Supplementary Information to "Unraveling the role of Sm 4f electrons in the magnetism of SmFeO₃"

Danila Amoroso,¹ Bertrand Dupé,^{2, 1} and Matthieu J. Verstraete³

¹Nanomat/Q-mat/CESAM, Université de Liège, B-4000 Sart Tilman, Belgium ²Fonds de la Recherche Scientifique (FNRS-FRS), B-1000 Brussels, Belgium ³Nanomat/Q-mat/CESAM, Université de Liège, and European Theoretical Spectroscopy Facility, B-4000 Sart Tilman, Belgium

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Atomic pairs	Pbnm w/ Sm-f (Å)	Exp.[1] (Å)	Pbnm w/o Sm-f (Å)	RE w/ Sm- f	RE w/o Sm- f
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$Sm_1-Sm_{2(2')}$	3.7975	3.7909	3.7604	0.17%	-0.81%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sm_1 - $\operatorname{Sm}_3(\times 2)$	3.9011	3.9087	3.9139	-0.20%	0.13%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\operatorname{Sm}_{1'}-\operatorname{Sm}_{2(2')}$	3.9882	3.9910	4.0091	-0.07%	-0.17%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fe_1 - Fe_3 (×2)	3.8498	3.8530	3.8451	-0.08%	-0.21%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fe_1 - Fe_2 (×4)	3.8916	3.8896	3.8826	0.05%	-0.18%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Fe_{1(1'')}-Sm_{1(3)}$	3.1486	3.1406	3.1199	0.25%	-0.66%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Fe_{1(1')}-Sm_{2(4)}$	3.2782	3.2740	3.2446	0.13%	-0.90%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Fe_{1'(1)}-Sm_{2(4)}$	3.3895	3.3908	3.3902	-0.04%	-0.02%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Fe_{1''(1)}-Sm_{1(3)}$	3.6549	3.6682	3.7030	-0.36%	0.95%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Fe_3-O_{1(2)}$	2.0303	2.0276	2.0320	0.14%	0.21%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Fe_3-O_{3(4)}$	2.0100	2.0008	2.0079	0.46%	0.36%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Fe_3-O_{9(10)}$	1.9984	2.0120	2.0025	-0.68%	-0.47%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Sm_2-O_{3(8)}$	2.3356	2.3370	2.3378	-0.06%	-0.18%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Sm_2-O_{4(7)}$	2.7014	2.7026	2.7085	-0.04%	0.22%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Sm_2-O_{9'}$	2.3084	2.3090	2.2987	-0.03%	-0.45%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Sm_2-O_{12'}$	2.4017	2.3880	2.3653	0.57%	-0.95%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Sm_2-O_{2(5)}$	2.5840	2.5730	2.5291	0.43%	-1.71%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Sm_2-O_{1(6)}$	3.4804	3.4930	3.5273	-0.36%	0.98%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sm_2-O_9	3.1827	3.1800	3.1663	0.09%	-0.43%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sm_2-O_{12}	3.3178	3.3370	3.3948	-0.57%	1.73%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Sm_{1(1')}-Sm_4$ (×2)	5.1865	_	5.1364	_	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sm_1 - $\mathrm{Sm}_{1'}$ (×2)	5.4086	5.3995	5.3594	0.17%	-0.74%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Sm_2-Sm_{2'}$ (×2)	5.5969	5.6001	5.6191	-0.06%	0.34%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Sm_{1(1')}-Sm_{4'}$ (×2)	5.8127	—	5.8599	—	—
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\operatorname{Fe}_1\operatorname{-Fe}_{1'}(\times 2)$	5.4086	5.3995	5.3594	0.17%	-0.74%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fe_1 - Fe_4 (×8)	5.4740	-	5.4643	-	_
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Fe_1 - $Fe_{1''}$ (×2)	5.5969	5.6001	5.6191	-0.06%	0.34%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\mathrm{Fe}_{1'}\text{-}\mathrm{Fe}_{1'}$	7.6995	7.7060	7.6902	-0.08%	-0.21%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Interatomic angles					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\angle Fe ₁ -O ₆ -Fe ₂	148.81°	148.64°	147.51°	0.12%	-0.76%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\angle Fe ₁ -O ₉ -Fe ₃	148.83°	148.67°	147.91°	0.10%	-0.51%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\angle O_{10}$ -Fe ₃ -O ₂	88.72°	88.74°	88.73°	-0.03%	-0.01%
$\angle O_{10}$ -Fe ₃ -O ₉ 180.00° 180.00°	$\angle O_{10}$ -Fe ₃ -O ₄	88.86°	88.75°	88.46°	0.13%	-0.32%
	$\angle O_{10}$ -Fe ₃ -O ₉	180.00°	180.00°	180.00°		

Table SI. Interatomic distances and angles properties calculated for the orthorhombic Pbnm SmFeO₃ either excluding (w/o) or including (w/) Sm-f electrons as valence states. Room temperature experimental data from Ref. [1] and relative errors (RE) are also reported. Atomic labels refer to labeling in Fig. 1(b) in the main-text.

[1] E. N. Maslen, V. A. Streltsov, and N. Ishizawa, Acta Crystallographica Section B 52, 406 (1996).

Figure S1. Electronic bands structure of collinear antiferromagnetic $SmFeO_3$, with **G**-type spin order for both Sm and Fe sub-structures. Total density of states (DOS) for spin-up and spin-down channel is also shown. Colored area identify different atomic bands character: green mainly Fe-*d* contribution, violet mainly Sm-f contribution, yellow mainly O-Fe contribution. Orbital-resolved DOS are shown in Fig. 2 of the main-text.

Figure S2. (a) Comparison of electronic bands obtained from including (light-blue line) and excluding (dark-blue line) Sm-f electrons in the valence states; same Hubbard-U value is added on Fe for the two cases, i.e. 4.5 eV. Underlying atomic structure has been relaxed within the two conditions. It is clear the Sm-f states do not affect the overall electronic properties, but add the relative states. (b) Zoom highlighting different energy gap at Γ and out-of- Γ , also considering the bottom either of the Sm-f (violet line) or Fe-d (green line) conduction bands.

Figure S3. Effect of different Hubbard-U values on the electronic properties of antiferromagnetic SmFeO₃, with G-type spin order for both Sm and Fe sub-structures. Only DOS from spin-up channel is shown. (top) Total DOS changing U-correction on Fe-d states from 4.5 eV to 4 eV. (bottom) Total DOS changing U-correction on Sm-f states from 6 eV to 5 eV and 7 eV. Energy shifts of the d- and f-states are highlighted. Underlying crystal structure is fixed to the one obtained relaxing with U(6;4.5) eV on Sm and Fe.

A variation of U from 4.5 eV to 4 eV on Fe-*d* states translates (by about 0.25 eV) the Fe-*d* state peaks up at the VB top and the Sm-*f* and Fe-*d* states peaks down at the CB bottom; no substantial changes in the hybridization or spin-polarization are observed. A variation of U from 6 eV to 5 eV on Sm-*f* states produces upward and downward shifts of the Sm-*f* states in the VB and CB, respectively; *vice versa*, for U=7 eV, with an overlap of the Fe-*d* and Sm-*f* higher energy states (CB).

Figure S4. Schematic view of (a) ferromagnetic (FM), (b) ferrimagnetic (FerriM) and antiferromagnetic (AFM) (c) A-type, (d) C-type, (e) G-type collinear spin orders for the pseudo-cubic Sm- and Fe- atomic substructures in orthorhombic SmFeO₃. Sketch of first- (J_1) and second- (J_2) neighbour interactions is also shown in (a).

spin con	figuration	${ m U}(6;4.5)~{ m eV}$	${ m U}(5;4.5)~{ m eV}$	U(7;4.5) eV	U(6;4) eV	w/o Sm	-f U(0;4.5) eV
Sm-order	Fe-order	$\Delta E \ (meV/f.u.)$	$\Delta E \ ({\rm meV/f.u.})$	$\Delta E \ ({\rm meV/f.u.})$	$\Delta E \ (meV/f.u.)$	Fe-order	$\Delta E \ ({\rm meV/f.u.})$
\mathbf{G}	\mathbf{G}	0.00	0.00	0.00	0.00	\mathbf{G}	0.00
\mathbf{C}	\mathbf{G}	-0.40	-0.49	-0.35	-0.40		
\mathbf{FerriM}	\mathbf{G}	-0.19	—	—	-0.18		
\mathbf{FM}	\mathbf{G}	-0.02	-0.23	+0.10	-0.01		
С	С	+60.58	+59.65	+61.24	+64.41	С	+61.59
\mathbf{FM}	\mathbf{C}	+63.59	+63.20	+63.47	+67.29		
G	FerriM	+103.26	-	-	+110.16	FerriM	+102.55
\mathbf{FM}	\mathbf{FerriM}	+105.04	-	-	+111.87		
Α	Α	+136.05	+135.62	+136.34	+145.03	Α	+137.00
\mathbf{FM}	Α	+136.40	+135.87	+136.73	+145.38		
\mathbf{FM}	\mathbf{FM}	+219.86	+220.06	+219.43	+234.85	\mathbf{FM}	+214.72

Table SII. Energy differences between various collinear spin orders as a function of different Hubbard-U corrections [U(Sm;Fe) eV]. Underlying crystal structure is fixed to the one obtained relaxing within **G-G** spin order for the Sm- and Fe- spin substructures and U-correction of (6;4.5) eV on Sm-f and Fe-d electronic states, respectively. At variance, the energy differences in the last column have been calculated by freezing the Sm-4f electrons in the core and we used the related optimized **G**-type structure. Schematic visualization of the different magnetic sub-substructures is shown in Fig. S4.

Figure S5. Examples of coordination for the considered nearest neighbour atomic pairs, defining effective, average first- (J_1) and second- (J_2) neighbour magnetic interactions; as an approximation, all atoms of the same species are treated as structurally equivalent (equidistant). (a) Six Fe-Fe J_1 . (b) Six Sm-Sm J_1 . (c) Eight Sm-Fe J_1 . (d) Schematic second-neighbors coordination including twelve J_2 -interactions for either Sm-Sm and Fe-Fe pairs; numbers refer to numbering of atoms in (e). The latter shows Sm and Fe sub-structures in the orthorhombic unit cell as a reference.

$\mathbf{HSE}~(\mathrm{meV})$	$U(6;4.5) \mathrm{eV}$	$\mathrm{U}(5;4.5)~\mathrm{eV}$	$\mathrm{U}(7;4.5)~\mathrm{eV}$	U(6;4) eV
J_1 (Fe-Fe)	$\simeq 5.85$	$\simeq 5.82$	$\simeq 5.86$	$\simeq 6.25$
$J_1 (\text{Sm-Sm})$	$\simeq 0.00$	$\simeq -0.01$	$\simeq 0.00$	$\simeq 0.00$
J_2 (Fe-Fe)	$\simeq 0.19$	$\simeq 0.19$	$\simeq 0.20$	$\simeq 0.22$
$J_2 \text{ (Sm-Sm)}$	$\simeq 0.01$	$\simeq 0.01$	$\simeq 0.01$	$\simeq 0.01$
J_1 (Sm-Fe)	$\simeq 0.01$	$\simeq 0.04$	$\simeq -0.01$	$\simeq 0.01$

Table SIII. Heisenberg spin exchange (HSE) for first (J_1) and second (J_2) Fe-Fe and Sm-Sm neighbor interactions and Sm-Fe first-neighbor interaction estimated with different Hubbard-U corrections [U(Sm;Fe) eV], considering FM-FM, A-A, FM-C, FM-G, C-G and G-G Sm- and Fe- spins configurations among those listed in Table SII. Underlying crystal structure is fixed to the one obtained relaxing within the G-G spin order and U-correction of (6;4.5) eV on Sm-f and Fe-d states, respectively.

	v	v/o Sn	$n-f \operatorname{str}$	ucture	w/ Sm-f structure				
	\mathbf{Sm} -f core \mathbf{S}		\mathbf{Sm} - f valence	Sm-f core		\mathbf{Sm} -f valence		ence	
	w/o SOC	w/	SOC	w/o SOC	w/o SOC		w/o SOC		w/ SOC
Symmetry	\mathbf{G}	\mathbf{G}_x	\mathbf{G}_z	G-G	G	$\mathbf{G}-\mathbf{G}$	$\mathbf{FM}-\mathbf{G}$	C-G	$\mathrm{FM}_x\mathbf{C}_y$ – $\mathrm{FM}_x\mathbf{C}_y\mathbf{G}_z$
$A_q(1)$	110	107	110	112	104	107	107	107	107
$B_1g(1)$	110	110	110	114	106	110	110	110	108
$B_2g(1)$	134	134	134	131	127	125	125	125	128
$A_{g}(2)$	139	138	139	145	127	134	134	135	134
$B_3g(1)$	150	153	154	150	152	151	151	150	152
$B_1g(2)$	160	160	160	162	149	152	152	152	152
$B_3g(2)$	236	234	235	244	210	218	218	218	215
A_g (3)	247	245	246	245	232	229	229	229	224
$B_1g(3)$	281	281	281	277	255	252	253	252	253
$B_2 g(2)$	313	313	313	314	306	306	306	306	304
$A_g(4)$	319	320	320	322	306	310	310	310	309
$B_1g(4)$	345	345	345	345	344	342	342	343	341
$B_3g(3)$	354	355	354	353	356	353	354	353	352
$A_g(5)$	386	386	386	389	374	377	376	377	375
$A_g(6)$	417	417	416	415	420	419	419	419	418
$B_3g(4)$	426	427	426	424	427	426	426	425	425
B_2g (3)	425	428	427	421	433	429	428	428	429
B_2g (4)	449	448	448	445	446	443	443	444	443
$B_1g(5)$	460	460	461	460	446	446	446	446	445
$A_g(7)$	468	468	468	466	459	457	457	457	457
$B_1g(6)$	512	513	513	516	503	505	505	505	505
$B_3g(5)$	597	597	598	593	604	600	600	600	600
$B_1g(7)$	619	618	618	616	620	617	617	617	617
B_2g (5)	648	646	646	645	652	650	650	650	650

Table SIV. Phonon frequencies (in cm⁻¹) of the Raman active modes in the *Pbnm* crystal structure excluding (w/o) and including (w/) either Sm-*f* electrons and SOC contributions. Main AFM **G**-type spin order is considered for Fe-substructure (\mathbf{G}_x and \mathbf{G}_z indicate **G**-type spin order along *x* and *z* spatial directions, respectively). **G**-, **FM**-, **C**-type collinear spin orders are considered for the Sm-substructure. The non-collinear $\mathrm{FM}_x \mathbf{C}_y - \mathrm{FM}_x \mathrm{C}_y \mathbf{G}_z$ Sm-Fe spin configuration is also considered. Underlying atomic structure is fixed: to the one optimized excluding both Sm-*f* electrons and SOC contributions (w/o Sm-*f* structure), considering collinear **G**-type Fe-spins order and Hubbard-*U* correction of 4.5 eV on Fe-*d* states; to the one optimized including Sm-*f* electrons contribution (w/ Sm-*f* structure), collinear **G**-type spin order for both Sm and Fe substructures and *U* of 6 eV and 4.5 eV on the Sm-*f* and Fe-*d* states.

Symmetry	w/o Sm-	-f structure	w/ Sm-	1 GPa structure	
Silent and IR modes	\mathbf{Sm} - f core	\mathbf{Sm} - f valence	\mathbf{Sm} - f core	\mathbf{Sm} - f valence	\mathbf{Sm} - f valence
$A_u(1)$	86	74	86	79	79
$B_{2u}(1)$	104	102	100	103	104
$B_{3u}(1)$	113	114	102	106	107
$B_{1u}(1)$	159	156	148	140	144
$A_u(2)$	161	152	152	156	156
$B_{3u}(2)$	175	182	161	172	174
$B_{1u}(2)$	171	182	156	181	180
$B_{2u}(2)$	191	189	181	184	185
$A_u(3)$	208	184	188	187	183
$B_{2u}(3)$	245	241	226	233	233
$A_u(4)$	248	246	235	236	238
$B_{1u}(3)$	273		262	243	266
$B_{3u}(3)$	256	249/274	245	249	250
$B_{3u}(4)$	281	317	271	271	272
$B_{2u}(4)$	289	288	276	279	280
$A_u(5)$	300	294	293	290	291
$B_{2u}(5)$	308	302	299	300	302
$B_{3u}(5)$	320	317	308	309	309
$B_{2u}(6)$	331	328	320	321	323
$B_{1u}(4)$	302	333	296	330	339
$B_{3u}(6)$	349	339	341	338	340
$A_u(6)$	354	349	351	347	350
$\mathrm{B}_{3u}(7)$	386	379	376	371	374
$B_{1u}(5)$	354	386	347	378	350
$B_{2u}(7)$	417	417	409	409	412
$\mathrm{B}_{3u}(8)$	474	477	459	461	464
$B_{2u}(8)$	512	510	507	506	509
$A_u(7)$	504	499	511	506	513
$B_{1u}(6)$	501	509	502	513	505
$B_{2u}(9)$	524	521	522	520	525
$A_u(8)$	523	519	530	526	532
$B_{3u}(9)$	545	543	547	540	550
$B_{1u}(7)$	536	536	545	544	546

Table SV. Phonon frequencies (in cm⁻¹) of the silent and infrared (IR) active modes in the *Pbnm* crystal structure, considering collinear G-type AFM magnetic ordering for Fe atoms when freezing Sm-*f* electrons in the core states, and for both Sm and Fe sub-structures when including those in VB.