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Abstract
Ostrya carpinifolia Scop. (European Hop Hornbeam) is a native tree in Europe as a species of the Betulaceae family. Euro-
pean Hop Hornbeam has a significant value for the European flora, and assessing the effects of climate change on habitats 
of species is essential for its sustainability. With this point of view, the main aim of the research was to predict the present 
and future potential distribution of European Hop Hornbeam across Europe. ‘‘IPSL-CM6A-LR’’ climate change model, 
ninety-six occurrence data, and seven bioclimatic variables were used to predict potential distribution areas with MaxEnt 
3.4.1 program. This study applied a change analysis by comparing the present predicted potential distribution of European 
Hop Hornbeam with the future predicted potential distribution under the 2041–2060 and 2081–2100 SSP2 4.5 and SSP5 
8.5 climate change scenarios. Study results indicated that the sum of suitable and highly suitable areas of European Hop 
Hornbeam is calculated to be 1,136,706 km2 for the current potential distribution. On the contrary, 2,107,187 km2 of highly 
suitable and suitable areas will be diminished in the worst case by 2100. The most affected bioclimatic variable is BIO 19 
(Precipitation of Coldest Quarter), considering the prediction of the species distribution. These findings indicated that the 
natural ecosystems of the Mediterranean region will shift to northern areas. This study represented a reference for creating 
a strategy for the protection and conservation of the species in the future.
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Introduction

The Earth’s temperature has increased and precipitation 
patterns of climate have changed (Rosencranz et al. 2009; 
Vallese et al. 2021). As a consequence of global warm-
ing, ecological environments and ecosystems are under 

significant pressure (Li et al. 2020a; Arzac et al. 2021). A 
changing climate means changing biodiversity and habitats 
because the climate is a key driver for shaping biodiversity 
patterns (Thuiller 2007; Nunez et al. 2019; Warren et al. 
2018). The unpredictable results of climate change have 
threatened the habitats of the species and caused the species 
to shift to different latitudes or altitudes (Sun et al. 2020). 
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For example, Thuiller (2007) indicated that small changes 
in temperature shift ecological zones, and if it continues 
dramatically, species might have to shift northward to find 
suitable climatic conditions. According to recent research 
predicting the threat of species extinction owing to climate 
change, the distribution of species during the previous three 
decades has likely been altered by climate change on a 
worldwide scale (Sayyadi et al. 2019; Bellard et al. 2012; 
Thrippleton et al. 2020; Pearson et al. 2014). These impacts 
can vary when it comes to different regions of the world 
(Garzón et al. 2008). Climate change is expected to enlarge 
regional changes in Europe’s natural resources (IPCC 2007). 
In this situation, assessing changes in organism spatial dis-
tribution may be a tool to understand the impacts of climate 
change.

In Turkey, endangered plant species are protected at vari-
ous levels by national parks. One of these species is Ostrya 
carpinifolia Scop. which is protected in the “least con-
cern” (LC) category according to IUCN criteria in Uludağ 
National Park located in the province of Bursa and forms 
mixed forests with some other species (Kulac et al. 2016). 
The European Hop Hornbeam, Ostrya carpinifolia Scop., 
is indigenous to mild West Eurasia; furthermore, its natu-
ral range includes Middle and Southern Europe, the Bal-
kan region, European Turkey, Western Asia, and Caucasian 
nations (Pasta et al. 2016; Marsberg et al. 2017; Kiliç et al. 
2018; Shaw et al. 2014). The mature forest ecosystems of 
the Near East have benefited greatly from the contributions 
of European Hop-Hornbeam. Most of the time, the commu-
nities it governs are in an early and shaky stage of continu-
ous succession processes. They quickly transition to mixed 
broadleaved forests under low disturbance conditions, with 
deciduous oaks predominating (primarily Quercus pube-
scens, but also Quercus cerris, Quercus congesta, Quercus 
petraea, and Quercus frainetto), conifers like Pinus nigra 
subsp. dalmatica and subsp. nigra in the Balkan peninsula, 
Cedrus Syria and Lebanon, Pinus brutia and Pinus nigra 
up to 1700 m in Anatolia, Quercus coccifera/calliprinos 
more infrequently in Eastern Mediterranean nations, or 
Fagus sylvatica at the northern boundary of its range, for 
example in central and northern Italy and Bulgaria (Kiliç 
et al. 2018). Hop-hornbeam wood has been utilized for a 
variety of tasks in the past, particularly in rural regions, such 
as creating small objects and making charcoal (Ilari et al. 
2022). Although it still makes for great firewood, it is not 
preferred for industrial uses since it tends to fracture when 
dry. For this reason, the majority of Hop-Hornbeam forests 
in central Italy are still used as coppices. The tendency of 
these species to grow in dry places and shallow soils rich 
in lime and magnesium helps to repair damaged soil tis-
sues (Marsberg et al. 2017). It is planted as a decorative 
tree and used to make hedges along the sides of roads. The 
white truffle (Tuber magnatum), which has several medicinal 

benefits, is essential for preventing diseases like cancer and 
is used in the refereeing industry, names the hop tree one of 
its homes. -hornbeam (Kulac et al. 2016; Pasta et al. 2016). 
Due to its unique and indigenous characteristics, its distribu-
tion modeling is essential to prevent the extinction of this 
important species.

Modeling the shifting of the species is not only crucial for 
the knowledge about biodiversity and species distribution, 
but also for creating new sustainability approaches (Austin 
2007; Sinclair et al. 2010). A great variety of modeling algo-
rithms are practiced in different kinds of expertise areas in 
science such as ecological planning and conservation, and 
using modeling algorithms is a way of predicting species 
ranges from spatial data for scientists (Rather et al. 2020). 
Species distribution modeling (SDM) is becoming more 
common for analyzing the effects of global warming caused 
the changes in suitable habitats for species (Booth 2018). 
SDM is a quick way to model current and future potential 
distribution via analyzing bioclimatic variables and occur-
rence data of the species (Ward 2007; Yuan et al. 2015). The 
MaxEnt approach is effective for discretization and species 
distribution model prediction based on the greatest entropy, 
and it has recently been used to anticipate appropriate habi-
tats for species (Akhter et al. 2017; Maharaj et al. 2019; 
Sun et al. 2020). Phillips et al. (2006a) said: ‘‘The MaxEnt 
method represents an idea of the probability of distribution 
and incomplete information about the target distribution.’’

In the last several decades, scientists have done an 
increasing number of studies (e.g., Li et al. 2020a; Sun et al. 
2020; Wang 2012; Yang et al. 2013; Yuan et al. 2015) to 
forecast the spread of species. These scientists have studied a 
variety of topics, including species distribution, habitat frag-
mentation detection, prospective new ecological modeling 
methods, projections of enhanced biodiversity, modeling of 
the implications of climate change on terrestrial biodiversity, 
etc. (Urban et al. 2016; McMahon et al. 2011).

When temperatures rise and glaciers melt, species shift 
their geographic ranges in search of their primary habi-
tats and climate optimums. However, individual species' 
capacity to adapt to changing circumstances differs. Cli-
mate change has caused alterations in many plant species, 
demonstrating that the species has climatic thresholds that 
it cannot cross (Tytar 2019). If European Hop Hornbeam 
species are unable to travel to higher elevations on mountain 
ranges with restricted habitat availability above the tree line, 
they may suffer considerable habitat loss, fragmentation, and 
perhaps extinction. According to Harrison's (2020) research, 
the danger of extinction for this species because of limited 
geographic or climatic ranges and disturbance of existing 
communities’ increases with the departure of some current 
climates. As a result, it is crucial to determine how sensitive 
the European Hop Hornbeam species is to climate change 
and to take appropriate action to preserve its biodiversity. 
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In order to anticipate the probable distribution of European 
Hop Hornbeam around Europe under the SSP2 4.5 and 
SSP5 8.5 scenarios across two time periods (2041–2060 
and 2081–2100), the MaxEnt method was utilized in this 
work. Conservation and management of biodiversity would 
be based on estimating the extent of the probable geographic 
distribution range and determining the major variables. The 
conservation of rare species has made extensive use of spe-
cies distribution models, which are useful for predicting the 
probable geographic distribution under various climatic 
situations. One of the most popular prediction techniques in 
SDMs is MaxEnt algorithm modeling, which outperforms 
other techniques using presence-only and biased sample 
data in terms of predicted accuracy. The MaxEnt meth-
odology, which takes advantage of statistical mechanics, 
is an effective modeling method for regional distributions 
of European Hop Hornbeam species with limited scopes 
and existence information. The algorithm of MaxEnt also 
worked well in predicting the range of this species, which 
is widespread. This is the most significant innovation of the 
work, as relatively few studies (e.g., Ilari et al. 2022; Kulac 
et al. 2016) have examined the effect of climate change on 
the dispersion and biodiversity of European Hop Hornbeam 
using these statistical approaches. Correlation analysis was 
used to define more associated bioclimatic variables, while 
change analyses were used to identify changes in distribution 
regions. This research will be the very first instance in terms 
of representing the new climate model on a global scale. A 
native species' predicted range will be shown along with the 
climatic variability and response to anthropogenic and natu-
ral influences across Europe. MaxEnt and the IPSL-CM6A-
LR climate change model are used to (1) predict potential 
habitat suitability areas for European Hop Hornbeam and (2) 

eliminate more associated bioclimatic factors using correla-
tion analysis. (3) For planning and management purposes, 
change analysis was used to identify changes in distribution 
regions. In light of our objectives, this study is searching for 
the answers to the following questions:

(1)	 What are suitable current and future habitat areas of 
European Hop Hornbeam using the IPSL-CM6A-LR 
climate change model?

(2)	 What are the most correlated bioclimatic variables 
directly affecting the distribution of European Hop 
Hornbeam?

(3)	 What is the total area of the changes compared to the 
current and future distribution of European Hop Horn-
beam?

Materials and methods

Study area

European Hop Hornbeam as the main topic of the research 
is a native species in Europe and belongs to the Betulaceae 
family. This species is generally found on slopes (Shaw et al. 
2014). Ostrya carpinifolia Scop. is the only native species 
among ostrya species, and its dark wood is very precious for 
commercial purposes (Korkut 2009) (Fig. 1).

The presence-only data consist of 96 points in the 
research area borders represented from Middle and East 
Mediterranean part of Europe; North Anatolia and a small 
part of Caucasian neighboring Georgia and Armenia in the 
east; Syria and Lebanon in the south; Macedonia, Greece, 
Bulgaria, Albania, Italy, Malta, and Slovenia in the west; and 

Fig. 1   General overview of European Hop Hornbeam. a Trunk;); b Leafs/fruit; and c Appearance Source: Ueda (2020)
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Russia in the north. The species’ presence positions were 
identified using the latest literature, the GPS database, and 
the Global Biodiversity Information Facility (GBIF 2022) 
(Fig. 2) (Akkemik 2014; Davis 1984). In the WGS84 coordi-
nate scheme, the coordinates of these positions were named 
using QGIS 3.22.13 (QGIS 2022) and satellite data from 
Google Earth. Species responses are modeled in a boundary 
box as the geographical location. Boundary box coordinates 
are as follows: lower left corner: – 17.33333, 24.83333; 
upper right corner: 53.04166, 61.37500. According to this, 
Fig. 2 shows the boundaries of the box.

Bioclimatic variables and human footprint

Bioclimatic variables that have 2.5 m spatial resolution 
are obtained from the WorldClim future climate database 
(World Clim 2020). Pearson correlation analysis of 19 bio-
climatic variables was conducted using SPSS version 26 
to remove the effect of multicollinearity on the modeling 
process and for the selection of the most fitting variables 
that show a high contribution to the model, and to further 
increase the accuracy of the model simulation, the highly 
correlated variables with Pearson's correlation coefficients 
higher than 0.7 were eliminated.

Human footprint maps were used as a layer for creat-
ing the prediction model. Human footprint maps create an 

opportunity for interpreting human pressures for tracking 
environmental change and as a reason for altering ecological 
systems (Venter 2016). Human footprint data were down-
loaded from the NASA Socioeconomic Data and Applica-
tions Center (SEDAC) in GeoTIFF (.tif) format with the 
resolution of 1 km2 (Venter 2018).

Climate change model and MaxEnt procedure

Climate models are effective and advantageous tools to iden-
tify the features of the climate system (Boucher et al. 2020). 
IPSL-CM6A-LR is a French atmospheric climate model 
developed by The Institute Pierre‐Simon Laplace Climate 
Modelling Centre (IPSL 2020). Compared to other interna-
tional climate models, the IPCC report is based on a report 
submitted to the CMIP6 project (Madeleine et al. 2020). The 
distribution of European Hop Hornbeam across Europe was 
predicted in this study using the IPSL-CM6A-LR climate 
change model with the SSP2 4.5 and SSP5 8.5 scenarios for 
the time periods 2041–2060 and 2081–2100, respectively.

Climate data (resolution of 2.5 arcminutes) and Coordi-
nate Bias File (CBF) file were downloaded from www.​sdmto​
olbox.​org, and "Ostrya_carpinifolia_Coord_Bias_file_for 
MaxEnt" output was obtained using SDM toolbox tool in 
Arcmap 10.6.1 program, (You can see the screenshot of 

Fig. 2   Distribution of European Hop Hornbeam

http://www.sdmtoolbox.org
http://www.sdmtoolbox.org
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output as FigX). Afterward, this file was used in the model 
as Settings- > Advanced Bias File in the MaxEnt program.

Utilizing European Hop Hornbeam occurrence data, 
MaxEnt 3.4.1 was run. Replicated run type was selected 
as the Crossvalidate, and the random test percentage 
was set at 25%. The number of replicates was set at 10. 
Because the training data represented 75% of the occur-
rence data, the 'linear,' 'quadratic,' 'hinge,' and 'thresh-
old' modeling procedures produced the best performance 
for the purpose of modeling current and future distribu-
tion. In a MaxEnt model, it is important to determine 
the impacts of each environmental bioclimatic variable. 
Output format was selected as 'Logistic,' and the Jack-
knife test option was selected to identify the effects of 
each bioclimatic variable on the model (Pearson et al. 
2007).

The model results were transformed into distribution 
maps using QGIS 3.22.13's raster to vector conversion 
tool. The extinction of a species in an area or region is 
calculated by the MaxEnt model as a value between 0 
(absence) and 1 (presence). Three factors are often fol-
lowed when choosing thresholds: objective, comparability, 
and discriminative capacity (Liu 2019, Bai et al. 2022). 
The omission error or the specificity and sensitivity of 
the forecast findings, in general, establish the threshold. 
The latter contains both omission and commission errors, 
whereas the former excludes commission mistakes. The 
latter is represented by the model maximum training sen-
sitivity plus specificity (MTSS), which complies with the 
three threshold selection criteria (Bai et al. 2022). As clas-
sification thresholds for suitable and moderately suitable 
habitats, respectively, MTSS, balance training omission, 
projected area, and threshold value (TPT) were utilized 
to reclassify the MaxEnt model outputs into not suitable, 
marginally suitable, acceptable, and extremely appropriate 
habitats. The Reclassify tool of QGIS software, version 
3.22.13, was then used to count and determine the area of 
the suitable distribution region for each class. Under vari-
ous climate change scenarios, the current and future km2 
of appropriate habitats were determined.

This study, therefore, applied a change analysis by 
comparing the present predicted potential distribution of 
European Hop Hornbeam with the future predicted poten-
tial distribution under the 2041–2060 and 2081–2100 
SSP2 4.5 and SSP5 8.5 scenarios. To determine the 
changes in distribution areas, suitability values were 
classified as 0 = Not suitable, 1 = marginally suitable, 
2 = suitable, and 3 = highly suitable, and potential distri-
bution was compared to the current potential distribution. 
Output maps were classified based on suitable values for 
habitat gains and losses, stable and not suitable habitats, 
and km2.

Results

Statistical analyses

As a result of Pearson correlation analysis, twelve biocli-
matic variables were excluded and only seven variables were 
kept creating the potential distribution model of European 
Hop Hornbeam.

The selected variables include isothermality (BIO3), 
mean temperature of the wettest quarter (BIO08), tempera-
ture seasonality (BIO4), precipitation seasonality (coeffi-
cient of variation) (BIO15), max temperature of the warmest 
month (BIO5), annual precipitation (BIO12), and Precipita-
tion of Coldest Quarter (BIO19). The variables Bio 19 (Pre-
cipitation of Coldest Quarter), Bio 12 (annual precipitation), 
and Bio 3 (isothermality) were found to have the greatest 
influence on the model, respectively.

The receiver operating characteristic (ROC) curve aver-
aged over the replication was studied again. In this regard, 
the precision is specified using the predicted region instead 
of the true commission (Phillips et al. 2017). For replication 
runs, the average test area under the ROC curve (AUC) is 
0.953, and the standard deviation is 0.008 (Fig. 3).

The findings of the jackknife test of variables' significance 
are shown in Fig. 4. BIO 19, the environmental component 
with the greatest advantage when used alone, frequently pro-
vides the most important information by itself. Human foot-
print layer is the environmental variable that greatly reduces 
the gain when it is eliminated, and as a result, it tends to pro-
vide the most data that is not present in the other variables.

Distribution of European Hop Hornbeam

MTSS = 0.2021 and TPT = 0.0432 in the MaxEnt model 
results indicate that the thresholds for identifying suitable 
and marginally appropriate habitats for European Hop Horn-
beam are 0.2021 and 0.0432, respectively. The extremely 
suitable habitat is 1–0.5, the suitable habitat is 0.5–0.2021, 
the slightly suitable habitat is 0.2021–0.0432, and the not 
suitable habitat is 0.0432–0.

Figures 5 and 6 and Table 1 demonstrate the species' cur-
rent and potential geographic distribution based on the degree 
of suitability classes, as well as prediction models for its 
potential future distribution. According to Fig. 5, the current 
possible range of the European Hop Hornbeam includes the 
coasts of Georgia, Russia, Turkey, Albania, Greece, Macedo-
nia, Bosnia and Herzegovina, Montenegro, Croatia, Slovenia, 
Austria, Italy, Sicily, and southern France. Furthermore, the 
predicted model presented that European Hop Hornbeam has 
suitable habitats around the borders of Spain and Portugal, 
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the Mediterranean coastline of Algeria, and the coastline 
of the Caspian Sea of Iran, even though there is no occur-
rence data from those locations. It is calculated that, in total, 

‘highly suitable’ areas cover 327,044 km2 and ‘suitable’ areas 
cover 809,662 km2. It is clearly seen that the predicted model 
is matched up with the EUFORGEN (Caudullo et al. 2017).

Fig. 3   Reliability of the prediction

Fig. 4   Jackknife test of bioclimatic variable importance
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Aone and Attwo indicated that ‘highly suitable’ areas will 
increase to 361,584 km2, and ‘suitable’ areas will decrease 
to 692,253 km2 under the SSP2 4.5 2041–2060 climate 
change scenarios. It is also predicted that ‘highly suitable’ 
and ‘suitable’ areas will decrease to 324,014 and 683,581 
km2, respectively, under the SSP2 4.5 2081–2100 scenarios.

Athree and Afour show that ‘highly suitable’ areas will 
increase to 369,337 km2, and ‘suitable’ areas will decrease 
to 695,784 km2 under the SSP5 8.5 2041–2060 climate 
change scenarios. It is also predicted that ‘highly suitable’ 
and ‘suitable’ areas will decrease to 203,010 and 493,064 
km2, respectively, under the SSP5 8.5 2081–2100 scenarios.

Based on the scenarios of SSP2 4.5 and SSP5 8.5, the 
distribution of European Hop Hornbeam might shift in the 
future across the time periods 2041–2060 and 2081–2100, 
as shown in Fig. 6 B 1 through B4. Table 2 shows the modi-
fications to the distribution areas in km2. The findings of 
the analysis changes showed a comparison of the European 
Hop Hornbeam's current and future suitable habitats as km2. 
Suitability classes were classified as habitat gains, losses, 
and stable habitats. For example, in Fig. 6 B 1, the current 
potential distribution was compared to the SPP2 4.5 climate 
change scenarios for the 2041–2060 and Figure B 2 for the 
2081–2100 periods. Following the same logic, in Fig. 6 B 
3, the current potential distribution was compared to the 

SPP5 8.5 scenarios for the 2041–2060 and 6B4 2081–2100 
periods.

Discussion

Global warming as a threat to biodiversity and ecosystems 
is one of the most fundamental environmental problems of 
today’s world. Nordhaus (2013) stressed that global warm-
ing effects are known "as a force that will shape human 
and natural landscapes for the indefinite future" along 
with violent conflicts and economic depressions. Several 
studies indicated that climate change as an environmental 
problem affects different aspects of human life (Azadi et al. 
2020; Jamshidi et al. 2019; Manisalidis et al. 2020). Cli-
mate change also plays a key role in shaping the habitats 
of the species. Because the climate is deteriorating day by 
day (Zhao et al. 2020), determining the effects on species is 
crucial for their sustainability. According to studies on the 
consequences of climate change, animals will move to habi-
tats that are more suitable for them under various climate 
change scenarios (Akyol et al. 2020; Arslan et al. 2020; Li 
et al. 2020b; Liu et al. 2019; Sun et al. 2020).

Compared to other regions, climate change projections 
showed a particular increase in the Mediterranean region 
during the twenty-first century (Giorgi and Lionello 2008; 

Fig. 5   Current distribution of European Hop Hornbeam
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Thiébault and Moatti 2016). The Mediterranean region has 
the most intense human occupation in the world (Thiébault 
and Moatti 2016). On the one hand, human interactions 
surely affect the ecological environment and shape the 

territory with the characteristic of the population; on the 
other hand, these interactions make the environment more 
vulnerable. Combined with the variations in climate, the 
result can be devastating and can lead to the degradation of 

Fig. 6   Future potential distribution of European Hop Hornbeam 
(SSP2 4.5 A1 2041–2061 and A2 2081–2100) (SSP5 8.5 A3 2041–
2061 and A4 2081–2100) and Distribution Changes of European Hop 

Hornbeam for the SSP2 4.5 scenario B1 2041–2060 B2 2081–2100 
SSP5 8.5 scenario B3 2041–2060 B4 2081–2100
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biological and ecological resources. This demonstrated the 
deterioration and loss of biodiversity at the level of the spe-
cies and the movement of the species to less crowded places.

The model results show similarities in terms of the reli-
ability and performance of the model. The current study’s 
reliability results are consistent with the results of Van Zonn-
eveld et al. (2009) and Huang et al. (2019). Hence, it can be 
said that the population of this valuable plant in European 
forests is declining. When it comes to the performance of the 
model, Kigen et al. (2013) and Phillips et al. (2006b) also 
investigated different algorithms and genetics for regulatory 
prediction methods considering the geographical distribu-
tion of species. Their results represent that their models were 
undoubtedly better than randomized models when tested 
for ROC removal and analysis. They also concluded that 
in the AUC study, MaxEnt showed better differentiation in 
the acceptable and not suitable areas of the species. These 
results are in line with the outcomes of Wan et al. (2017). 
Therefore, the model shows that the most profitable environ-
mental variable, when used separately, is BIO 19. Therefore, 
the most useful information will be provided. BIO 5 will 
occur when the environmental variable reduces profit. The 
response curves illustrate the significant effect of modifying 
exactly one variable, while the model can take advantage of 
variable sets that shift together. These findings are in line 
with the findings of Kumar (2012).

Compared to other regions, climate change projections 
showed a particular increase for the Mediterranean region 
during the twenty-first century (Giorgi and Lionello 2008; 
Thiébault and Moatti 2016). The Mediterranean region has 

the most intense human occupation in the world (Thiébault 
and Moatti 2016). Human interactions surely affect the eco-
logical environment and shape the territory with the charac-
teristic of the population, but, on the other hand, these inter-
actions make the environment more vulnerable. Combined 
with the variations in climate, the result can be devastating 
and can lead to the degradation of biological and ecological 
resources. This showed the degradation and biodiversity loss 
at the species level, but it is clearly seen that when it comes 
to population findings, the study showed the shift of the spe-
cies to lower populated areas.

The predicted model of the study represents an obvi-
ous decline in the potential distribution of European Hop 
Hornbeam under the SPP2 4.5 and SPP5 8.5 climate change 
scenarios. Related studies confirmed that climate change 
has a major impact on decreasing biodiversity (Abolmaali 
et al. 2018; Li et al. 2020b; Liu et al. 2019; Qin et al. 2017; 
Zhao et al. 2020). These findings represented that Mediter-
ranean species will shift to the north, and the plant diversity 
of Europe will be diminished significantly because of cli-
mate change (Cramer et al. 2018). The habitats of animals 
all across the world are affected by climate change. Because 
of climate change, animals are migrating northward and 
upward to higher elevations, where temperatures are cooler. 
However, in addition to the world's changing climate, there 
are also significant changes in land use that might have an 
influence on the habitats of many species. In actuality, the 
surrounding forest cover frequently restrains species transi-
tions. With the growth in forest loss, species shift at slower 
rates in colder parts of the planet. On the other hand, the 

Table 1   Prediction of distribution extent of European Hop Hornbeam in accordance with current and SSP2 4.5 2041–2060/2081–2100, SSP5 
8.5 2041–2060/2081–2100

Suitability Current SSP2 4.5 2041–2060 SSP2 4.5 2081–2100 SSP5 8.5 2041–2060 SSP5 8.5 2081–2100

Area (km2) % Area (km2) % Area (km2) % Area (km2) % Area (km2) %

Not Suitable 11,800,025 80 11,780,549 79 11,854,050 80 11,780,384 79 12,520,984 84
Marginally Suitable 1,891,390 13 1,993,724 13 1,965,911 13 1,982,064 13 1,609,743 11
Suitable 809,662 5 692,253 5 683,581 5 695,784 5 493,064 3
Highly Suitable 327,044 2 361,584 2 324,014 2 369,337 2 203,010 1
Total 14,828,122 100 14,828,110 100 14,827,555 100 14,827,568 100 14,826,801 100

Table 2   Change analysis of 
European Hop Hornbeam (km2)

Change From Current to 
SSP2 4.5 2041–2060

From Current to 
SSP2 4.5 2081–2100

From current to 
SSP5 8.5 2041–2060

From current 
to SSP5 8.5 
2081–2100

Gain 816,769 6 1,025,829 7 1,013,519 7 1,178,098 8
Loss 859,767 6 1,201,021 8 1,045,836 7 2,107,187 14
Stable 1,859,503 13 1,452,946 10 1,599,345 11 594,944 4
Not Suitable 11,292,079 76 11,147,762 75 11,168,869 75 10,946,568 74
Total 14,828,118 100 14,827,559 100 14,827,569 100 14,826,797 100
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shifting pace is exacerbated by extensive deforestation in 
warmer locations like the tropics. Tropical species may 
therefore be particularly susceptible to the combined impacts 
of climatic and land-use changes. Finally, how species adapt 
to both habitat loss and changing climates must be carefully 
examined for successful conservation and global biodiver-
sity management. Current research results showed a similar 
decline in the species population, even though we used RCP 
scenarios in our study. In this investigation, the environmen-
tal variable with the highest advantage when utilized alone 
is BIO 19, which tends to give the most meaningful data on 
its own. So, many factors could affect the distribution of the 
species as an environmental factor, but results showed that 
different bioclimatic variables affect this distribution for dif-
ferent kinds of species because of their uniqueness.

The current study's findings suggested that European Hop 
Hornbeam could be predicted using the CMIP6 project's 
CNRM-ESM-1 climate change model. The new model is 
published recently and there are very few studies about this 
new model. The model shows the current to next sixty years’ 
projection. Not only the model result but also the effects of 
each environmental variable proved that the MaxEnt model 
has better performance than the random prediction. As a 
result, the products are more original. Bioclimatic variables 
were employed as environmental factors in this study to 
determine the changes in distribution areas. Similar studies 
have been conducted on the ecological features that reflect 
the effect of climate, such as landforms and elevation (Han 
et al. 2014; Lepcha et al. 2019; Raney and Leopold 2018; 
Song et al. 2013). Applying an environmental layer, each 
bioclimatic variable or ecological feature represents the 
main objective of the study (Khwarahm 2020). The change 
analysis showed how the extent of distribution in each suit-
ability category will be shaped. The outcomes of the change 
analysis have indicated that climate change scenarios show 
the loss of habitats in the future.

Our results suggested that species distribution modeling 
is an extensive way of understanding biodiversity changes 
and spatial patterns of the species. These kinds of scientific 
researches provide knowledge about biodiversity and spe-
cies in the future under pessimistic and optimistic climate 
change scenarios to create planning and management strate-
gies for natural and environmental resources. It is therefore 
important to understand the response of this species to cli-
mate fluctuations and to combine distribution modeling with 
physiological features in order to identify the appropriate 
areas.

Conclusion

The purpose of this study was to estimate the existing 
and potential spread of European Hop Hornbeam (Ostrya 
carpinifolia Scop.) in Europe. The Mediterranean region 
is significantly important for biodiversity and species, 
and its ecological value is quite unique. The prediction 
model indicated that distribution areas of the European 
Hop Hornbeam in the Mediterranean region will dimin-
ish and move further northward in the next 60  years. 
European Hop Hornbeam, as a native species in Europe, 
has significant importance for Europe's biodiversity in 
the future. According to the findings, for the countries 
across Europe, this study strongly recommended taking 
the effects of climate change into account. We suggest 
that distribution modeling should be incorporated into the 
European Hop Hornbeam’s production and conservation 
policy, which can direct the establishment of plantations 
and the protection of resources for these species. We also 
recommend that steps should be taken for the future by 
the state forestry authority, which oversees the European 
forests. In addition, it should be highlighted that land use 
plans should be established, and genetic studies should be 
funded in order to maintain seed sources for species con-
tinuity. We should also ensure the transition of biodiver-
sity to potential distribution areas, along with protective 
measures to prevent over-grazing and over-consumption. 
Drought-resistant plants can be identified through genetic 
studies in order to ensure the species' continuity and resil-
ience to climate change in the future. Efforts should also 
be made to preserve those individuals that would be less 
dramatically impacted by the harmful effects of climate 
change. In this context, our findings imply that conserva-
tion and environmental measures should be used to man-
age this species, and climate change models should be 
incorporated in land use and forest management planning. 
The results of this study represented a reference for creat-
ing a strategy for the protection and conservation of the 
species in the future. European countries need effective 
and innovative solutions for the climate change reality, 
both at ecological and social levels, to protect European 
biodiversity. In this regard, it is suggested that future stud-
ies examine climatic models such as the entropy model 
of bias and the presence of endangered specimens in 
European countries on a larger scale. It also emphasizes 
the repercussions of the loss of rare plant species, which 
might be addressed in future research. Future studies 
should focus on the range sizes of additional taxa on large 
biogeographic scales, as well as their dynamics under a 
changing climate. Assessing forest habitat value might aid 
in the creation of biodiversity indicators such as forest 
naturalness, which could influence social perceptions of 
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the relevance of forest functions and ecosystem services. 
As a result, more research is needed to distinguish between 
the impact of forest structure, which can be managed via 
forestry, and the natural role of climate change in the con-
servation of European Hop Hornbeam species.
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