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Neutrophils are vital components of the immune system for limiting the invasion and
proliferation of pathogens in the body. Surprisingly, the functional annotation of
porcine neutrophils is still limited. The transcriptomic and epigenetic assessment of
porcine neutrophils from healthy pigs was performed by bulk RNA sequencing and
transposase accessible chromatin sequencing (ATAC-seq). First, we sequenced and
compared the transcriptome of porcine neutrophils with eight other immune cell
transcriptomes to identify a neutrophil-enriched gene list within a detected neutrophil
co-expressionmodule. Second,we usedATAC-seq analysis to report for the first time
the genome-wide chromatin accessible regions of porcine neutrophils. A combined
analysis using both transcriptomic and chromatin accessibility data further defined the
neutrophil co-expression network controlled by transcription factors likely important
for neutrophil lineage commitment and function. We identified chromatin accessible
regions around promoters of neutrophil-specific genes that were predicted to be
bound by neutrophil-specific transcription factors. Additionally, published DNA
methylation data from porcine immune cells including neutrophils were used to
link low DNA methylation patterns to accessible chromatin regions and genes with
highly enriched expression in porcine neutrophils. In summary, our data provides the
first integrative analysis of the accessible chromatin regions and transcriptional status
of porcine neutrophils, contributing to the Functional Annotation of Animal Genomes
(FAANG) project, and demonstrates the utility of chromatin accessible regions to
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identify and enrich our understanding of transcriptional networks in a cell type such as
neutrophils.
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Introduction

Neutrophils originate from myeloid progenitors in the bone
marrow and go through numerous phases of development,
including myeloblast, promyelocyte, myelocyte, metamyelocyte, band
cell, and eventually polymorphonuclear neutrophil (Hong, 2017).
Neutrophils are one of the most common and important immune
cell types in the vertebrate bloodstream (Fingerhut et al., 2020); in
human they represent 50%–70% of all leukocytes (Mortaz et al., 2018).
Neutrophils are recruited to areas of inflammation from the
bloodstream, migrating through chemical signal gradients in a
process known as chemotaxis (de Oliveira et al., 2016). Neutrophils
are among the most specific immune cell responding to chemotaxic
signals, and serve as an overarching model for eukaryotic chemotaxis
(Metzemaekers et al., 2020a). Neutrophils respond to chemoattractant
signals by secreting granules (degranulation), ingestingmicroorganisms
and other particles (phagocytosis), and forming neutrophil extracellular
traps that catch and kill extracellular bacteria once they arrive at the
inflammation site (Gierlikowska et al., 2021). Importantly, neutrophils
are among the most fully differentiated immune cells (Hong, 2017) and
the resting state is highly informative for neutrophil function. Thus,
multiple pathways, many unique to the neutrophils, are fully deployed
in non-activated neutrophils and the transcription regulation to effect
neutrophil activity is poorly understood in the pig.

Genome-wide transcriptomic approaches can identify
transcriptional signatures in whole blood (Liu et al., 2017) and
specific populations of porcine immune cells (Herrera-Uribe et al.,
2021), including neutrophils (Huang et al., 2020). Transcriptomic
analyses have also been employed to explore different immune
populations in pigs under different conditions such as infections,
differentiation, tissue niche, and health status (do Nascimento et al.,
2018; Dong et al., 2021; Herrera-Uribe et al., 2020; Summers et al.,
2020). Recently, bulk RNA sequencing (bulk RNA-seq) and single-
cell RNA sequencing (scRNA-seq) was used to identify genes
expressed in different subsets and co-expressed clusters of
porcine immune cells from peripheral mononuclear cells (PBMC)
(Herrera-Uribe et al., 2021). However, as PBMC preparations
exclude neutrophils, there is still limited information cataloging
the porcine neutrophil transcriptome. So far, only one RNA-seq-
based transcriptomic study (Huang et al., 2020) and two array-based
studies (Sanz-Santos et al., 2011; Wang et al., 2017) have been
published, but no study exploring the regulatory elements involved
in the transcriptional network controlling such RNA expression
patterns has been reported.

Genome-wide chromatin accessibility assays can identify
genomic regions physically accessible to transcriptional
machinery and provide clues to cell-specific gene expression
mechanisms that determine the cell identity and function (Yan
et al., 2020). For example, recruitment of regulatory proteins to
specific transcription factor binding motifs (TFBM) found in such

accessible regions provides the opportunity to activate or maintain
specific cellular functions (Stein et al., 2010). Therefore, identifying
open chromatin regions helps to identify possible regulatory
elements and predict cell functions and regulatory pathways in
different cell types (Natarajan et al., 2012). Several epigenomic
assays can identify regulatory regions genome-wide, such as the
DNase I hypersensitivity assay (Pipkin and Lichtenheld, 2006), and
more recently the Assay for Transposase Accessible Chromatin
(ATAC-seq) (Buenrostro et al., 2013). Combining epigenetic
assays, such as ATAC-seq with gene expression assays such as
RNA-seq, provides a powerful approach to identify accessible
chromatin regions genome-wide, associates the pattern of such
regions with RNA expression, and establishes transcriptional
regulatory networks to identify specific regulatory functions
(Lowe et al., 2019).

A combined genome-wide annotation of chromatin accessibility
and transcriptome of porcine neutrophils will contribute to the
functional annotation of the porcine genome (part of the FAANG
project), enriching our understanding of the molecular regulation of
neutrophils, and provide tools for increased utilization of the pig as a
model to explore human immunity. In this study, we used ATAC-
seq to identify open chromatin regions, and RNA-seq to describe the
specific gene expression pattern in porcine neutrophils through
comparison to published transcriptomic data of eight other
immune cell types that were magnetically and flow cytometrically
sorted from peripheral blood mononuclear cells (Myeloid, NK, and
several populations of T and B cells) of the same animals. In
summary, our analysis revealed co-expressed and specific
transcriptional patterns in porcine neutrophils, including
transcription factors that were predicted to bind to accessible
promoter regions of neutrophil-specific genes (NSGs).

Materials and methods

Animals and peripheral blood mononuclear
cell isolation

Two crossbred (predominantly Large White and Landrace
heritage) male pigs of 6 months of age were used for RNA-seq
and ATAC-seq, and four crossbred adults (>6 months of age,
unknown sex) were used for Fluidigm Reverse Transcriptase
Polymerase Chain Reaction (RT-qPCR) validation. Pigs were
housed in BLS2 rooms at the National Animal Disease Center
(Ames, IA) and all animal procedures were performed in
compliance with and approval by Institutional Animal Care and
Use Committee. Pigs were observed daily by animal care staff and
were bright, active, and alert during their life. No veterinary
treatment was warranted the month prior to sample collection.
Upon necropsy, no gross pulmonary lesions suggestive of
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pneumonia were noted. Up to 120 mL of blood was drawn into BD
Vacutainer mononuclear Cell Preparation Tubes—Sodium Citrate
(CPTTM, Becton Dickson) or 60-mL syringes containing 6 mL of
acid citrate dextrose (ACD). PBMCs were isolated, enumerated, and
viability assessed as previously described (Byrne et al., 2021).

Neutrophil isolation

Neutrophils were isolated from whole blood in CPTTM tubes as
previously described (Heit et al., 2006; Lindblom et al., 2018). Briefly,
whole blood was subjected first to dextran sedimentation using 6%
Dextran/0.9% NaCl solution at room temperature for 45-60 min.
Supernatant containing neutrophils and mononuclear cells was
transferred to a conical tube and centrifuged for 12 min at
300 RCF, 4°C with low brake. Neutrophils and mononuclear cells
were separated from the erythrocyte-rich pellet by lysing
erythrocytes with Ammonium-Chloride-Potassium (ACK) Lysing
buffer (ThermoFisher). The pellet was resuspended in phosphate
buffered saline (PBS) and the cell suspension was layered over Ficoll-
Histopaque-1077 (Catalog No.1077, Sigma) and centrifuged for
30 min at 450 RCF, room temperature, low brake. After
centrifugation, PBMCs were removed, and the pellet that
contained neutrophils was further processed. Neutrophils were
rinsed with 4 mL of Hanks’ Balance Salt Solution (HBSS),
centrifuged at 450 RCF for 5 min and resuspended in 2 mL
HBSS. Cell count and viability data were obtained using the
MUSE cell analyzer system (Millipore). Cells were cryopreserved
using 30% dimethyl sulfoxide (DMSO) in RPMI medium and
thawed for later use following a previously reported protocol
(Milani et al., 2016). A flowchart of the methods is shown in the
Supplementary Figure S1.

RNA isolation for bulk RNA-seq and fluidigm
analysis

Isolated neutrophils were enumerated and immediately lysed in
RLT-plus buffer for bulk RNA sequencing (bulkRNA-seq). RNA
extraction for RLT-plus samples was performed using the AllPrep
DNA/RNA MiniKit (QIAGEN) following manufacturer’s
instructions. Eluted RNA was treated with RNase-Free DNase
(QIAGEN). RNA quantity and integrity were assessed with the
Agilent 2200 TapeStation system (Agilent Technologies). RNA
samples with RNA integrity numbers (RINs) ≥ 8.2 were used for
bulk RNA-seq. Neutrophil RNA extraction for Fluidigm RT-PCR
validation were performed using PowerLyzer UltraClean Tissue and
Cells RNA Isolation Kit with On-Spin Column DNase I Kit
according to manufacturer’s instructions (MoBio, Carlsbad, CA)
according to kit instructions.

Bulk RNA sequencing

RNA was fragmented and prepared into libraries using the
TruSeq Stranded Total RNA Sample Preparation Kit (Illumina).
The two neutrophil libraries were diluted and pooled in
approximately equimolar amounts with other eight sorted

immune cells previously reported (Herrera-Uribe et al., 2021),
Pooled libraries were sequenced in paired-end mode (2 × 150-bp
reads) using an Illumina NextSeq 500 sequencer (300 cycle kit).

Preprocessing, mapping, alignment and
sample level quality control for bulkRNA
data

RNA-seq data processing was performed as reported (Herrera-
Uribe et al., 2020). The GTF file for the pig reference genome
Sscrofa11.1 (Ensembl, version 97) was used as the genome
annotation file to be consistent with the previous report, and
because version 97 may be more complete for some important
immune genes than later versions (Herrera-Uribe et al., 2021).
Mapped read counts per gene from pair-end reads and single-
end reads generated from initial trimming of each sample were
added together to get the final count table. Given that different types
of immune cells have quite different transcriptome profiles (Hicks
and Irizarry, 2015), YARN (Paulson et al., 2017), a tissue type-aware
RNA-seq data normalization tool, was used to filter and normalize
the count table. Genes with extremely low expression levels were
filtered out using the filterLowGenes function such that only genes
with more than 4 read counts in at least one replicate were kept. The
final count table contained 10,974 genes, which was then normalized
using the normalizeTissueAware function, which leverages the
smooth quantile normalization method (Hicks et al., 2018).

Exploratory analysis of RNA-seq data was performed using the
DESeq2 package (version 1.24.0) (Love et al., 2014) within the
RStudio software (v1.2.1335). First, regularized log-
transformation was applied to the normalized count table with
the rld function. Then principal component analysis (PCA) and
sample similarity analysis was carried out and results were visualized
using the plotPCA and distancePlot functions. Heatmaps to display
enriched genes were created using the pheatmap package (v1.0.12).

Identification of cell type-enriched genes in
pig bulk RNA dataset

We identified genes with cell type-enriched expression using the
method previously reported (Herrera-Uribe et al., 2021). Briefly, a
gene was labeled as cell-type enriched if the expression level
(averaged across cell types) of a given gene in one cell type was
at least two-times higher than the averaged expression level of the
given gene across all remaining cell types and the adjusted p-value of
this contrast was less than 0.05 (Benjamini and Hochberg, 1995).
Heatmaps to display enriched genes were created as mentioned
above.

For cross species comparison, human and mouse neutrophil
(Haemopedia) RNA-seq expression data (Hilton Laboratory at the
Walter and Eliza Hall Institute) was used (Choi et al., 2019).
Neutrophils for these data sets were isolated using a similar
method as described above: depleting red blood cells from the
erythrocyte-rich pellet by lysing erythrocytes, plus negative
selection of eosinophils and further cell purity confirmation by
flow cytometry. Only orthologous genes with one-to-one matches
between human and pig (orthologs gene list obtained from Ensembl
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FIGURE 1
Genes enriched in porcine neutrophil transcriptome are linked to specific GO pathways and PPI networks. (A) Heatmap showing the top 25% of
HEGs in Neutrophils and eight sorted cells, in decreasing order of fold change difference in expression. (B) Ontology enrichment clusters of SEGs. The
most statistically significant term within cluster was chosen to represent the cluster. Term color is given by cluster ID and the size of the node is
proportional to–log10 p-value of enrichment. The stronger the similarity among terms, the thicker the edges between them. (C) PPI networks of
SEGs. A unique color was assigned to each MCODE network.
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BioMart (Durinck et al., 2009) were compared. Spearman’s rank
correlation analysis was performed to identify correlation between
expression levels (transcript per million, TPM) of orthologs gene in
pig and human neutrophils. The significance level was set at p <
0.05 and the level of Spearman’s rank correlation coefficient (rho, ρ)
was defined as low (ρ < 0.3), moderate (0.3 ≤ ρ < 0.5), and strong (ρ ≥
0.5) correlation.

Gene ontology (GO), protein-protein
interaction enrichment analysis (PPI) and
transcription factor (TF) enrichment analysis

Gene Ontology (GO) analysis of the top 25% enriched genes was
performed using Metascape (Zhou et al., 2019). The threshold
p-value was set to 0.01. Several terms were clustered into the
most enriched GO term. Term pairs with Kappa similarity score
above 0.3 were displayed as a network to show relationship among
enriched terms. Protein-protein interaction enrichment analysis of
the same gene list was performed using STRING (Szklarczyk et al.,
2019), BioGrid (Stark et al., 2006), OmniPath (Türei et al., 2016) and
InWeb_IM (Li et al., 2017) databases.

The Molecular Complex Detection (MCODE) algorithm was
applied to identify densely connected protein network components
(Bader and Hogue, 2003). The three best scoring terms by p-value

were retained as the functional description of the corresponding
components. Only orthologous genes were compared. All Ensembl
gene IDs with detectable expression level in neutrophils as defined
above were used as the background reference. All networks
displayed were visualized using Cytoscape.

Real time PCR verification of differentially
expressed genes in neutrophils

Briefly, RT-qPCR analysis was run on the Fluidigm BioMark
HD System, using 48 × 48 Fluidigm Dynamic Arrays (Fluidigm,
South San Francisco, CA). Primer efficiency was tested
simultaneously. Four porcine neutrophils and PBMC RNA
samples were included in the assay. Also, serial dilutions of a
neutrophil-PBMC pooled sample were included in the Fluidigm
plate for primer efficiency calculation. The set of genes assayed were
part of a previously developed assay dataset (Schroyen, Marco and
Tuggle, unpublished results). Within this independent dataset, we
selected all neutrophil significantly enriched genes (SEG, defined
below) present (a total of 14) and also selected five genes that were
not present in the SEG list for further analysis. The cDNA was pre-
amplified for 14 cycles (10 min at 95°C followed by 14 cycles of 95°C
for 15 s and 4 min at 60°C) in reactions primed by a master mix of
48 TaqMan Gene Expression Assays (Applied Biosystem) using

FIGURE 2
Co-expression network analysis identifyingmyeloid gene clusters across porcine immune cells. (A)Co-expression network analysis (edges between
gene nodes shown for correlation r > 0.95) among genes whose expressions were enriched for neutrophils across nine porcine immune cell types and
their expression patterns. In the network, the gene nodes (n = 681), and node colors indicate log2 fold change (log2FC) between myeloid cells,
neutrophils andmonotypes (e.g., positive value indicates higher expression in neutrophils). The node shapes represent the cell type with the highest
expression for that gene; circle, square, and triangle indicate neutrophils, monotypes, and other cell types, respectively. (B) In the heatmap, gene rows
were clustered based on the correlation levels and sorted by log2FC in neutrophils.
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PreAmp Master Mix (Applied Biosystem). Following a 5-fold
dilution of pre-amplified product in water, samples and Assays
were loaded onto the plates using the 48.48 MX IFC Controller
(Fluidigm). Real-time PCR was performed using the BioMark
System for Genetic Analysis (Fluidigm). Cycle threshold (Ct)
values were determined using real-time PCR analysis
v3.1.3 software (Fluidigm). Ct values corresponding to transcripts
encoding ACTB and RPL32 were used as endogenous controls.
Changes in transcript expression were calculated using the ΔΔCt
method (Livak and Schmittgen, 2001) and converted to log2 scale.
Graphs and Student’s t-test statistical analyses were generated using
Prism 6 (GraphPad). p-values <0.05 were considered statistically
significant. Additionally, a Pearson correlation analysis was
performed to determine concordance between RNA-seq data and
Fluidigm qPCR gene expression values. The significance level for
Pearson correlation analysis was set at p < 0.05.

Gene co-expression network analysis

The normalized gene expression levels (transcripts per million;
TPM) (Patro et al., 2017) of Significant Enriched Genes (SEGs) (n =
832) across 9 cell types were used in the co-expression network
analysis using the partial correlation coefficient with information
theory (PCIT) algorithm (Reverter and Chan, 2008; Koesterke et al.,

2013). The gene co-expression networks of 681 genes (nodes) with
the absolute value of the correlation coefficient greater than
0.95 were visualized using Cytoscape v3.8.2 software (Shannon
et al., 2003) (Figure 2A). The log2 transformed (TPM+1) values
were used to create heatmaps using the pheatmap package in R to
show expression patterns across cell types (Figure 2B). To identify
candidate neutrophils specific regulators, transcription factors (n =
30) in cluster 1 which showed myeloid specific expression were used
in another heatmap (Figure 3). The cell expression data from human
and mouse (Choi et al., 2019) were plotted into Figure 3 to compare
cell type specific expression patterns across species. The gene
expression values (TPM) were normalized relative to the gene
expression level in neutrophils for comparison purposes across
cell types.

Neutrophil ATAC-seq library preparation

After thawing, neutrophils were immediately lysed, nuclei were
counted and transposed with Tn5 transposase following the
standard protocol (Buenrostro et al., 2015). In brief,
50,000 nuclei were incubated for 30 min at 37°C in transposase
reaction buffer (25 µL TD-2x reaction buffer, 2.5 µL TDR1-Nextera
Tn5 Transposase and 22.5 µL Nuclease Free H2O). Transposed
DNA was isolated using MiniElute PCR Purification Kit (Qiagen)

FIGURE 3
Gene expression pattern of selected transcription factors (n = 30) in cluster 1 of the neutrophil network (r > 0.95). The human and mouse datasets
(Choi et al., 2019) were compared to the pig data, and expression levels across cell types were standardized by the expression levels in neutrophils of each
gene to visualize the relative gene expression level compared to that in neutrophils. The asterisk indicates the transcription factors with neutrophil-
specific expression in pigs.
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and eluted with 10 µL of Elution buffer (Qiagen). DNA size selection
for 100 to 800-bp fragments from the purified libraries was
performed using BluePippin cassettes (Sage Science). Libraries
were pooled and sequenced on an Illumina HiSeq
3000 sequencer to generate 50-bp paired-end reads at the Iowa
State University DNA facility.

ATAC-seq data analysis

ATAC-seq data processing was performed as previously
reported using the nf-core pipeline nf-core/atacseq (Ewels et al.,
2020). Read quality was checked using MultiQC version 0.11.7
(Ewels et al., 2016). Illumina sequencing adapters and low-quality
bases were trimmed using Trim Galore (version 0.6.5). Paired-end,
trimmed reads were separately mapped to the Sus scrofa 11.1 pig
reference genome using the BWA mem aligner (Li and Durbin,
2010). Sequence duplicates from the paired-end and singleton reads
were marked in each individual BAM file, and then BAM files were
merged for each sample. Library insert size and duplication rate were
checked using picard tools1. Duplicate and mitochondrial reads were
removed from the aligned reads. The BAM files were used for peak
calling with the MACS2 tool, and either broad or narrow peaks were
detected with a q-value cutoff of 0.052. HOMER was used to
annotate peaks relative to known genomic features3. The fraction
of reads in peaks (FRiP) was calculated using the combined
alignments from both replicates. The Integrative Genomics
Viewer (IGV) was used to performed visual inspection of the
data and visualize the open chromatin regions using bigWig files.
Visualization of genome-wide chromatin open regions enrichment
at the TSS and across the gene body were visualized using deepTools
(Ramírez et al., 2014). Overlapping peaks from all samples were
merged to form a consensus peak list.

Integration of RNA-seq and ATAC-seq data

The read counts of narrow peaks from the ATAC-seq data were
standardized as reads per kilobase. The read counts per kilobase were
normalized by the trimmed mean of M values (TMM) and then by
count per million values, computed for each peak using the EdgeR
package in R. An intensity of cut site at open chromatin region (OCR)
in the promoter of each gene was assessed by the sum of the normalized
count values of the peaks overlapping with a given gene’s promoter
region which were defined as the transcription start site (TSS) ± 3 kb.
The length of OCRs in the promoter region (TSS-OCRs) for each gene
was also calculated. To evaluate the effects of the cut site intensity and
the length of accessible regions within promoters on gene expression in
neutrophils, Pearson correlations were computed between ATAC-seq
peaks either for all expressed genes or for neutrophils enriched genes.

The log2 transformed values of gene expression and TSS-OCRs cut
intensity and length were used in the correlation analysis.

Motif enrichment analysis for open
chromatin regions in transcriptional start
site (TSS-OCR)

To find transcription factors exhibiting neutrophil specific
expression, transcription factor binding motifs (TFBM) were
identified by enrichment analysis of the neutrophil enriched
genes TSS-OCR using the HOMER command
findMotifsGenome.pl4. The binding motifs for three (KLF5,
GFI1B, and GATA1) of the four neutrophil-specific transcription
factors identified were annotated in the HOMER database, and these
were further investigated to find neutrophil specific genes that had
the corresponding motifs in their promoter regions. In addition,
protein-protein interactions among neutrophil specific genes were
investigated in the STRING database (Szklarczyk et al., 2019). We
constructed the network focusing on the four transcription factors
identified above with their target genes based on binding motifs and
protein interactions.

Integration of DNA methylation data, RNA-
seq and ATAC-seq data

We compared neutrophil gene expression and chromatin
accessibility data with previously published DNA methylation
data from the same cell populations (Corbett et al., 2022).
Average DNA methylation profiles for neutrophil-enriched genes
and neutrophil ATAC peaks were generated using deepTools
ComputeMatrix command (Ramírez et al., 2016) with default
parameters and including 2-kb regions flanking these genes and
peaks. Enrichment of neutrophil SEGs and HEGs within neutrophil
lowly methylated genes in different genomic feature contexts was
calculated using hypergeometric tests. Regions of overlap between
neutrophil lowly methylated regions (LMRs) and ATAC peaks were
identified using bedtools intersect (Quinlan and Hall, 2010), and
overlap enrichment was calculated using hypergeometric tests.

Results

Bulk RNA-seq analysis revealed enriched
transcriptome gene sets of porcine
neutrophils in circulating immune cells and
similarities with human neutrophils

The genome-wide transcriptome profile of porcine neutrophils
was determined using RNA-seq, and the data was compared with
eight different immune cell transcriptomic profiles to identify genes
enriched for expression within the neutrophil cell type. RNA-seq
libraries contained an average of 40 M clean reads, of which 94.4%

1 https://broadinstitute.github.io/picard/

2 https://hbctraining.github.io/Intro-to-ChIPseq/lessons/05_peak_calling_
macs.html

3 http://homer.ucsd.edu/homer/ngs/annotation.html 4 http://homer.ucsd.edu/homer/
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aligned to the Sus scrofa reference genome after filtering
(Supplementary File S1). Relationships among the nine porcine
immune cell transcriptomes were assessed by principal
component analysis (PCA) and hierarchical clustering
(Supplementary Figure S2). While erythrocyte contamination of
neutrophils is highly likely in the dataset given the neutrophil
isolation method used, we only found low expression of two red
blood gene markers (HBB: 37 TPM andHEMGN: 1 TPM) identified
previously by single cell analysis of human red cells (Jain et al., 2022).
Read counts for other red blood cell markers such as HBA, HBD,
HBG, NIX, ACVR2B, AHSP and HEMGN were zero in the porcine
neutrophil transcriptome for these samples (Supplementary File S1).
These results indicated a low level of erythrocyte contamination in
the neutrophil samples, and neither HBB nor HEMGN were found
in further differential gene expression analysis. In the PCA analysis,
neutrophils appeared closest to monocytes, and both were clearly
distinguished from other cell types.

The total number of expressed genes detected in neutrophils was
10,974, which were used for differential gene expression (DGE)
analysis across cell types. Significantly enriched genes (SEGs) were
identified in neutrophils as genes whose expression was both
significantly different (adjusted p-value<0.05) and a minimum of
two-fold higher in expression than the average of all other cell
populations (see Methods). In total, we identified 832 SEGs
(Supplementary File S1). A subset of the SEGs were selected as
highly enriched genes (HEG, 25% highest in log2 FC value) and
neutrophil HEG expression across all cell types was visualized
(Figure 1A). Although the high expression of these 208 HEG in
neutrophils is evident in comparison with the other previously
reported cell types, we also observed gene expression similarities
with the myeloid (monocytes and dendritic cells) population for
many HEG genes (Figure 1A; Supplementary Figure S2). GO
analyses using neutrophil HEG indicated enrichment for
biological processes such as myeloid leukocyte activation,
cytokine-cytokine receptor interaction, response to bacterium and
phagocytosis among others, which is characteristic of the
neutrophils, and depicted as networks of similar terms (Figure 1B
and Supplementary File S2). Protein-protein interaction (PPI)
analysis shows proteins in networks that are believed to interact
with each other to promote specific biological processes on the basis
of experimental and computational data (see Methods). The PPI
analysis of HEGs detected 16 subgroups of protein interactions
(Figure 1C and Supplementary File S2) such as regulating exocytosis,
neutrophil degranulation, type I interferon and NF-kappa B
signaling pathways, among others. Overall, evaluation of
predicted functional annotations within the neutrophil HEGs
provided evidence of genes enriched in functions very consistent
with neutrophils, indicating that our isolated cell population and the
RNA-seq data obtained represent the expected immune cell type.

Four independent porcine neutrophil and PBMC samples were
obtained to validate the RNA-seq expression results. RNA isolation
and qPCR analysis of 14 genes was performed using available data
from a previously validated assay (Schroyen, Marco and Tuggle,
unpublished results). The estimate of fold change ratio calculated by
analyzing the genes expression of 19 genes between neutrophil and
PBMC samples using qPCR was compared to the fold change ratio
of SEGs in neutrophil (see methods) using RNA-seq. In total,
fourteen genes within the SEG list (ALOX5AP, BCL6, CHI3L1,

CDF2RB, GRN, IL13RA1, ILR2, IL18RAP, PLXNC1, TLR8,
TSPAN2, SERPING1, SOD2 and VNN2) and five genes that were
not SEGs in neutrophils (CTSS,GMPR, PIM1,NCF2 andUBN1) had
gene expression levels that were very consistent with the DGE
analysis and confirm the higher expression of SEGs in
neutrophils compared to PBMC (Supplementary Figure S3;
Supplementary Figure S4). These 19 genes exhibited strong and
highly significant positive correlation (rho = 0.71, p-value 0.00074)
between the RNA-seq and Fluidigm analyses (Supplementary Figure
S5). In conclusion, gene expression enrichment found using RNA-
seq was confirmed using the Fluidigm qPCR assay in an
independent neutrophil dataset.

Co-expression network and enriched genes
reveals specific transcription factors
expression in porcine neutrophils

RNA expression patterns reflect a significant correlation
structure in the transcriptome, and co-expressed genes are
frequently similar in biological function (van Dam et al., 2018).
Hence, we hypothesized that defining co-expressed genes, and
identifying those in the co-expressed network that are enriched
in neutrophils, would help us to identify specific genes and
transcription factors that would be driving the gene expression
important for specific porcine neutrophil functions. To address
this hypothesis, we defined co-expressed genes across the nine
major immune cell type transcriptomes available. Co-expression
networks across these cell types contained 681 genes (r ≥ 0.95) and
were constructed based on the PCIT algorithm (Reverter and Chan,
2008; Koesterke et al., 2013). A co-expression network for all SEGs
was constructed from this analysis (Figure 2A). Three easily
distinguishable co-expression subnetwork clusters were detected,
of which cluster 1 (n = 598) showed uniquely higher expressions in
myeloid cell types such as neutrophils and monocytes compared to
very low expression in lymphoid cell types (Figure 2B and
Supplementary File S3). A subset of neutrophil co-expressed
genes was also present in the other two clusters that also show
expression in other cell types. Genes from cluster 2 genes are
expressed in SWC6 (Swine workshop cluster 6) γδ T and
CD21 nB B cells, while cluster 3 genes were also expressed in NK
cells and B cells (CD21 pB and CD21 nB) (Figures 2A,B,
Supplementary File S3).

To achieve a more refined understanding of the neutrophil
biology underlying the co-expression network, we used a more
stringent criterion to determine neutrophil-specific genes (NSGs)
for further analysis. NSGs were defined as SEGs that were a) co-
expressed (r ≥ 0.95), b) had highest expression in neutrophils, and c)
were statistically significantly (q < 0.05) two-fold higher in
expression than in monocytes/dendritic cells. A total of 80 NSGs
were identified based on these criteria (Supplementary File S3), of
which 30 have been annotated as a transcription factor (Figure 3).
Four of these NSGs were designated as neutrophil specific
transcription factors (NSTF) in pig, and include GATA1, MXD1,
KLF5, and GFI1B (Figure 3). Additionally, the pig neutrophil data
allowed us to also identify porcine myeloid specific transcription
factors (MSTF) (TF with highest expression in neutrophils or
monocytes/dendritic cells and were statistically significantly (q <

Frontiers in Genetics frontiersin.org08

Herrera-Uribe et al. 10.3389/fgene.2023.1107462

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1107462


0.05) two-fold higher in expression than the other seven porcine cell
types, Figure 3 and Supplementary File S3). Thus, porcine MSTF
were also identified (DACH1, ZNF648, CEBPB, CEBPA, CEBPD,
LTF, LITAF, VDR, NFE2, BATF2, IRF7, TCF7L2, SPI1 and SMAD9)
(Figure 3). Interestingly,HHEX was identified as part of the myeloid
co-expression network in Figure 2A but was also highly expressed in
B cells; similar TF expression was observed for FOSL2 and BCL6 that
were part of the myeloid co-expression network and were highly
expressed in NK cells.

Finally, we compared the expression of all TFs on the NSGs list
with orthologous human and mouse genes from Haemopedia (Choi
et al., 2019), finding two NSTF that have higher expression in
neutrophil versus monocytes across species, MXD1 and KLF5
(Figure 3). Also, LTF, LITAF and NFE2 showed higher
expression in neutrophils for all three species, but not as high as
MXD1 and KLF5 in porcine cells. In addition, two MSTF have
higher expression in pig and human (CEBPD) and in all three
species (CEBPA).

Accessible chromatin regions in porcine
neutrophils reveals high quality data and
moderate correlation with neutrophils
enriched genes

To define the accessible chromatin in neutrophils from healthy,
non-stimulated pigs, we performed ATAC-seq from duplicate
samples to those used for neutrophil RNA-seq analysis. We
generated approximately 227 million ATAC-seq reads in total, of
which 99% were aligned to the Sus scrofa reference genome
(Supplementary File S4). ATAC-seq libraries contain short
fragments (<100 bp), which represent nucleosome-free regions,
and larger fragments that span one or more nucleosomes. Clear
nucleosome distribution was observed (Figure 4A). Such fragments
are mapped to the genome and merged into peaks when sufficient
signal is present (Methods). On average, we identified a total of
~134,000 accessible chromatin elements, of which 57,567 were
designed as consensus broad peaks in both library samples
meeting the ENCODE standards for ATAC-seq5. The ENCODE
quality control measure, FRiP score, was over 0.4 in our dataset,
which is higher than the minimum of 0.2 used for ENCODE ATAC-
seq data (Ou et al., 2018). Consensus narrow peaks averaged around
1 Kb in width, and ATAC-seq signal from both replicates were
highly significant and strongly correlated (r = 0.93, p < 2.2e-16)
(Supplementary Figure S6). To confirm and annotate the
distribution pattern of the ATAC-seq peaks, we analyzed the
ATAC-seq reads distribution across transcriptional start and end
sites (TSS, TES) (±3.0 Kb) in Sus scrofa reference genome and
assigned peaks to genomic features (Figures 4B,C). Although
most peaks were located at the intronic or intergenic space
(Figure 4C), a clear enrichment of peaks was seen very close to
the TSS in the gene-proximal space (Figure 4B), indicating we were
able to detect accessible chromatin at active genes. Furthermore, we
observed accessible chromatin around TSS regions of enriched genes

that are typically involved in pathogen recognition (TLR4), DNA-
binding transcription activator activity (CEBPB, KLF5), and
interferon signaling pathway (ISG15) (Figure 4D), as well as a
lack of accessible chromatin at genes with low or no expression
in neutrophils (such as ZP3 and FABP6) (Supplementary Figure S7).
These results demonstrate the high sensitivity of ATAC-seq to detect
regions associated with active gene promoters.

To expand comparison of ATAC-seq signals and gene
expression genome-wide, Pearson correlation analysis was
performed to test the relationship between gene expression and
ATAC-seq signal intensity and length around TSS (±3 kb). Highly
significant but relatively low correlation (r = 0.23, p-value <2.2e-16)
was found between the ATAC-signal cut density and all genes used
in comparative analysis in this study across cell types (n = 11,151)
(Figure 5A). Interestingly, similarly significant and moderate
correlation (r = 0.30, p-value <2.2e-16) was observed for
enriched genes in neutrophils, (Figure 5B). For both analyses,
some expressed genes did not show accessibility within promoter
regions, over a range of expression levels. Therefore, we calculated
the correlation between enriched genes and accessible regions that
had at least one TSS-OCR. As a result, we found the highest
correlation with similar significance (r = 0.41, p-value <2.2e-16)
(Figure 5C). Finally, we also identified a weak correlation between
gene expression and the length of TSS-OCR in the same
comparisons that were performed for ATAC-seq signal intensity
(Supplementary Figure S8). Overall, ATAC-seq analysis
demonstrated high quality and enrichment for ATAC-seq regions
around regulatory regions such as TSS genome-wide.

Neutrophils DNA methylation is highly
negatively associated with RNA-seq and
ATAC-seq data

We used published DNA methylation data generated from
samples collected from the same pigs in parallel (Corbett et al.,
2022) to determine whether neutrophil DNA methylation was
related to gene expression and accessible chromatin regions.
Also, we tested the significant enrichment between differentially
methylated regions (DMR) (calculated across the same immune cell
populations used in this study) and SEGs and HEGs. As is shown in
Figure 6A, neutrophils SEGs exhibit low DNA methylation patterns
across TSS regions, which indicates activation of gene expression in
both neutrophil replicates. Lowly methylated regions (LMRs) were
highly enriched among neutrophil SEGs (p = 2.4 × 10-3). In total,
119 neutrophil SEGs showed LMRs in comparison with other
porcine immune cell methylomes reported previously
(Supplementary File S6) (Corbett et al., 2022). LMRs across SEGs
gene features showed that promoters and transcription termination
sires (TTS) have higher enrichment with the expression of SEGs
(Figure 6B). However, significant high enrichment of LMRs in
intragenic regions of SEGs was also evident, indicating that low
methylation was associated with neutrophils SEGs outside promoter
regions Figure 6B. The strongest LMR enrichment was observed
around promoter of HEGs (p = 7.19E-4), which are the top 25% of
SEGs, demonstrating a stronger association between DNA
methylation and gene expression. Additionally, we tested the
relationship of genome-wide neutrophil DNA methylation5 https://www.encodeproject.org/atac-seq/
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distribution and chromatin accessibility (ATAC-seq signal) across
expressed genes in neutrophils. In general, we observed a depletion
of DNA methylation in all sequence contexts near open chromatin

peaks of expressed genes in neutrophils (Figure 6C). Indeed, we
detected 7.4-fold enrichment of LMRs in ATAC-seq peaks (p < 1 ×
10-16), which demonstrate a high association between DNA

FIGURE 4
ATAC-seq analysis of porcine neutrophils. (A) Distribution of ATAC-seq data fragment length from one neutrophil replicate. Fragment size
distribution plot shows enrichment less than 100 bp and around 100-200 bp, indicating nucleosome-free region and mono-nucleosome-bound
fragments, respectively. Similar distribution was observed for the other replicate (data not shown). (B) TSS enrichment plot from one neutrophil replicate
shows that nucleosome-free fragments are enriched at TSS. (C) Peak annotation plot shows ATAC-seq peaks distribution genome-wide. (D)
Visualization of ATAC-seq peaks using the Integrative Genomics Viewer (IGV) near example SEGs in porcine neutrophils (TLR4 FC: 7.2,CEBPB FC: 3, KLF5
FC: 5.9 and ISGS15 FC: 4.4).
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methylation and chromatin accessibility in porcine neutrophils.
There was a trend towards higher ATAC-seq signal among peaks
overlapping neutrophil LMRs compared to those not overlapping

LMRs (Figure 6D), indicating that, on average, chromatin
accessibility increases when coupled with DNA hypomethylation.
Collectively, these results link DNA methylation with control of

FIGURE 5
Relationship of gene expression with the intensity of ATAC-seq peak overlapping the gene’s promoter region (TSS-OCR). (A) All genes. (B) SEGs. (C)
NSGs that have at least one TSS-OCR (open chromatin regions around ±3 kb from the TSS).

FIGURE 6
Porcine neutrophil methylation data is associated with neutrophil gene expression and ATAC-seq peaks. (A)Methylation rates genome wide across
the transcription start site of neutrophils SEGs for each replicate sample. (B)Heatmap of normalized enrichment p-values of neutrophils lowlymethylated
regions (LMRs)m SEGs and HEGs overlapping different genomic features. (C) Methylation rates genome wide gene across ATAC-seq peaks that were
detected in porcine neutrophils. (D) Fold enrichment of LMRs genome wide across ATAC-seq peaks.
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chromatin accessibility and gene expression patterns in porcine
neutrophils.

Transcription factors involved in co-
expression networks in porcine neutrophils

Accessible chromatin is expected to contain regulatory
elements bound by transcription factors controlling expression
of nearby and remote genes. To identify the potential regulatory
role of NSTFs in NSG promoter regions, we determined the
enrichment of transcription factor binding motifs (TFBMs)
within narrow ATAC-seq peaks around promoter regions
(±3000 bp from TSSs) of NSGs. Within 8,415 peaks around the
promoter regions of 7,868 genes expressed in neutrophils, 65 peaks
overlapped promoter regions of 58 of the total 80 NSGs
(Supplementary Figure S9). TFBM analysis focused on known
binding motif on those 65 TSS-OCR revealed that NSTFs such as
GATA1, GFI1B, and KLF5 were predicted to bind motifs enriched
in the TSS-OCR. A total of 52 NSGs were predicted to have motifs
within their open chromatin regions corresponding to these NSTF
(Figure 7). Most NSGs had predicted enrichment for KLF5 motifs
(46), followed by GATA1 (13) and GFI1B (10), with a limited
number of genes with more than one TF motif predicted
(Figure 7A). A network of the NSG predicted to be regulated
by these NSTF was then constructed (Figure 7B). Interesting,
17 NSGs were predicted to be regulated by more than one
NSTF, including CD101, CERS4 and SPHK1, CAMK1, IFIT1,
MARCKS, TMEM92 and several unannotated genes. The NSTF
gene MXD1 was predicted to be regulated by both GATA1 and
GFI1B. Interestingly, several genes in this doubly-regulated group
have been annotated to interact with other members of this group,
including ACSL1 (interaction partner: ACSL4), CERS4 (interaction
partner SPHK1), and BST1 (two interaction partners: ADAM18
and C4BPA) (Figure 7B). The latter interaction network is
interesting as three other predicted NSTF target genes interact
with BST1, indicating that BST1 may be an important protein in
neutrophil function. An additional interaction network was seen
for IFIT1 which interacts with predicted targets ISG15 andHERC5,
as well as non-enriched gene IFIT2. Finally, several other genes are
in the diagram that were not shown to have enrichment of nearby
NSTF motifs (such as MMP9, PDLIM1, TIAM2 and ARHGAP15),
but nevertheless are predicted to interact with other genes
predicted to be transcriptionally regulated by NSTF (Figure 7B).

Discussion

In this study, we report the first comprehensive integrative
analysis of chromatin accessibility and transcriptome of
neutrophils isolated from non-stimulated pigs to expand the
epigenetic and transcriptomic annotations of this important
porcine innate immune cell. We then combined RNA-seq and
ATAC-seq data to link neutrophil transcriptomic with genome-
wide accessible chromatin data to identify potential regulatory
relationships controlling neutrophil-specific gene expression. In
consequence, we identified porcine neutrophil networks based on
chromatin accessibility combined with TF and potential target genes

enriched in neutrophil expression that may regulate this specific
porcine neutrophil transcriptional program.

The RNA analysis of porcine neutrophils demonstrated these
cells have a very different transcriptional pattern compared to
previously reported porcine mononuclear cell transcriptomes
(Herrera-Uribe et al., 2021) including three types of T cells
(CD4−CD8+, CD4+CD8a−, CD8+CD4+, γδT-cells), NK and two
types of B cells. However, the RNA expression patterns were
more similar to the monocytes/DC population reported in that
study. Further, the GO terms associated with genes whose
expression was highly enriched in neutrophils were characteristic
of known neutrophil function and pathways.

Based on the hypothesis that correlated expressed genes are
more likely to have a similar biological role than genes with diverse
expression pattern (Mola et al., 2020), we identified co-expressed
gene clusters across the nine types of porcine immune cells
mentioned above. Initially, we identified a myeloid cluster (for
neutrophils and monocytes/DC), and by increasing the
stringency, we identified a list of NSGs co-expressed specifically
in neutrophils (SEG and co-expressed genes). The NSGs and
myeloid dataset lists published here might be utilized in
comparative analyses of neutrophils across species, to predict
neutrophil content in whole blood via machine learning methods
(Maslova et al., 2020).

Within the co-expressed neutrophil specific genes, it was
interesting to identify a number of genes encoding TF. In fact,
multiple TF with known roles within the innate immune system
were found, especially TFs with myeloid and neutrophil functions
given that both cell types are differentiated from the same bone
marrow-residing precursor cell (Mehta et al., 2014). The well-known
examples are essential TFs for myeloid and neutrophil
differentiation such as SPI1 (which encodes PU.1), CEPA/B,
GATA1, KLF5 and GFI1B (Bjerregaard et al., 2003; Duan and
Horwitz, 2003; Shahrin et al., 2016; Denholtz et al., 2020;
Khoyratty et al., 2021). Red and white blood cell differentiation is
driven by GATA1 and PU.1, which act by mutual repression in the
myeloid lineage (Nerlov et al., 2000). Recently, Fischer and others
demonstrated that PU.1 drives an inhibitor epigenetic program in
neutrophils which prevent the induction of an excessive innate
immune response (Fischer et al., 2019).

GFI1B, a porcine NSTF found in our study has been shown to be
an essential TF for neutrophil differentiation in mice; it is also
necessary for the formation of both erythroid and megakaryocytic
lineages in knockout mice (Saleque et al., 2002; Vassen et al., 2007).
In human and mice, GFI1B mutations are linked to severe
neutropenia and platelet shape, number, and function (Stevenson
et al., 2013; Anguita et al., 2017; Geissler et al., 2018). The molecular
function of GFI1B is to repress the expression of target genes
(Vassen et al., 2005). GFI1B binds to the DNA, recruiting histone
deacetylases and demethylases, which decrease gene expression (van
der Meer et al., 2010). Another fundamental TF for neutrophil
differentiation and commitment is KLF5, which was also found as a
NSTF in our study. In vivo studies have revealed that loss of KLF5
expression was associated with attenuated neutrophil differentiation
(Shahrin et al., 2016). Additionally, reduction of KLF5 expression
was also reported in acute myeloid leukemia cancer (Humbert et al.,
2011), where the neutrophils counts are also reduced (Zhang et al.,
2021). Our approach further identified TFs highly expressed in
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porcine neutrophils and in other immune cell types. For example,
HHEX and FOSL2, which in concordance with previous studies are
highly expressed in neutrophils, B cells (Laidlaw et al., 2020) and NK
cells (Grassi et al., 2018; Li et al., 2020), respectively. Additionally, we
were able to find MSTFs such as SPI1, CEBPB and CEBPA, which
also have been reported as highly expressed in human and mice
myeloid lineages (Rosenbauer and Tenen, 2007; Mildner et al., 2017;
Braun et al., 2019). Overall, these study results suggest a group of
NSTFs in pig that have functional roles in the granulocyte lineage in
other species such as mouse and human and therefore confirm the
value of the porcine NSTFs list identified in this study.

We observed global chromatin accessibility regions that are
comparable to those reported in mice (Fischer et al., 2019).
Although ATAC-seq studies have been performed on human
neutrophils, the depth of this analysis compared to our study was
unclear as the number of total peaks in non-stimulated human
neutrophils were not reported (Mistry et al., 2019; Ram-Mohan
et al., 2021). In this study, we have detected slightly more accessible
regions compared to those detected in mouse neutrophils.
Khoyratty, et al., 2021 reported 47,164 ATAC-seq peaks across
different murine neutrophil developmental stages (Khoyratty
et al., 2021; Fischer et al., 2019) found around 20,000 ATAC-seq
peaks (Fischer et al., 2019), in non-stimulated mouse neutrophils.
Chromatin spatial and peak genomic distribution was similar to
those reported in human neutrophils under non-stimulated
conditions (Chen et al., 2016; Ram-Mohan et al., 2021).

Interestingly, neutrophils plasticity has been attributed to changes
in the chromatin structure, and the openness and closeness of the
TFBM are responsible for the specific neutrophil response against a
specific stimulus (Chen et al., 2016; Ram-Mohan et al., 2021). Ram-
Mohan et al., 2021 identified specific chromatin changes in human
neutrophils against different toll-like receptor (TLR) activators and
E. coli, suggesting that highly differentiated neutrophils could
modify their chromatin to affect transcriptional changes
(reviewed in Rosales, 2018). Taken together, we provided for the
first time the chromatin accessibility patterns in porcine neutrophils
under non-stimulated conditions. Identifying the accessible
chromatin regions and chromatin states with different pathogens
or different TLR mimics in these cells would further evaluate
neutrophil plasticity at the epigenomic and transcriptomic level
in the pig.

By the integration of transcriptomic and chromatin accessibility
data from biological replicate samples, we developed more detailed
information on the transcriptional mechanics controlling gene
expression in porcine neutrophils. First, we investigated the
correlation between the promoter accessibility of a gene and its
respective expression. We identified a significant positive
correlation, which showed consistent correlation for all expressed
genes and SEG. However, there were genes that showed an opposite
pattern of promoter accessibility (no peak detected around promoter
region) and expression (expressed in porcine neutrophils). Different
studies have shown that low (or high) gene expression is not always

FIGURE 7
Neutrophil co-expression network created with epigenetic and transcriptomic data. (A) The number of genes that had binding motifs for the three
neutrophil-specific transcription factors (TFs) within TSS-OCRs, and the network based on binding motifs and protein-protein interactions. In the
network (B), the node (circle) indicates each gene, and the pink color indicates TFs. The double line between nodes represents the interaction in the
protein level, and the purple arrow with a solid line point to a gene that had a binding motif of the source node.
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associated with a lack of chromatin accessibility (Hughes et al., 2017;
Su et al., 2017; Rajbhandari et al., 2018). As well, accessible
chromatin regions around gene promoters are not always
associated with expressed genes or regions marked with active
histone modifications (Ackermann et al., 2016; Daugherty et al.,
2017). Additionally, incomplete promoter annotation, especially in
farm animals (Kern et al., 2021), could affect the correlation between
accessible chromatin regions and gene expression.

We used recently published DNA methylation data from the
same porcine neutrophil sample (and other eight porcine immune
cells, see methods) (Corbett et al., 2022) to interrogate the
relationship between DNA methylation levels, gene expression
and chromatin accessibility. The integration of these data
revealed that promoter regions with accessible chromatin
exhibited low methylation, and highly neutrophil-enriched genes
had a strong correlation with low methylated DNA in different
genomic features, particularly with promoter regions. This negative
association between DNA methylation, gene expression and
chromatin accessibility have been observed in other immune cells
and tissues (Pan et al., 2021; Roy et al., 2021; Corbett et al., 2022; Liu
et al., 2022). Interestingly, only 119 of 832 SEG in neutrophils had
LMRs around promoters in comparison with the eight porcine
immune cells mentioned above. This suggest that highly
expressed genes in neutrophils are likely controlled by a
mechanism at least partially independent of DNA methylation, as
it has been shown in other studies that DNA methylation and
chromatin accessibility do not always follow an inverse correlation
with gene expression (Lim et al., 2017; Spainhour et al., 2019). This
result suggests that methylation and chromatin accessibility are two
of multiple levels of transcriptional regulation (Thurman et al.,
2012) for the porcine neutrophil transcriptome. Overall, while
these data suggest that gene expression can be explained by
chromatin accessibility around promoter regions, a further
integrated analysis including more epigenetic data such as
histone modifications and chromatin interaction data could
complement current understanding regarding gene regulation in
the pig. Such future work could also pay special attention to non-
coding regions, which also shape gene expression patterns through
enhancers and non-coding RNA activity (Chen et al., 2017;
Panigrahi and O’Malley, 2021) as demonstrated in human
neutrophils (Ecker et al., 2017).

As a main objective of this study was to identify the specific
transcriptional network in porcine neutrophils according to gene
expression and chromatin accessibility patterns, we also performed a
TFBM enrichment analysis (using NSTF) on chromatin accessible
regions around promoters of NSGs to predict networks of TF and
their putative neutrophil specific target genes. Indeed, this approach
identified several known lineage-specific TFs such as GATA1, KLF5,
MXD1 and GFI1B that are likely involved in maintaining
neutrophils commitment and essential functions associated with
those commitments. All these NSTF have been found expressed in
other human mature neutrophil datasets (Monaco et al., 2019) and
in early committed mice neutrophil progenitors (Kwok et al., 2020).

The combined analysis revealed that GATA1 was predicted to
bind the promoter region of the principal neutrophil-attracting
chemokine and major mediator of the inflammation, CXCL8
(Metzemaekers et al., 2020b). As well as KLF5 was predicted to
interact with promoters of ISG15 (IFN-stimulated gene 15) and

IFIT1 (IFN-induce protein with tetratricopeptide repeats 1) (also
predicted target of GATA1) and CCR3 that are involved in the
antiviral responses of neutrophils as a frontline of the innate
immune system (Tamassia et al., 2008; Rudd et al., 2019). The
putative target genes IFIT1 and ISG15 are also induced in response
to bacteria in neutrophils (Xie et al., 2020). In general, our
integrative approach identified TFs and promoter accessible
regions of target genes within NSTF. However, the predictions
that these TFs regulate the genes with motif-enriched promoters
enriched would need to be validated with genetic/biochemical
experiments to provide more insight into the regulatory
mechanisms of gene regulation in porcine neutrophils.

Interestingly, we identified a TF that has not been widely studied
in neutrophils, MAX dimerization protein 1 gene (MXD1), as a
NSTF potentially involved in neutrophil regulatory networks.
Interestingly, MXD1 was predicted to be controlled by other two
NSTFs, KLF5 and GFI1B. Lummertz da Rocha, E et al., 2018
identified increase of the MXD1 gene expression in the later
stages of mature neutrophil differentiation from mouse bone
marrow scRNA-seq data (Lummertz da Rocha et al., 2018).
Further, MXD1 expression was significantly associated with the
low proportion of neutrophils in tumor immune
microenvironment data which included information from 22 cell
types (Du et al., 2021). In the Lummertz da Rocha et al., 2018 study,
a gene regulatory network analysis linked MMP8, MMP9, RETNLG
and CD52 genes as predicted targets of MXD1. In our experimental
approach using ATAC-seq data, we were able to identify MMP9
(which mediates neutrophil migration in infection (Bradley et al.,
2012)) as a SEG that interact with other NSGs (CXCL8, NCF1 and
TIMP3) in porcine neutrophils, but we did not detect a predicted
binding motif for NSTFs in the MMP9 TSS-OCR.

Some of the genes displayed in the specific transcriptional
network in porcine neutrophils interacted with other NSGs and
interact with other predicted NSTF target genes. All these multiple
interactions in the network suggest a collaborative and important
function of these genes in neutrophils. For example, BST1 (CD157)
protein is highly expressed on the surface of most human circulating
neutrophils and plays a fundamental role in neutrophil adhesion
and migration (Funaro et al., 2004; Ortolan et al., 2006).
Additionally, we identified a group of genes that interact with
other predicted transcriptional regulated genes, although they
were not predicted to be transcriptionally regulated by any of
NSTF. Two of these genes could illustrate the non-activated state
of the neutrophils we used in our study, for example, PDLM1 and
ARHGAP15. The PDLIM1 protein, a member of the LIM domain-
binding protein family, negatively regulates NF-κB-activation in the
cytoplasm by sequestration of p65 (subunit of NF-κB), suppressing
NF-κB translocation to the nuclei (Ono et al., 2015). ARHGAP15, a
GTPase of the Rac family is also a negative regulator of neutrophil
function (Costa et al., 2011). Costa et al. (2011) observed in mice
lacking ARHGAP15 an increase of neutrophil recruitment to the site
of infection, reducing systemic inflammation and improving mice
survival. They also found enhancement of chemotactic activity,
straighter directional migration, amplified reactive oxygen species
production, increase of phagocytosis and bacterial killing in vitro in
cells lacking ARHGAP15. Together, our study identified a gene
network in porcine neutrophils that contains several well-known
essential genes for neutrophil functions as well as potential novel
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gene candidates that could expand the understanding of the
neutrophil, especially in pig.

The epigenetic (histone ChIP, ATAC-seq and DNA methylation
analyses) and transcriptional data (RNA-seq) provided by the
FAANG project is contributing to the identification of regulatory
regions in the porcine genome (Giuffra et al., 2019; Herrera-Uribe
et al., 2021; Kern et al., 2021; Pan et al., 2021; Corbett et al., 2022). Such
data is very powerful to detect regulatory regions, but it is time-
intensive and comes with significant cost. Our strategy using only
RNA-seq and ATAC-seq may be more generally applied to identify
many of these elements and so improve the pig genome annotation of
other porcine circulating immune cells requiring many biological
states. These states would include resting and different immune state
conditions such as response to bacterial and viral infections or
immune-related diseases. We also demonstrated how these data
can be utilized to inform researchers to link TFs, open chromatin,
and gene expression to predict the interactions of these regulatory
elements to form transcriptional networks. Thus, the integrative
analysis presented in this manuscript will be a useful tool to
extend the epigenetic and transcriptomic annotations to the other
porcine immune cell types.
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