exist different approaches to monitor and analyze the
data of high radiation levels. Among them is the radiation
early warning system (REWS) (Thieu et al. 2012) that is a
widely used network system which exists in many countries
around the world (Küçükarslan et al. 2004) (Biegalski et al.
2001) (El Samad et al. 2016). The REWS is composed of
many radiation detection sensors that contain two Geiger
Muller tubes: one for detecting high dose rate measurements
and the other for low dose rate measurements. Both are incor-
porated in what is called probe. These probes are disseminated
on a specific region that monitors the gamma radiation level.
This system reacts as soon as possible to anomalies by raising
an alert (Zähringer and Sempau 1996). Typically, the alerts
are determined by predefined threshold values that are essen-
tially chosen based on observations (i.e., experience)
(Dombrowski et al. 2017). It is worth noting that there are
different threshold values at different locations since the
threshold value depends strictly on the normal reading of the
radiation level (known as background level) which is in turn is
not fixed due to many factors such as soil composition, soil
moisture, and others. For example, in some locations, rocks
could be rich in natural radionuclides which can increase the
background value. In addition, altitude and gamma radiation
level have incremental relation, as higher altitude results in
higher gamma radiation readings due to cosmic rays. Once
an alert is raised, it needs to be checked by an expert.
Indeed, the expert needs to analyze the potential causes for
the incident as some alerts refer to an authentic threat of high
radiation level and others denote the rise of radiation level that
has no hazardous impact on the environment or living beings.
In order to do so, the expert will consult additional informa-
tion such as readings from other probes in the vicinity, the
weather broadcast, and the quality factors (also called quality
bits) of the probe. For instance, the alert is false when the
quality bits of the probe indicate that there is a defect in the
probe (Casanovas et al. 2011), meaning that we cannot trust
the collected gamma dose rate value. The alert is innocent
when external factors have occurred such as rain, wind, and
lightening. For example, the rain could cause wet deposition
of radionuclides dispersed in the atmosphere and hence in-
creased readings which will result in a peak value.
These external factors are the more difficult to analyze,
but they represent more than 90% of the alarms.
Finally, if the alert is real, an emergency action needs
to be taken by the authority immediately.

Existing REWS systems have various shortcomings. The
most critical one is the manual intervention of the expert that is
heavily time-consuming, labor-intensive, and risk-prone.
Indeed, when an alarm is raised, a considerable amount of
time is consumed, and efforts are exerted by the expert to
analyze the parameters that are stemming from external data
sets such as weather data sets in order to classify the alert as
false, innocent or real. If there is no automated data collector,

the experts must carry out data searching and data fetching
operations manually. Moreover, most of the time, the expert
cannot classify the alert immediately. This can take hours due
to some parameters such as rain. Therefore, it is not possible to
make a faster or real-time inference using the current
methodology.

Today, we assist to the explosion of machine learning tech-
niques and complex algorithms in order to help experts or
non-experts to analyze and understand more about their data.
Machine learning techniques might help building predictive
models in order to have a real-time proactive system (Alanazi
et al. 2017). However, in order to apply these techniques,
some preliminaries analysis should be done to better charac-
terize the problem that needs to be solved. The main objective
of this research is to analyze REWS and see if the expert can
be partly removed from the picture and replaced by an auton-
omous REWS. There are many challenges to address before
reaching this goal. The work described in this paper is the first
attempt to do so, as to our knowledge it does not exist auton-
omous REWS in the literature.

The main objective of this research is to develop an
end-to-end solution that will be integrated with running
REWS systems without any disruption or without replac-
ing its task completely. This work aims at the beginning
to come up with a specific solution depending on each
system old data. Later on, the suggested framework will
be checked if it could be generalized on all the REWS
systems around the world. Indeed, before replacing the
expert, the system should prove its accuracy to predict
the right answer. Thus, a supervised learning should take
place at the beginning until it reaches its full potential and
work on its own. In this paper, RIMI framework (refining
incoming monitored incidents) is presented that highlight
the different steps that need to take place before reaching
an autonomous REWS solution. In this framework, a list
of components will be developed from data acquisition
and normalization, to building a predictive model on a
real data set produced by a running REWS, then by using
it to predict the right classification of the alarm on
real-time data. In this work, we started to work with the
data of each probe separately. However, the next step will
be trying our approach on the data coming from a grouped
several probes.

The remaining of this paper is organized as follows. The
“Problem description” section will highlight the nature of the
problems that need to be solved in REWS. In “The RIMI
framework” section, RIMI framework is described and each
of its components is detailed. Finally, our work is concluded
in the “Conclusion” section. Notice, that there will not be a
related work section in itself, as it does not exist similar work
in the literature but rather, once a problem has been refined
some hints of the approaches that have been proposed in the
literature to solve this particular problem will be shared.
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Problem description

In this section, some of the scenarios that an expert will en-
counter during his/her work are illustrated. These scenarios
reflect the variety of the situations that occur most of the time.

The scenario shown in Figure 1 illustrates how an internal
factor can affect the gamma dose rate. In this case, the low
dose tube of the probe is broken. It affects the quality of the
gamma dose rate value. Depending on the system, this type of
scenario may produce a false alarm.

In the scenarios, respectively, shown in Figures 2 and 3,
wind, electromagnetic, perturbations, or lightnings directly
and immediately impact the signal coming from the probe.
In these scenarios, we observe many peaks that do not last
very long. We called them hard parabola. These types of
scenarios may produce a false alarm.

On the opposite, the rain impacts the gamma dose rate in a
completely different manner. Rain, for example, can cause
wet deposition of the dispersed radionuclides in the atmo-
sphere. It causes the soil to emit radioactive gases into the
air resulting a true innocent high gamma radiation reading
(Hõrrak et al. 2021). The increased gamma dose rate will
return to normal values after specific time. Sometimes, even
if it continues to rain after the peak, it will not affect the
gamma dose rate anymore because the atmosphere is already
washed out. This behavior is described in the Figure 4 and
corresponds to what is called soft parabola. It is classified as
an innocent alarm.

Fortunately, real alarms are very rare, but as you can imag-
ine, the peak will not decrease after a short period of time but
will stay at high level or even continue to increase.Many other
scenarios can also be found in practice. For instance, some
factors like earthquakes or a truck with radioactive materials
load passing near a probe can cause the gamma dose rate level

to increase immediately. Moreover, multiple factors can be
combined together such as rain and wind making the recog-
nition of the cause less easier.

Many data sources should be combined together. Some are
collected in a continuous manner by the REWS and stored in
an historical database. But many others data sources must be
queried on demand when an investigation is launched by an
expert. Combining all these heterogeneous data sources on the
fly is also a difficult problem in itself.

Another dimension of the problem concerns the variability
of the threshold values that evolve over time and that is also
dependent on the location of the probe itself (Kessler et al.
2018) . As said earlier, these predefined threshold values are
essentially chosen based on observations or experience at the
beginning, but they evolve slightly over time, making the
comparison of the time series over multiple months not an
easy task.

All these examples illustrate the difficulty and the hetero-
geneity of analyzing the gamma dose rate shape and under-
standing its causes in order to classify properly the alarm in an
automatic way. For all these reasons, we believe that the re-
search problem is interesting to be tackled as it will require
many different techniques or approaches to be used. This is
the reason why we define the RIMI framework to offer an
end-to-end solution towards an autonomous REWS.

The RIMI framework

In this section, a detailed description of our framework enti-
tled, RIMI (refining incoming monitored incidents) is provid-
ed. The framework consists of three main components: (1) the
data collector, (2) the building of the predictive model, and (3)
the online detection and prediction. Figure 5 illustrates more

Fig. 1. Low-dose tube broken effect on gamma dose rate
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in detail each of the main components which are incident
extractor, incident clustering model, incident causes identifier,
data enrichment, and incident pattern matching. As the inci-
dent is caused by a high gamma dose rate level which can be
harmful for humans and environment, this framework aims to
replace a human-driven verification system that refines the
incoming incidents and alerts and detect its cause by doing it
automatically with a high level of accuracy.

A. Data collector

As seen in the previous section, the raw data is heterogeneous
(i.e., time series, quality bits, events) and comes either from
the online REWS monitoring system automatically or from

the external data sources, noting that the data coming from
extremal data sources (such as weather forecast data) could be
queried on demand by experts in the case of a triggered alarm.
The data collected by the REWS system is stored in a histor-
ical database. The data acquisition is done on a regular basis
through secure channels between the radiation detection sen-
sors (i.e., probes) and the server. Usually, the probe sends a
message containing the gamma dose rate average every min-
ute. In addition to the gamma dose rate, the probes send other
sensors data like temperature and quality bits as they are
equipped with internal sensors that can detect the defective-
ness of any of the system components. These sensors data are
stored in the historical REWS database for later analysis. As
seen earlier in one of the scenarios, the defect of a tube can
cause a direct false high gamma radiation level.

Fig. 2. Wind effect on gamma dose rate

Fig. 3. Lightning effect on gamma dose rate
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For historical data, we decided to use the data collected by
the German REWS.More than 15 years of historical data have
been collected by the REWS that is used in Germany and
controlled by the Federal Office for Radiation Protection
(Bfs). These data are precious and can be used to train our
predictive model, but these data need to be analyzed by ma-
chine learning algorithms in order to automatically form cat-
egories for similar incidents. Later, many data sources can be
queried on demand to identify the causes for similar incidents.
These numerous data sources can be a weather database, a
radiation transportation database, etc. In order to be queried,
the approximate timestamp of the alarm should be known in
order to better understand the past context or situation in
which the alarm was triggered.

B. Building the predictive model

The predictive model is built on the historical databases pro-
duced by the running REWS, which continuously collect sen-
sors data produced on the different probes. First, there is a
need to identify all the incidents. Second, similar incidents
should be grouped together. This requires the data to be clus-
tered into different classes that contain similar incidents, so
that we may search later for the common cause behind these
similar incidents. Finally, all this mass of information should
be organized and classified in order to build our predictive
model that will be used at run-time.

1) Incident Extractor: Incident extraction consists in analyz-
ing the gamma dose rate time series data in order to iden-
tify a fragment (i.e., shape). A fragment corresponds in
fact to a triggered alarm (i.e., incident). As said earlier, the
threshold and the background values are not fixed, but
they evolved over time. At the beginning of the system,
a value is given, but it is refined over time to better suit the
default gamma dose rate of the location on which the
probe is installed. This value called the background can
be different from one location to the next. At the end of
each month, the average of the background values is cal-
culated to find the background mean. This mean will be
used for finding the background interval of each specific
station. It is important here to mention that this mean will
be calculated after removing the threshold values from the
month data set. To find the threshold value, we noticed
that experts in different countries depend on different
methods. Some may consider that values that are equal
and greater than 1.5 times the backgroundmean as thresh-
olds. Others refer to the values that are equal and greater
than 2 or 3 times the background mean as thresholds
(Farid et al. 2017) (Stöhlker et al. 2019). We decided to
be more precise and rely on the 1.5 method knowing that
this value can be changed to suit experts’ expectations
through different countries. Several methods were ex-
plored to find the most suitable one that determines the
lower and the upper bounds of the background interval.
Our study revealed that the standard deviation (Barde and

Fig. 4. Rain effect on gamma dose rate
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Barde 2012) is promising to find the background level
interval. We choose standard deviation because of the
nature of the distributions of data. According to our ob-
servation, radiation level data are uniformly distributed,
and to the best of our understanding, standard deviation is
a suitable technique for finding intervals when data are
uniformly distributed in a two-dimensional graph. This
background level interval is calculated by adding and
subtracting the value resulted in by calculating the standard
deviation to the mean of the background values in the
current month. This computation model produces a catalog
of parameters with the corresponding means, thresholds,
and the background intervals values for each month.
Thus, the incident extractor component relies on the cata-
log which defines the appropriate background interval
values for each month. We assume that this catalog is fully
computed on historical data before the extraction starts.

In the Figure 6, the background interval that corre-
sponds to the acceptable background values is defined.
It is represented by a lower B1 and an upper B2 bounds.
We also show the threshold value which is 1.5 times the
background mean.

A fragment is defined by a beginning t1 and an end t2
timestamps. In other words, once a threshold value is
found, the incident extractor will search for the nearest
points t1 and t2 that represent the preceding and
succeeding values of the threshold and extract the cur-
rent fragment from t1 till t2. Note that these two values
must lie within the background level interval. They re-
spectively identify the time when the gamma dose rate
starts to increase in an abnormal way and when its re-
turn to a normal state. However, the incident extractor
should monitor the incident for 15 min after returning to
the background level before extracting it. This will as-
sure that the incident is totally ended since the data is
collected every 1 min. Moreover, it is worth noting that
a locking mechanism is designed so that it does not
allow the incident extractor to start a new extraction
operation unless the previous one is completed. The
locking mechanism was used because a graph may con-
tain more than one fragment exceeding the threshold
value. Thus, incident extractor extracts these fragments
sequentially and the endpoint of the preceding fragment
may become the starting point for succeeding fragment.

Fig. 5. A framework for real-time
radiation detection (RIMI
framework)
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Shapelet extraction has drawn significant research
attention, in recent years. Many algorithms have been
proposed in the literature such as Piecewise Aggregate
Approximation (PAA) (Wang et al. 2018) and the
Multivariate Shapelets Detection (MSD) (Ghalwash
and Obradovic 2012). These approaches search for
shapelets that are similar to a referent shapelet. These
approaches are not suitable to our problem as we do not
have any referent shapelet, and due to the evolving of
the background level, the duration of our fragment can
be multiple. Moreover, some of the approaches go be-
yond that and discuss extracting shapelets based on
predefined key points (Guiling et al. 2019). These
methods aim at detecting key points in the time series
and then extract the shapelets referring to these key
points. Such approaches need to be investigated more
in order to check their compatibility with our evolving
background interval.

2) Data Preparation: Before any analysis phase, a lot of
time have to be spent studying the data to find the proper
preparation algorithms to apply (Tan et al. 2005) (Han
and Kamber 2006; Pyle 1999). The preparation algo-
rithms are to ensure the quality and cleanliness of the data
before inserting it into any analysis algorithm.

Inspecting the incidents, the two major observations
were that the incidents are of vastly varying length and
the incidents are not at the same level. The incidents’
length varies very widely even when extracted from the
same probe’s data. The variation is because each

incident’s length is dependent upon the duration of the under-
lying event’s effect; it could be as short as three minutes long
(i.e., lightening) and as long as 6 h long (i.e., storm). On the
other hand, different probes have different acceptable range of
background radiation rate. Each probe’s normal readings’
range depends upon its environment, the nature of the soil,
and many other factors. Additionally, with time, if the latter
factors change, the range of normal values evolves too on the
same probe. Because of that, the extracted incidents are not all
at the same “level.”

Researching these characteristics, we found that pro-
cessing samples of different length have little to no men-
tion in the literature. Only one very recent work (Tan et al.
2019) has been done on classification of time series of
varying length. For preprocessing, they suggest either
scaling the samples to be of similar length for comparison
or prep-ending/appending inconsequential data points
like zero or the mean value depending on the nature of
the data. On the other hand, regarding the other charac-
teristic, studies focused on applying normalization
methods. Specifically, z-normalization (Rakthanmanon
et al. 2012) appears to be the most popular (Gujarati and
Porter 2009; Kendall 1976) when considering time series
samples from different devices having different scales as
the samples become all of mean zero with a variation
between − 1 and 1.

Another problem with the data would be the missing
data when some data points fail to be saved over a certain
period of time. Proper data re-sampling methods have to
be applied taking into consideration not inserting any

Fig. 6. Fragment extractor
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biased data points. More investigation and research have
to be done for the specific characteristics of the data.

3) Clustering: Once the fragments are extracted and
pre-processed, we need to classify them in order to build
and train our predictive model. We will start by compar-
ing the different incidents extracted in order to set differ-
ent classes. The clustering process will start forming sev-
eral classes by following a model-based approach.
Through this approach, the incidents extracted from the
gamma dose rate time series will be compared based on
the graphical shapes representing the incidents. Several
incident shapes will be gathered and classified as soft or
hard parabola shapes. Our approach is to use time series
clustering to be able to infer the different classes (clusters)
behind the incidents’ causes. Some expected problems
will be faced through the clustering process because we
have samples of different length which is not dealt with
very much in the literature of time series clustering.

Existing time series clustering approaches proposed in
literature use different techniques. In (Liao 2005), Warren
Liao surveys the different approaches in time series cluster-
ing literature. The author describes the most popular simi-
larity measures as well as the clustering algorithms that are
most frequently used in the literature. Euclidean (Julazadeh
et al. 2012) and Mahalanobis (Arathi and Govardhan 2014)
distances are lock-step similarity measures that are very
much successful in clustering literature; however, in time
series clustering specifically, they have their drawbacks such
as their inability to encompass the temporal aspect of time
series data. These drawbacks draw attention to elastic mea-
sureswhich are not as rigid. For instance, theDTW (dynam-
ic time warping) algorithm (Huiqing et al. 2018), which was
introduced specifically for time series analysis, focuses on
reducing the computing complexity, and improves efficien-
cy. On the other hand, time series clustering approaches are
majorly based on the classic clustering algorithms such as
k-means (MacQueen 1967), k-medoids (Kaufmann and
Rousseeuw 1987), and hierarchical (Sarda-Espinosa
2018). In addition, the state-of-the-art approaches in time
series clustering will be investigated to check all potential
similarity measures and clustering algorithms andmodels to
find what best befits our data.

After applying the clustering process, we will end up
with a wide range of classes that we may need to identify
their relevant causes. These classes will be referred to in the
online detection of the incident.

C. Online detection and prediction

Once the classes are defined, the online detection and predic-
tion phase can take place. Its job starts when an incident alarm

is triggered. As said earlier, the alarm can be categorized into
three types: false, innocent, or true. The aim behind this phase
is to check if the current incident occurring with the specific
annotated information corresponds to a predefined class as
quickly as possible. The main job of the online predictive
model will be calculating the context by checking what is
the current situation once an incident is captured. Based on
the discovered situation, the model will start searching for
similar incidents in the related classes.

1) Incident Pattern Matching Engine: The incident pattern
matching engine is the analytical engine deployed to rec-
ognize the new incidents by performing a matching oper-
ation over the annotated patterns produced at the incident
clustering step. This analytical engine is designed based
on Kappa architectural style (Ounacer et al. 2017) which
means that the incident pattern matching operations will
be performed in real-time. At the same time, a
pre-designed algorithm will be running in the background
to calculate the parameters that will be used for next
month’s evaluation. On incident detection, the framework
will search for the current situation, since it will be always
connected to external and internal factors databases, and
will run the incident matcher phase, which will look to the
nearest point before the threshold belonging to the back-
ground level, and start matching the beginning of the
current shapelet with those represented in the predefined
classes.

For example, Figure 7 shows the analyzing process for
incoming data. As we can notice, the readings started
within the background level interval which means a nor-
mal situation with accepted values. Once the readings
exceed the upper bound of the background interval (B2)
and reached the threshold value, then the alarm will be
triggered detecting incident case and the matching pro-
cess starts. This will provide different possibilities for the
continuity of the current shapelet referring to the already
obtained shape after comparing it to the previously clas-
sified incidents. It will repeat this process until the possi-
bilities become so limited that the cause can be detected.
Thus, the framework will be able as soon as possible to
detect the cause behind the incident and alert the experts if
special procedures must be taken. To perform this task,
the techniques defined in the incident extractor module
can be used.

2) Accuracy and Verification: The objective of our research
is to propose a fully automated framework. However, we
strongly believe that at the final stage, the solution needs
an expert opinion to validate the results produced by the
system. This validation is important due to the sensitivity
of the use cases that will be implemented using this solu-
tion. This will help in increasing the accuracy rate of the
proposed framework. Moreover, in case of exceptional
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use cases that were not known, the involvement of the
experts would help to enhance the solution by training
the classifier over the data and make it capable of recog-
nizing incident patterns that were unknown before.

Conclusion

This paper presented an end-to-end framework for (pre)-pro-
cessing, processing, and analysis of ambient gamma dose rate
in air. The objective of developing this framework is to reduce
the manual intervention in radiation early warning systems. In
this paper, the key components of the framework including
data pre-processor, incident extractor, incident classifier, and
data enhancer were explained. A detailed description of an
analytical engine, which matches the fragment patterns in
real-time and helps the experts in faster decision-making re-
garding verification of an alarm, was provided. Several works
have been lined up for future. In the near future, we planned to
develop techniques for classifying the incidents. The classifier
will be trained, tested, and optimized to guarantee that accu-
racy of classification. Also, a real-time analytical engine using
advanced tools for performing classification in real-time was
developed.
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