
Collective dipole reorganization in

magnetostructures

Adrien Wafflard, Nicolas Vandewalle & Eric Opsomer
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Abstract. Neodymium spherical magnets are inexpensive objects that demonstrate

how dipolar particles self-assemble into various structures ranging from 1D chains to

3D crystals. Assemblies of these magnets are nicknamed magnetostructures and this

paper focuses on a variety called magnetotubes, which are some curved square lattices

forming cylinders. We experimentally and numerically observe that such magnetotubes

can self-buckle, above a critical aspect ratio. In fact, the underlying dipolar ordering of

such structures is found to exhibit a collective reorganization, altering the mechanical

stability of the entire system. We identify the conditions in which these phenomena

occur, and we emphasize that metastable states coexist. This suggests that a wide

variety of magnetostructures, including chains and magnetocrystals, may collapse due

to the coexistence of multiple ground states and global reorientation of dipoles.

1. Introduction

The self-assembly of dipolar particles has emerged as a compelling topic over recent

decades, largely due to its promising implications in phase separation [1] and the

formulation of novel materials like photonics crystals [2]. One remarkable characteristic

of magnetic particles, notably magnetic colloids [3], lies in their ability to be remotely

manipulated via an externally applied magnetic field. Recent breakthroughs illustrate

that metachronal waves [4] and locomotion [5] can be effectively initiated within these

magnetic self-assemblies.

Magnetic balls are the macroscopic counterpart of these microscopic particles, and

they share the same physical behavior. They can be manipulated to reveal the physical

nature of dipole-dipole interactions. By assuming that such magnets are uniformly

magnetized, neodymium spheres behave as point-like dipoles [6, 7]. The interaction

energy Uαβ between two point-like dipoles µ⃗α and µ⃗β is then given by

Uαβ =
µ0

4π

[
µ⃗α.µ⃗β

r3αβ
− 3

(µ⃗α.r⃗αβ)(µ⃗β.r⃗αβ)

r5αβ

]
, (1)

where r⃗αβ = r⃗β − r⃗α is the vector joining particle centers α and β and µ0 is the

vacuum magnetic permeability. Looking carefully at Eq.(1), one notes that, depending

on relative positions and orientations, two dipoles can attract or repel each other.
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Minimizing Uαβ is therefore achieved when both spheres are in contact and their dipoles

are aligned which is why such magnets are naturally forming chains [8,9]. Nevertheless,

cubic crystals [10–12] as well as tubular [13] and planar structures [14] can also be

created using such permanent magnets. Such assemblies are called magnetostructures

and some of them are illustrated in Figure 1(a-c) : rings and tubes. In order to compare

the cohesive energy of structures made with different amounts of beads, we introduce

the dimensionless energy u per particle defined by

u =
4πD3

Nµ0µ2

∑
α<β

Uαβ, (2)

where µ = |µ⃗|, D is the sphere diameter i.e. the distance between two contacting

beads in Eq.(1), and N is the total amount of beads in the structure. When creating

magnetostructures, one realizes rapidly that the underlying dipole arrangement is as

significant as the contact network between particles. This has been explained using

Eqs(1) and (2) [9–18].

Figure 1. Typical pictures of magnetostructures made of 5 mm magnetic balls. (a)

Rings of various sizes ℓ = {6, 7, 8}. (b) A stack of m = 8 rings of size ℓ = 12, forming a

magnetotube with an aspect ratio ℓ/m > 1. (c) A stack of m = 10 rings of size ℓ = 8,

forming a magnetotube with a lower aspect ratio ℓ/m < 1.

Recent experimental and numerical studies highlighted some remarkable features of

magnetostructures, feeding the growing interest about this topic. As already recalled,

dipolar particles naturally self-assemble into 1D chains. Those latter can be bent

in order to create a ring that minimizes cohesive energy u compared to a chain for

the same amount N > 5 of beads. Moreover, defects can be created in the perfect

ordering of dipoles. These defects act as attractive or repulsive magnetic monopoles [9].

Nonetheless, more complex structures have also been investigated. In a 2D square

lattice, dipoles orients in chains that are antiparallel to their neighbors. Conversely, in

a triangular lattice, dipoles orients in chains that are parallel to their neighbors. These

latter configurations are both the most compact and the more stable ones compared to

the square lattice [14,15]. Please note that folding such 2D lattices leads to the formation

of magnetotubes as shown in Figure 1. A study of 3D magnetocrystals reveals also some



3

unusual physical features : the highest cohesion is obtained for a hybrid structure made

for a stack of hexagonal planes while the hexagonal compact (hcp) structure, known as

the densest structure, is less cohesive and nearly unstable [16–18]. Moreover it has been

proved that there exists an infinite number of stables configurations for the orientation of

8 dipoles at the vertices of a cube, similar to Goldstone modes [10,11]. These multipolar

magnetic cubes may also interact with extremely short range interactions [12].

However when large and more complex magnetostructures are built by adding

particles one by one, the system may suddenly self-buckle or collapse into a disordered

assembly, for some reason. In other words, dipoles can not only change their orientation,

but also translate and form a new geometric structure. The latter observation was

the starting point of our work. The goal of this paper is therefore to study the

dipolar arrangement in a growing magnetostructure, emphasizing such instabilities.

First, experimental observations and measurements are given. Then, we introduce the

numerical methods used to capture these results. Finally, we discuss all results and

confront them with other systems.

2. Experiments

In our experiment, we use neodymium (NeFeB) magnetic sphere of diameter D = 5mm

and a remanent field Br ≃ 1.2 T. The magnetic momentum can be retrieve by the

relation

µ = BrV/µ0, (3)

where V is the volume of the sphere. The coating of the beads is made of an alloy

of nickel and copper. Those values are also used in the simulations described in next

section.

2.1. Building magnetotubes

Dipoles in a ring orient head to tail forming a loop with all dipoles tangent to the ring

curvature. By stacking two rings to form a tube of square lattice, the respective loops

are in opposite directions, i.e. one loop of dipoles is turning clockwise an the other

one is turning anti-clockwise. By stacking m rings made of l beads, it is possible to

form a magnetotube with a curved square lattice as illustrated on Figure 1(b,c). Each

magnetotube is therefore determined by the numbers ℓ and m, and the total amount of

beads composing the tube is simply N = ℓm and we adopt the notation (ℓ ×m). We

consider rings as the building blocks of our tubes.

Parameter values from ℓ = 5 to ℓ = 14 and m = 1 to m = 60 have been considered.

Therefore, the aspect ratio of the magnetotube can be either ℓ/m < 1 (long tube) or

ℓ/m > 1 (short tube). In order to avoid the collapse of long tube due to gravity, they

are lying onto a horizontal rigid plate. By stacking the rings on the extremities of a

magnetotube, one may consider that all dipoles are tangent to the ring curvature, even
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Figure 2. Long magnetotubes with ℓ = 6 are placed on a horizontal plate. By gently

disturbing one extremity, a sound is emitted during the dipole’s reorientation. Two

cases are shown : m = 12 (left) and m = 60 (right). The amplitude of the acoustic

signal is shown in arbitrary units as a function of time t.

for long magnetotubes. We will see below that the situation is more complex than

expected.

2.2. Acoustic measurements

A long tube is initially assembled and placed horizontally. One extremity is pinched

and rolled in order to change the orientations of the beads. The tube is not crushed,

the geometry barely changes, but the orientations do. This is often enough to provoke

transition. One can hear a creaking sound before the elastic properties changes such that

the entire structure becomes less rigid. After the sound production, the tube becomes

more flexible and can easily be squeezed into a parallelepiped. This is illustrated in

the first video of supplementary materials. The origin of emitted sound is due to the

solid friction between rotating beads. If beads are rotating, one understands that their

dipoles are reorienting. A microphone is placed close to the tube before disturbing the

dipoles at one extremity. In Figure 2, typical resulting sound patterns are presented for

two different tube lengths and for ℓ = 6. Plot presents the sound amplitude in arbitrary

units as a function of time, assuming that the disturbance is done at t = 0. For larger

tubes, transition is harder to provoke and we some times need to roll all beads. This

was the case for ℓ = 7 in the second video.

From Figure 3, one can see that the duration of the whole creaking sounds is

increasing linearly with the tube lengthm, meaning that the sequence of dipole rotations

is propagating from the disturbed extremity to the other one at constant speed. As

previously mentioned, larger tubes are harder to disturb and are therefore not illustrated.

The acoustic measurements prove that a global reorientation of the dipoles, i.e. sphere

rotations, takes place when the magnetotube is disturbed. While long tubes (m > ℓ)

show bead rotation patterns and a drastic modification of their mechanical properties,

short tubes (m < ℓ) do not experience such an event. The relevant question is therefore

to find the physical origin of this global reorientation of dipoles and why it happens

only for long tubes. In the next section, simulations will allow to look at the dipolar
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Figure 3. Experimental data measuring the duration of the sound emitted during

reorientation of tube ℓ = 6 (purple) and ℓ = 8 (blue), as a function of the length m.

Lines are plotted as a guide for the eyes. Error bars account for the standard deviation

of the measurement.

orientations during such an event.

Figure 4. Three pictures of the same (7×10) magnetotube that has self-buckled. One

can clearly see the triangular lattice formed by the two parallel chains along the tube

axis. One also sees that contacts are lost between beads located at the extremities.

2.3. Self-buckling

The previous experimental results were obtained when long tubes are built. In general,

this can be achieved when ℓ is an even number. For an odd ℓ number of beads composing

successive rings, the above dipole reorientation provokes the collapse of the entire

structure and the magnetotube is distorted. Three pictures of a (7× 10) magnetotube

are shown in Figure 4, illustrating this self-buckling. After such an event, the local

structure seen along the lateral curved surface is a triangular lattice instead of a square

lattice. Rows of beads modified their relative positions such that the entire structure is

irreversibly changed. This phenomenon is also illustrated in supplementary materials.

The fundamental question is therefore why this collapse appears only for odd ℓ

values. In order to tackle this second major observation, we will in the next section
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perform simulations to reveal the dipolar organisation during the above phenomena.

3. Numerical approaches

In order to capture the above observation, we use two different numerical approaches to

simulate the magnetotubes. They are described below.

3.1. Simulated Annealing (SA)

Stochastic optimization algorithms such as annealing, can be used to find the ground

states of Eq. (2), as proposed in [9]. However, this approach requires long computation

times due to the high number of degrees of freedom. Since each dipole α has 5 degrees of

freedom, being the positions (xα, yα, zα) and angular orientations (θα, φα), minimizing

the cohesive energy u, given by Eq. (2), requires to explore a complex configuration

space with 5N degrees of freedom. In order to speed up our simulations, we consider

that the positions of the dipoles are fixed, thus reducing configuration space to 2N

degrees of freedom.

The structure is first initialized in a specific geometry where dipoles are oriented

randomly. The dimensionless energy u as defined by Eq (2) is then computed taking all

dipoles into account. It is stored in a variable umin. This corresponds to the minimum

value found so far. In addition, all dipole orientations corresponding tho this energy are

stored in an array. Then, we change the dipole’s orientations in a random direction

with some amplitude ∆θ and ∆φ between 0 and A. This latter is the maximum

amplitude and is chosen large enough at the beginning of the simulation (typically

∆θ = ∆φ = 16◦ for our simulations). The energy u is computed and compared to umin.

If umin < u, the newly computed orientations are rejected, and we start back from the

orientations corresponding to umin. Otherwise the newly computed energy u is saved

as umin and dipoles orientations are stored replacing the old ones. This procedure is

iterated thousands times before dividing ∆θ and ∆φ by a factor of 2. The simulation

is stopped when ∆θ = ∆φ < 1/2. With this method, a local minimum of u is finally

reached. In order to get the global minimum of energy, several simulations are performed

in parallel using Open MPI over hundreds processors.

3.2. Discrete Element Method (DEM)

Of course, minimizing energy u does not provide information about the mechanical sta-

bility of the dipole arrangement. For exploring these characteristics, Discrete Element

Method (DEM) simulations were realized. Our home made algorithm [19,20] considers

contact and magnetic forces. Conversely to SA, the system has 5N degrees of freedom,

so each bead can freely move in space. Moreover, DEM allows us to follow the dynam-

ics of the system whereas the SA does not. Starting from any initial configuration, the

system evolves towards mechanical equilibrium by moving and reorienting the magnetic

spheres. At each time step of about 10−6 s, the system computes all forces acting on
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beads, and update their positions and velocities solving Newton’s equations of motion

using Leapfrog integration scheme.

Contacts are modeled taking tangential and normal forces. Two beads are in contact

if there is a tiny overlap between them. A repulsive normal force is modeled by a linear

spring and a dashpot for dissipation with the relation

FN = kNδ + γNvN , (4)

where kN is the spring stiffness, δ is the overlap of both beads, γN is the viscous damping

and vN is the relative normal velocity [21]. Of course if the considered beads are not in

contact, FN = 0.

The tangential force is also modeled by a spring dashpot model, but sliding regime

is added. Indeed, a criterion called Coulomb’s law that couple normal and tangential

forces is implemented as follow

Ft ≤ µsFN , (5)

where µs is the static friction coefficient and is chosen between 0.6 and 0.9. If tangential

force satisfies Eq (5), then it is a static regime. Otherwise it is a sliding regime and the

tangential force is bounded by µsFN .

In summary, DEM provides the dynamics of a structure from specific initial

conditions. While SA is able to find the minimum of u, DEM provides information

about its stability against fluctuations. They are complementary methods.

4. Simulation results

4.1. Dipole reorientation in growing magnetotubes

Consider an arbitrary magnetotube (ℓ×m). The magnetic energy of each ring made of ℓ

dipoles, is found to be minimized when each dipole is tangent to the circle, as calculated

exactly in a previous study [9]. Consequently, one expects a circular orientation, even

when m → ∞. Let us test this hypothesis by looking at simulations results.

Figure 5(a) presents the magnetic cohesion u from the SA simulations for ℓ = 10 as

a function of the inverse tube length 1/m. Inverse tube length allows for extrapolating

the behavior for very long magnetotubes m → ∞. In addition to SA results, two

extreme cases corresponding to either dipoles following circular (open circles) or axial

(open diamonds) orientations are added. These two specific configurations are fixed and

calculated from Eq.(2) without the help of a simulation. For short tubes, i.e. in the

right part of the plot, the dipoles follow exactly the theoretical calculations done for a

stack of rings, open circles and dots coincide. Magnetotubes with a short aspect ratios

m/ℓ are therefore dominated by the ring symmetry. This is well illustrated by Figure
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5(b) and (c) where the dipole orientation minimizing energy is shown for (10 × 5) and

(10× 7) tubes.

However, above the critical size mc, the dipoles align with the tube’s axis and a

global reorganization of all dipoles, as described in [22], takes place. In Figure 5, the SA

curve diverges from the circular case as m increases. Furthermore, the energy u does

not reach the case featuring only dipoles oriented along the tube’s axis, since boundary

effects are seen at the extremities of the magnetotube, as illustrated in Figure 5(d-

e). Nevertheless, extremely long tubes (1/m → 0) tend toward the same energy u for

annealing and fixed dipoles along tube’s axis since boundary effects become negligible

in regard to the tube’s length. Open diamond and dot lines meet for 1/m → 0 around

u = −2.55 on Figure 5(a). This asymptotic value is slightly larger than the cohesive

energy for a square lattice [16].

Figure 5. (a) Dimensionless cohesive energy u, as given by Eq. (2), as a function of

1/m for magnetotubes made of a stack of m rings of length ℓ = 10. Dots represent

results using SA algorithm. Open circles are results for fixed dipoles tangent to the

rings. Open diamonds corresponds to results when dipoles are aligned to the tube axis.

(b-e) Four ℓ = 10 magnetotubes with a square packing of dipolar particles. Orientation

of dipoles minimizing the potential u are illustrated. Green dipoles are mostly oriented

along the x, y plane, that is, with an angle θ ∈ ]π/4, 3π/4[∪]5π/4, 7π/4[ with the z axis.

Red and Blue colors indicate orientation of dipoles with an angle θ ∈ [−π/4, π/4] and

with an angle θ ∈ [3π/4, 5π/4] respectively. The colors evidence the dipole orientation

taking place when the height m of the tube increases.
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Our numerical results confirm therefore the existence of a global reorientation of

all dipoles in magnetotubes. Size and parameter effects will be investigated in the next

subsections.

4.2. Metastability

Figure 6. Energy of a (10×m) tube as a function of m obtained by DEM simulations.

Magnetotubes are formed by stacking rings from 2 to 13 (downward triangles). Then,

rings are removed from 13 to 2 (upward triangles). One can see the global reorientation

of the dipoles occurs at different critical heights as we increase or decrease the size m

of the tube. Lines are plotted as a guide for the eyes to highlight the hysteresis.

SA simulations predict a reorientation of dipoles if the tube is long enough.

Nonetheless, experiments described in section 2 shows that long tubes with circular

orientation can be assembled, transition only occurring if we disturbed the system.

This mismatching between simulations and observations is the evidence of metastability

in such a system. It also evidence that SA lacks of an important ingredient to fit the

observations. To figure out what happen in those systems, we increase the size of a

short tube by adding rings one by one in a DEM simulation which takes friction into

account. We observe the transition for a critical size m larger for DEM than for SA.

Moreover, by removing rings one by one, one can reach a critical height for which

the dipoles will orientate along loops again. This transition is not observed at the

same aspect ratio whether one increases or decreases the tube’s length. This hysteretic

transition is illustrated for a (10×m) tube on Figure 6. Energy is plotted as a function

of 1/m, showing transition as we increase or decrease the height. This hysteresis is a

clear signature of metastability, emphasizing the discontinuous nature of the dipolar

reorientation.
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Figure 7. (a) The dimensionless magnetic cohesive energy u of square magnetotubes

with various sizes ℓ andm as a function of their aspect ratio ℓ/m, obtained by annealing

simulations. Dots correspond to even ℓ values, and squares correspond to odd ones.(b)

A (7 × 10) magnetotube as obtained with simulated annealing, therefore minimizing

cohesive energy. Green dipoles are more or less oriented along the x, y plane. Red and

Blue colors indicate orientation of dipoles along z and−z direction respectively. Except

at the extremities of the tube, colored dipoles indicate some frustration since two

neighboring dipolar chains are in parallel. (c,d,e) The time evolution of the previous

magnetotube using DEM simulations and similar color code. The tube is seen to self-

buckle.
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4.3. Self buckling instability

Additional SA and DEM simulations have been done to study the dipolar instability for

other sizes of magnetotubes. Figure 7 shows similar numerical results obtained by SA for

a various number ℓ of magnets for the rings constituting the magnetotube. The results

are plotted as a function of ℓ/m. The previous results (ℓ = 10) shown in Figure 5 are

still plotted for comparison using the same color and symbol. For all magnetotubes, the

global reorientation of the dipoles is observed when the aspect ratio, ℓ/m, is in between

1 and 1.5. For small tubes (large aspect ratio), on the right of Figure 7, at a given value

of m, the magnetic energy u decreases as ℓ increases. However, once the reorientation of

the dipoles is obtained, for long tubes (smaller aspect ratios), the different curves cross

each other. In particular, the energy u of odd ℓ curves are systematically above the

ℓ − 1 and ℓ + 1 ones. This is due to the frustration between dipole chains. Indeed, an

odd number of beads per rings implies that two neighboring chains along the tube’s axis

present a parallel alignment, which is not favorable in a square lattice. This results in an

increase of the energy u. That can be seen in Figure 7(b) where two parallel chains are

obtained for ℓ = 7 in a SA simulation. The magnetic energy is therefore much higher

than for a pattern with a perfect antiparallel ordering. In fact, this frustrated state

is unstable and DEM simulations provide some insights of the time evolution of such

collapsing magnetotubes, as seen in Figures 7(c-e). In addition to a global reorientation

of the dipoles, a geometric restructuring of the tube occurs, and parallel chains takes a

triangular lattice configuration which minimize the energy u in this case: the tube has

self-buckled. On Figure 7(a), one observe that when ℓ increases, the transition is less

and less pronounced, meaning that the energy difference between two states becomes

less important.

5. Conclusion

In summary, our experimental and numerical work evidences collective dipole

reorientation in curved square lattices and in particular in magnetotubes with increasing

aspect ratios. We propose numerical approaches providing explanation for this

phenomenon driven by energy minimization. On the one hand, SA allows us to

find the orientations of dipoles that minimize magnetic cohesive energy. DEM on

the other hand, allows us to study the stability and the dynamics of such a system.

Numerical simulations show that friction seems to delay the reorganization, providing

metastable states. Moreover, magnetic frustration is seen to induce self-buckling of

the magnetostructure after dipole reorientation.

Even if reorientation of dipoles has been evidenced in tubes, it should also exists

in other kind of structures. One can consider for example a square lattice plane

or a parallelepiped. Changing the aspect ratio of these systems should trigger the

transition. Minimization of the magnetic cohesive energy u is the main ingredient of

the transition and is valid for all structures. Investigating dipole reorientation in other
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magnetostructures is left for future researches.

All these numerical results and experimental observations emphasize that the

mechanical properties of the magnetostructures take root in the underlying dipole

arrangement as well as the contact network between magnets. Moreover, magnetic

particles can be found in many topics of physics such as magnetic colloids [3, 23],

micromachines [4,5], self-assembly in microfabrication methods [24–26], one understands

that our findings may find future applications.

Acknowledgements

This work is financially supported by the University of Liège through the CESAM
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