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A B S T R A C T   

Heat stress is increasingly affecting the production, health, and reproduction of dairy cows. Previous studies used 
limited variables as predictors of physiological responses, and the developed models poorly predict animal re-
sponses in evaporatively cooled environments. The aim of this study was to build machine learning models using 
comprehensive variables to predict physiological responses of dairy cows raised on an actual dairy farm equipped 
with sprinklers. Four algorithms including random forests, gradient boosting machines, artificial neural networks 
(ANN), and regularized linear regression were used to predict respiration rate (RR), vaginal temperature (VT), 
and eye temperature (ET) with 13 predictor variables from three dimensions: production, cow-related, and 
environmental factors. The classification performance of the predicted values in recognizing individual heat 
stress states was compared with commonly used thermal indices. The performance on the testing sets shows that 
the ANN models yielded the lowest root mean squared error for predicting RR (13.24 breaths/min), VT (0.30 ◦C), 
and ET (0.29 ◦C). The results interpreted with partial dependence plots and Local Interpretable Model-agnostic 
Explanations show that P.M. measurements and winter calving contributed most to high RR and VT predictions, 
whereas lying posture, high ambient temperature, and low wind speed contributed most to high ET predictions. 
When determining the ground-truth heat stress state by the actual RR, the best classification performance was 
yielded by the predicted RR with an accuracy of 77.7%; when determining the ground-truth heat stress state by 
the actual VT, the best classification performance was yielded by the predicted VT with an accuracy of 75.3%. 
This study demonstrates the ability of ANN in predicting physiological responses of dairy cows raised on actual 
farms with access to sprinklers. Adding more predictors other than meteorological parameters into training could 
increase predictive performance. Recognizing the heat stress state of individual animals, especially those at the 
highest risk, based on the predicted physiological responses and their interpretations can inform better heat 
abatement decisions.   

1. Introduction 

In the dairy industry, heat stress is increasingly affecting the pro-
duction, health, and reproduction of dairy cows (Ranjitkar et al., 2020). 
Thermal indices have long been developed and applied to describe the 
amplitude and duration of heat stress (Herbut et al., 2018). However, 
environmental indicators can neither reflect the true response of animals 

nor address individual variation within a herd (Bar et al., 2019; Koltes 
et al., 2018). 

Heat stress induces acute responses which are driven by the auto-
nomic nervous system to maintain homeostasis, as well as chronic re-
sponses which are driven by the endocrine system to achieve a new 
physiological state (Collier et al., 2019). Physiological responses, such as 
respiration rate (RR), core body temperatures (CBT), and body surface 
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temperatures (BST), can be obtained by direct measurement or predic-
tive modeling, and further used for determining the heat stress state of 
animals. Although the direct measurement of such responses can pro-
vide the most accurate results, it is difficult to achieve continuous alarms 
since traditional manual measurements are invasive, tedious, and time- 
consuming (Shu et al., 2021). Predictive modeling offers a non-invasive 
alternative to predict physiological responses from more easily acces-
sible data such as meteorological parameters (Dado-Senn et al., 2020b; 
Dikmen and Hansen, 2009). 

Machine learning (ML) models have gained much interest in animal 
science research due to their advantage in predicting nonlinear re-
lationships and being less subject to assumptions about data distribution 
(Gorczyca and Gebremedhin, 2020). Tree-based algorithms and neural 
networks are two typical methods that have been extensively used in 
regression (e.g., prediction of productivity, energy consumption, phys-
iological state) and classification (e.g., behavior recognition, disease 
detection, body condition scoring) tasks (Cockburn, 2020; Piwczyński 
et al., 2020). For such a regression task predicting physiological re-
sponses, random forests (RF), gradient boosting machines (GBM), and 
artificial neural networks (ANN) have shown much better predictive 
ability than traditional linear models in broilers (Abreu et al., 2020), 
dairy cows (Hernández-Julio et al., 2014; Pacheco et al., 2020), beef 
cattle (Sousa et al., 2016; Sousa et al., 2018), sheep (Fuentes et al., 

2020a), and pigs (Gorczyca et al., 2018). 
The choice of predictors is of particular importance for the predictive 

ability of the model. Many studies relied solely on meteorological pa-
rameters to predict physiological responses (Brown-Brandl et al., 2005; 
Gorczyca and Gebremedhin, 2020; Hernández-Julio et al., 2014). Some 
studies used subcutaneous temperatures (Chung et al., 2020; Iwasaki 
et al., 2019) or BST (Pacheco et al., 2020; Sousa et al, 2016) as predictors 
since vasodilation during heat stress drives more blood from the core to 
the periphery. Li et al. (2020) incorporated previous milk yield and time 
block into their predictive model, reflecting production level and diurnal 
changes in cow physiology, respectively. Moreover, lots of cow-related 
factors are well documented to have an impact on cows’ susceptibility 
to heat stress, including age, breed, lactation stage, parity, and body 
posture (Ammer et al., 2016; Becker et al., 2020; Spiers et al., 2004). 
Accordingly, inputting cow-related factors is supposed to better deal 
with individual variation in heat stress predictions (Pinto et al., 2019). 
Days in milk (DIM) and parity have been incorporated into ML models 
for predicting milk productivity and quality (Bovo et al., 2021; Fuentes 
et al., 2020b). However, few attempts have been made to incorporate 
cow-related factors into ML models for predicting physiological re-
sponses of dairy cows exposed to heat stress. 

The other concern about using ML methods is that the models can 
only be applied and interpreted in the environment similar to where 
they were originally developed due to their data-driven nature. Dairy 
farms employ a variety of cooling strategies to alleviate heat stress, the 
most efficient and widely used of which is electric fans coupled with 
evaporative cooling (e.g., misters and sprinklers) (Chen et al., 2015). 
Fans plus misters systems produce small droplets and cool the air 
through evaporation as they disperse, whereas fans plus sprinklers sys-
tems produce much larger droplets to wet the skin surface of cows and 
cool the surface directly through evaporation of the water (Ji et al., 
2020; Schauberger et al., 2020). All these microenvironmental changes 
can be captured by ambient sensors and their effect on cow thermal 
comfort can still be explained. However, the fact that the large droplets 
delivered by sprinklers wet the surface of cows making them more 
efficiently cooled by fans would be neglected by previous models which 
were developed in the absence of sprinklers. The lack of these data 
makes it unknown whether ML methods would remain useful in such a 
complex environment in order to guide decision making with regards to 
cow management. 

To explore the abovementioned questions, this study aimed to build 
and compare ML models for predicting physiological responses (RR, 

Table 1 
Summary of the cows at the beginning of each phase.  

Variable First phase (n = 20) Second phase (n =
20) 

Third phase (n =
19) 

Mean 
± SD 

Min, 
Max 

Mean 
± SD 

Min, 
Max 

Mean 
± SD 

Min, 
Max 

Parity 2.7 ±
0.9 

1, 5 2.5 ±
1.1 

1, 5 2.5 ±
1.2 

1, 5 

Days in milk 150.2 
± 21.1 

109, 
179 

150.9 
± 16.9 

113, 
178 

150.0 
± 15.9 

119, 
178 

Body 
condition 
score1 

3.0 ±
0.2 

2.8, 
3.5 

3.1 ±
0.3 

2.8, 
3.5 

3.1 ±
0.2 

2.8, 
3.5 

Daily milk 
yield (kg/ 
day) 

43.0 ±
5.3 

30.9, 
52.9 

39.3 ±
5.0 

30.4, 
50.4 

37.4 ±
5.5 

28.8, 
50.4 

SD = standard deviation; Min = minimum; Max = maximum. 
1 Body condition score was measured using a 1 (severe undercondition) to 5 

(severe overcondition) scale as per Wildman et al. (1982). 

Fig. 1. Flow chart showing the strategic plan of the present study. RF = random forests; GBM = gradient boosting machines; ANN = artificial neural networks; RLR 
= regularized linear regression; RR = respiration rate; VT = vaginal temperature; ET = eye temperature. 
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CBT, and BST) of dairy cows from previous milk yield, cow-related 
factors, microenvironmental parameters, and time block on an actual 
farm which was equipped with sprinklers. We hypothesized that ML 
models developed using comprehensive variables would perform well in 
this real-world environment. 

2. Materials and methods 

The experimental protocols were approved by the Experimental 
Animal Care and Use Committee of Institute of Animal Sciences, Chinese 
Academy of Agricultural Sciences (approval number IAS2021-220). 

Fig. 2. Daily patterns of (a) ambient temperature 
(Ta), (b) relative humidity (RH), and (c) temperature- 
humidity index (THI). Zones in green, purple, and 
yellow represent three experimental phases, respec-
tively. Ta_mean, Ta_max, and Ta_min are the mean, 
maximum, and minimum of daily Ta, respectively; 
RH_mean, RH_max, and RH_min are the mean, 
maximum, and minimum of daily RH, respectively; 
THI_mean, THI_max, and THI_min are the mean, 
maximum, and minimum for daily THI, respectively. 
(For interpretation of the references to colour in this 
figure legend, the reader is referred to the web 
version of this article.)   
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2.1. Location, facilities, and animals 

The experiment was conducted from May to August 2021 at an 
intensive dairy farm, located in Shandong, China (coordinates: 
34◦50′37′’N, 115◦26′11′’E; altitude: 52 m), characterized by a 
temperate continental monsoon climate with hot and humid summers. 
The experiment was conducted over three different phases, firstly during 
20 days in late spring and early summer (May-June), secondly during 10 
days in mid-summer (July), and thirdly during 10 days in late summer 
(August). These phases were expected to cover a wide range of thermal 
environments, thus facilitating the training of ML models. 

For each experimental phase, a new group of 19 to 20 primi- and 
multiparous Holstein dairy cows reared in a free-stall pen (15 m × 90 m) 
were selected based on similar parity, lactation stage, and body condi-
tion score (Wildman et al., 1982), so that cows were comparable at the 
beginning of each phase (Table 1). The barn was covered by a double- 
pitched roof, and therefore, most of the solar radiation was prevented 
from reaching the cows inside the barn. The pen was equipped with a 
total of 22 fans (diameter: 1.1 m; capacity: 25,000 m3/h each; instal-
lation height: 2.8 m) and 46 sprinklers (flow rate: 1.5 L/min each; 
installation height: 2 m; 1 min on and 4 min off). Fans and sprinklers 
were automatically turned on when the indoor temperature reached 
20 ◦C and 25 ◦C, respectively. Cows were milked three times per day at 
08:30, 16:30, and 00:00 h, and were fed a total mixed ration three times 
per day after milked. Cows had free access to drinking water but no 
access to outdoor pasture. One cow in phase 1 and another in phase 3 
were withdrawn from the experiment due to health issues, namely high 
somatic cell count and gastroenteritis, respectively. 

2.2. Variables 

Respiration rate (RR), vaginal temperature (VT), and eye tempera-
ture (ET) were the three response variables for predictive modeling, 
while candidate predictor variables were determined along three di-
mensions: production factors, cow-related factors, and environmental 
factors (Fig. 1). 

Production factors included the single daily milk yield (DMY) of 
three days before the test day. The use of DMY was initially motivated by 
the fact that high-producing cows typically suffer more from heat stress 
(Collier et al., 2012). The milk yield in the last few days could represent 
the mean production level of individual cows. Besides, the changing 
dynamics or accumulated response (Li et al., 2021) of DMY over pre-
vious days was intended to show how the animals were coordinated by 
acclimatization. This information is important since exposure to heat 
stress would induce stress responses in either acute (minutes to days) or 
chronic (days to weeks) ways, manifesting into different physiological 
states (Collier et al., 2019). For example, cows showed a much steeper 
increase in RR and VT during acute stress than during chronic stress (de 
Andrade Ferrazza et al., 2017). Given that acute stress takes at least 
three days to achieve thermal balance (Hahn, 1999), the previous three 
days’ DMY was finally nominated. 

Cow-related factors including birth season, calving season, DIM, 
parity, age in months (AIM), and posture were nominated since they 
have long been identified as influencing factors of individual sensitivity 
to heat stress (Ammer et al., 2016; Becker et al., 2020; Spiers et al., 
2004). Environmental factors included ambient temperature (Ta), 
relative humidity (RH), and wind speed (WS) which represented indoor 
microenvironments, as well as time block which represented time effect. 

2.3. Data collection 

Vaginal temperature (VT) was recorded automatically at an interval 
of 5 min by using data loggers (DS1922L, accuracy: ± 0.5 ◦C, resolution: 

Table 2 
Summary of the datasets for predicting respiration rate (RR), vaginal tempera-
ture (VT), and eye temperature (ET). Continuous variables are summarized as 
mean ± standard deviation, categorical variables are summarized as n (%).  

Predictor RR set (n =
2910) 

VT set (n =
1561) 

ET set (n =
1866) 

DMY1D (kg/day) 39.3 ± 7.0 38.4 ± 6.8 39.1 ± 7.1 
DMY2D (kg/day) 39.5 ± 7.1 38.3 ± 6.8 39.2 ± 7.2 
DMY3D (kg/day) 39.5 ± 7.1 38.5 ± 7.0 39.2 ± 7.1 
Birth season 

Spring 1411 (48.5) 883 (56.6) 926 (49.6) 
Summer 377 (13.0) 150 (9.6) 213 (11.4) 
Autumn 287 (9.9) 130 (8.3) 183 (9.8) 
Winter 835 (28.7) 398 (25.5) 544 (29.2) 

Calving season 
Spring 273 (9.4) 219 (14.0) 186 (10.0) 
Autumn 514 (17.7) 122 (7.8) 293 (15.7) 
Winter 2123 (73.0) 1220 (78.2) 1387 (74.3) 

Days in milk 168.0 ± 20.1 167.4 ± 18.9 168.4 ± 19.7 
Parity 

1 629 (21.6) 349 (22.4) 389 (20.8) 
2 960 (33.0) 527 (33.8) 619 (33.2) 
3 814 (28.0) 468 (30.0) 525 (28.1) 
4 402 (13.8) 193 (12.4) 271 (14.5) 
5 105 (3.6) 24 (1.5) 62 (3.3) 

Age in months 48.4 ± 12.7 46.7 ± 13.1 48.4 ± 13.1 
Posture 

Standing 1503 (51.6) 786 (50.4) 1103 (59.1) 
Lying 1407 (48.4) 775 (49.6) 763 (40.9) 

Ambient temperature 
(℃) 

28.9 ± 4.0 28.5 ± 3.9 29.6 ± 3.4 

Relative humidity (%) 61.4 ± 17.8 68.1 ± 10.1 61.0 ± 17.6 
Wind speed (m/s) 1.3 ± 0.9 1.3 ± 0.9 1.3 ± 0.9 
Time block 

A.M. 1417 (48.7) 781 (50.0) 840 (45.0) 
P.M. 1493 (51.3) 780 (50.0) 1026 (55.0) 

DMY1D = daily milk yield of the day before the test day (kg/day); DMY2D =
daily milk yield of the 2nd day before the test day (kg/day); DMY3D = daily milk 
yield of the 3rd day before the test day (kg/day). 

Table 3 
Performance of four candidate algorithms in predicting respiration rate (RR, 
breaths/min), vaginal temperature (VT, ◦C), and eye temperature (ET, ◦C) on the 
training sets, 5-fold cross-validation, and testing sets.  

Response Algorithm Training Cross-validation 
(SD) 

Testing 

RMSE R2 RMSE R2 RMSE R2 

RR RF  14.59  0.43 14.54 
(0.58) 

0.44 
(0.03)  

14.36  0.45  

GBM  11.99  0.62 14.40 
(0.49) 

0.45 
(0.02)  

13.34  0.55  

ANN  12.86  0.57 13.26 
(0.49) 

0.55 
(0.02)  

13.24  0.56  

RLR  15.79  0.35 15.89 
(0.57) 

0.34 
(0.04)  

15.42  0.40 

VT RF  0.35  0.26 0.35 
(0.03) 

0.26 
(0.03)  

0.31  0.43  

GBM  0.26  0.59 0.35 
(0.02) 

0.25 
(0.06)  

0.31  0.44  

ANN  0.31  0.43 0.35 
(0.01) 

0.42 
(0.05)  

0.30  0.45  

RLR  0.36  0.21 0.36 
(0.01) 

0.19 
(0.05)  

0.36  0.22 

ET RF  0.28  0.46 0.33 
(0.02) 

0.44 
(0.02)  

0.34  0.42  

GBM  0.25  0.68 0.33 
(0.02) 

0.43 
(0.03)  

0.31  0.44  

ANN  0.29  0.58 0.33 
(0.01) 

0.44 
(0.03)  

0.29  0.45  

RLR  0.35  0.38 0.35 
(0.02) 

0.36 
(0.01)  

0.31  0.33 

RF = random forests; GBM = gradient boosting machines; ANN = artificial 
neural networks; RLR = regularized linear regression; SD = standard deviation; 
RMSE = root mean squared error; R2 = coefficient of determination. 
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± 0.0625 ◦C; Maxim Integrated, San Jose, CA, USA) attached to modi-
fied vaginal controlled internal drug releases (Pfizer Animal Health, 
New York, NY, USA). The devices were removed after a week in vivo for 
each cow per phase to avoid interfering with artificial insemination and 
risking harming the fetuses. Meteorological parameters were measured 
automatically at an interval of 10 min by using six Kestrel environmental 
data loggers (model: 5000 and 5400; accuracy: ± 0.4 ◦C Ta, ± 1% RH, ±
1.66% WS; Nielsen-Kellerman, Boothwyn, PA, USA) which were evenly 
placed in the pen at a height of 2.2 m. These readings were used for 
describing the overall thermal condition throughout the entire 
experiment. 

The manual field measurement of physiological (RR and ET) and 
microenvironmental variables (Ta, RH, and WS) was conducted twice on 
each test day, once during A.M. (08:00–11:30 h) and once during P.M. 
(13:30–16:30 h). For each measurement, each cow was expected to be 
measured twice, once while lying and once while standing, with at least 
a 30-min gap between the two observations. However, due to their 
unconstrained nature, the number of times the cows were measured 
varied for each measurement, with mean ± standard deviation obser-
vations of 2.0 ± 0.9, 2.4 ± 0.9, and 2.3 ± 0.8 per cow per measurement 
for three periods, respectively. For each observation, RR was recorded 
by two trained observers (intra-class correlation coefficient: 0.91) by 
timing 15 flank movements (and converting to breaths/min); ET was 
measured from the cows’ side with an angle of approximately 90◦ and a 
distance of approximately 1.5 m by a photographer using a portable 
infrared camera (VarioCAM HR, accuracy: ± 0.5 ◦C, resolution: 640 ×
480 pixels; InfraTec, Dresden, Germany) which was fully warmed up as 
per Howell et al. (2020); and microenvironmental parameters (i.e., Ta, 
RH, and WS) were manually collected from the closest Kestrel data 
logger. 

Previous DMY (kg/day) and cow-related factors including birth 
season, calving season, DIM, parity, and AIM were acquired from the 
automatic milking system (Afimilk, Kibbutz Afikim, Israel). Birth season 

and calving season were coded to spring (March to May), summer (June 
to August), autumn (September to November), and winter (December to 
February). Body posture (lying or standing) was recorded manually for 
every observation. Time block (A.M. or P.M.) was recorded for two 
separate field measurements on each test day. 

2.4. Data processing 

The infrared images were interpreted using IRBIS 3 Standard soft-
ware (YSHY, Beijing, China). Low-quality images were manually 
removed. ET was determined using the maximum temperature of the 
medial canthus area, as per Shu et al. (2022b). The data of the two sick 
cows on the day they were withdrawn from the experiment were 
removed from the dataset for data quality control. 

Further data processing was done using R software (version 4.1.0; 
https://www.R-project.org/). To ensure a high-quality prediction, it is 
important that the observations used for training and testing are 
included in the same distribution and are not subject to outliers. This can 
be done by calculating Mahalanobis distance which is an effective dis-
tance metric that measures the distance between an observation and the 
barycenter defined in the multi-dimensional space (Shah and Gemper-
line, 1989). Thus, a principal component analysis was first performed 
using the PCA function from the FactoMineR package to reduce the 
dimensionality of the predictor matrix. The Mahalanobis distances be-
tween observations were then calculated, referring to the method 
described in Soyeurt et al. (2020). The presence of outliers among ob-
servations was detected using a Mahalanobis distance threshold of 5 as 
convention. Moreover, although multicollinearity does not typically 
affect accuracy, it can be a problem when interpreting the results, and 
thus should be carefully dealt with. Multicollinearity was detected using 
variance inflation factors with a threshold of 5 (Gareth et al., 2013). This 
was done by first building a regression model that included all predictor 
variables using the lm function, and then applying the vif function of the 

Fig. 3. Measured and predicted (a) respiration rate (RR), (b) vaginal temperature (VT), and (c) eye temperature (ET) from the overall best models (artificial neural 
networks) on the testing sets. The data points in green, purple, and yellow belong to three experimental phases, respectively. The red lines represent the linear 
regression. The dotted lines represent the diagonal line with a slope of 1. RMSE = root mean squared error; R2 = coefficient of determination. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 
Performance of the overall best models (artificial neural networks) in predicting respiration rate (RR, breaths/min), vaginal temperature (VT, ◦C), and eye temperature 
(ET, ◦C) on the testing sets summarized by three experimental phases.  

Response Phase 1 Phase 2 Phase 3 All 

n RMSE R2 n RMSE R2 n RMSE R2 n RMSE R2 

RR 214  12.09  0.58 113  12.82  0.53 99  13.75  0.52 426  13.24  0.56 
VT 54  0.32  0.53 85  0.33  0.47 96  0.32  0.49 235  0.30  0.45 
ET 125  0.27  0.51 82  0.30  0.42 81  0.28  0.44 288  0.29  0.45 

RMSE = root mean squared error; R2 
= coefficient of determination. 
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Fig. 4. Partial dependence plots of the overall best models (artificial neural networks) on the testing sets showing the effect of production (a-c), cow-related (d-i), and 
environmental factors (j-m) on respiration rate (RR), vaginal temperature (VT), and eye temperature (ET). The 95% confidence intervals for continuous and cate-
gorical variables are shown with dotted lines and error bars, respectively. DMY1D = daily milk yield of the day before the test day (kg/day); DMY2D = daily milk 
yield of the 2nd day before the test day (kg/day); DMY3D = daily milk yield of the 3rd day before the test day (kg/day). 
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car package to the regression model. Besides, correlation matrices were 
built to visualize the correlations among 13 candidate predictor vari-
ables using the cor function. 

2.5. Predictive modeling 

Predictive modeling was performed using the h2o package. For each 
response variable, the h2o.splitFrame function was used to randomly 
divide 85% of the data as the training set and 15% as the testing set 
(Fig. 1). The training set was used to fit the model and the testing set was 
used to collect the final performance. Moreover, 5-fold cross-validation 
was performed to enhance the model reliability and avoid issues with 
“lucky” data split. Four ML algorithms, including RF, GBM, ANN, and 
linear regression with elastic net regularization, were used for modeling 
(Fig. 1). The reason for choosing these algorithms was that they are 
typical methods in such a regression task and are easily accessible from 
popular software. The grid search was performed to identify the best 
combination of hyperparameters using the h2o.grid function. For RF, 
GBM, and ANN, a random grid search was performed with the parameter 
max_models setting to 2,000. For regularized linear regression, a carte-
sian grid search was performed due to much fewer options of hyper-
parameters. For each algorithm, the model with the lowest cross- 
validation root mean squared error (RMSE) was selected as the best 
performing model. These selected models were further evaluated for 
their performance on the testing set, and the one with the lowest RMSE 
and the highest coefficient of determination (R2) was selected as the 
overall best model. 

To interpret and visualize the results, partial dependence plots which 
are available in the h2o package were built to understand how the 
response variables changed with the predictor variables. Understanding 

which variables are most influential and how different levels of variables 
affect animals’ response to heat stress is important to make an accurate 
prediction at the individual level. The state-of-the-art post-hoc local 
interpretability technique, Local Interpretable Model-agnostic Expla-
nations (LIME), was performed using the lime package to gain further 
insight into individual predictions. The top five influential predictor 
variables that best explained the linear model were used for plotting 
LIME heatmaps. 

2.5.1. Random forests 
Random forests (RF) is a powerful tree-based algorithm that is 

commonly used in both classification and regression tasks (Breiman, 
2001). RF is a kind of ensemble algorithm, adopting the method of 
bagging in which decision trees are trained with replacement sampling 
and the mean prediction of all trees is the output. The hyperparameters 
randomly searched included the number of trees (10 to 250, increased 
by 10), the maximum tree depth (10 to 100, increased by 10), the 
number of variables to consider at each split (3 to 13, increased by 1), 
and the minimum number of observations for a leaf (1, 2, 10, 20, and 
30). 

2.5.2. Gradient boosting machines 
Gradient Boosting Machines (GBM) is another tree-based ensemble 

method (Friedman, 2001). Unlike RF, GBM uses the method of boosting 
in which the weights of all training samples are adjusted according to 
the residual gradient so that the next base learner pays more attention to 
the wrongly classified samples. The hyperparameters randomly 
searched included the number of trees (10 to 250, increased by 50), the 
maximum tree depth (10 to 100, increased by 10), the minimum number 
of observations for a leaf (1, 2, 10, 20, and 30), and the learning rate 

Fig. 5. Local interpretation heatmap of the overall best respiration rate model (an artificial neural network) showing the influence of different predictor variables on 
the prediction of 426 observations of the testing set. The top five influential predictor variables that best explained each observation were used for plotting. DMY1D 
= daily milk yield of the day before the test day (kg/day); DMY2D = daily milk yield of the 2nd day before the test day (kg/day); DMY3D = daily milk yield of the 3rd 
day before the test day (kg/day). 
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(0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, and 0.5). 

2.5.3. Artificial neural networks 
Artificial neural networks (ANN) can fit arbitrary nonlinear functions 

through reasonable network architecture configuration (McCulloch and 
Pitts, 1943). In the present study, the feedforward ANN model with a 
multi-layer architecture was trained with stochastic gradient descent 
using back-propagation. The hyperparameters randomly searched 
included the activation function (ReLU or Tanh), the number of hidden 
layers (1, 2, and 3) with the number of neurons (20, 50, 100, and 200) in 
each hidden layer, the dropout rate (0 to 0.5, increased by 0.05), and the 
epochs (5 to 500, increased by 5). 

2.5.4. Regularized linear regression 
Multiple linear regression can suffer from multicollinearity and 

overfitting, especially on small datasets. Hence, several regularization 
methods have been introduced to deal with these problems by shrinking 
the regression coefficients toward zero. The regularization method used 
in this study was elastic net which combines L1 (LASSO) and L2 (RIDGE) 
regularization (Zou and Hastie, 2005). The hyperparameters were α (0 
to 1, increased by 0.01) and λ (searched automatically by setting the 
parameter lambda_search to “TRUE”) in which α controls the weights of 
L1 and L2 regularization, and λ controls the strength of regularization. 

2.6. Recognition of heat stress state 

The predicted values of RR and VT making use of the revised 
thresholds for high-producing (>35 kg/day) dairy cows (RR of 60 
breaths/min and VT of 38.5 ◦C) (Collier et al., 2012) were further tested 
for their ability to serve as classifiers for recognizing the cows’ heat 

stress state (Fig. 1). The predicted ET was not considered here due to the 
lack of commonly recognized threshold. These proposed classifiers were 
compared with the most commonly used temperature-humidity index 
(THI) classifiers: 68 (Collier et al., 2012), 70 (Dunn et al., 2014), 72 
(Armstrong, 1994); adjusted THI (THIadj) classifier: 74 (Mader et al., 
2006); and more recent equivalent temperature index for cattle (ETIC) 
classifier: 23 (Wang et al., 2018). The THI was calculated according to 
Eq. (1) as recommended by National Research Council (NRC, 1971): 

THI = (1.8 × Ta+ 32) − (0.55 − 0.005 × RH) × (1.8 × Ta − 26) (1) 

THIadj and ETIC were calculated according to Eq. (2) and Eq. (3), 
respectively: 

THIadj =
[

0.8 × Ta+
RH
100

× (Ta − 14.4)+ 46.4
]

+ 4.51 − 1.992

× WS+ 0.0068 × SR (2)  

ETIC = Ta − 0.0038 × Ta × (100 − RH) − 0.1173 × WS0.707 × (39.2 − Ta)

+ 1.86 × 10− 4×Ta × SR
(3)  

where SR represents solar radiation and was set to zero as per the 
original authors’ instructions for use in indoor situations. 

The ground truth of individual heat stress states (heat-stressed or 
non-heat-stressed) was determined by using measured values (RR and 
VT) and the corresponding thresholds (60 breaths/min and 38.5 ◦C), 
respectively. The classification performance was evaluated using four 
metrics: recall, precision, F1-score, and accuracy. Recall measures how 
many cows that are truly heat-stressed can be correctly classified as 
being heat-stressed whereas precision measures how many cows that are 

Fig. 6. Local interpretation heatmap of the overall best vaginal temperature model (an artificial neural network) showing the influence of different predictor 
variables on the prediction of 235 observations of the testing set. The top five influential predictor variables that best explained each observation were used for 
plotting. DMY1D = daily milk yield of the day before the test day (kg/day); DMY2D = daily milk yield of the 2nd day before the test day (kg/day); DMY3D = daily 
milk yield of the 3rd day before the test day (kg/day). 
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classified as being heat-stressed are truly heat-stressed. F1-score is a 
comprehensive measure that strikes a balance between recall and pre-
cision, while accuracy indicates the overall rate of correctly classified 
cows. The equations are as follows: 

recall =
TP

TP + FN
× 100% (4)  

precision =
TP

TP + FP
× 100% (5)  

F1 − score =
2TP

2TP + FP + FN
× 100% (6)  

accuracy =
TP + TN

TP + FP + TN + FN
× 100% (7)  

where TP denotes true positive (heat-stressed cows correctly classified 
as heat-stressed cows), FP denotes false positive (non-heat-stressed cows 
incorrectly classified as heat-stressed cows), TN denotes true negative 
(non-heat-stressed cows correctly classified as non-heat-stressed cows), 
and FN denotes false negative (heat-stressed cows incorrectly classified 
as non-heat-stressed cows). 

3. Results and discussion 

The daily patterns of meteorological variables during the entire 
experimental period are shown in Fig. 2. Ta and RH had opposite tra-
jectories, while THI began to increase in May and remained stably high 
from June to August. Additionally, all three variables showed a 
shrinking diurnal change from May to early August. These facts indicate 
an increased intensity and duration of daily exposure to heat stress 

during the experimental phases. In addition to acute responses, heat 
stress is well documented to induce chronic responses in dairy cows, 
even during temperature drops in Autumn (Amamou et al., 2019). Our 
results indicate that this experiment well covered the onset and devel-
opment of heat stress. Thus, the induced physiological responses in dairy 
cows including both acute and chronic responses were expected to be 
well collected. This heterogeneous data would definitively contribute to 
better training of ML algorithms in terms of the non-linear response of 
dairy cows to heat stress. 

3.1. Data cleaning and descriptive statistics 

After removing outliers, a total of 2,910, 1,561, and 1,866 observa-
tions were obtained for the datasets modeling RR, VT, and ET, respec-
tively. The variance inflation factors among the 13 candidate predictor 
variables in RR, VT, and ET sets were all below 5. The correlation 
matrices (see Appendix A Supplementary Material Fig. S1-S3) show that 
none of the correlations between candidate predictor variables was 
higher than 0.75. These findings support that multicollinearity was not 
present in the datasets, and therefore, all candidate variables were used 
for modeling. The descriptive statistics of the three datasets are sum-
marized in Table 2. 

3.2. Model performance 

The predictive performance of the four candidate algorithms on the 
testing sets is shown in Table 3. ANN always performed the best on the 
testing set with the lowest RMSE of 13.24 breaths/min, 0.30 ◦C, and 
0.29 ◦C, and the highest R2 of 0.56, 0.45, and 0.45 when predicting RR, 
VT, and ET, respectively. Besides, ANN had similar results between the 

Fig. 7. Local interpretation heatmap of the overall best eye temperature model (an artificial neural network) showing the influence of different predictor variables on 
the prediction of 288 observations of the testing set. The top five influential predictor variables that best explained each observation were used for plotting. DMY1D 
= daily milk yield of the day before the test day (kg/day); DMY2D = daily milk yield of the 2nd day before the test day (kg/day); DMY3D = daily milk yield of the 3rd 
day before the test day (kg/day). 
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training and testing sets, indicating no overfitting occurred. Although 
GBM had roughly good results on the testing sets, an obvious decrease 
was always observed between the training set and cross-validation, as 
well as between the training and testing sets, suggesting the occurrence 
of overfitting. GBM reportedly has a higher potential for overfitting 
compared with RF, especially on small datasets (Cha et al., 2021). 
Collectively, our results suggest that ANN is more appropriate to predict 
physiological responses of dairy cows managed with sprinklers. The 
linear regressions between measured and predicted values are shown in 
Fig. 3. In all cases, the regression line between measured and predicted 
values was close to the regressed diagonal line, indicating a good cor-
relation between predictions and actuals. The data points from different 

experimental phases show no obvious differential distribution around 
the diagonal. This is confirmed by the partial results for the three 
different experimental phases, which show similar performance relative 
to the overall results (Table 4). 

The advantage of ANN in predicting physiological responses of dairy 
cows has been reported in previous studies. Under a free-stall barn 
without evaporative cooling, Pacheco et al., 2020 developed ANN 
models for predicting RR and rectal temperature of 35 Holstein dairy 
cows. The best model that they selected had an RMSE of 10.01 breaths/ 
min and an R2 of 0.74 for predicting RR, and an RMSE of 0.40 ◦C and an 
R2 of 0.71 for predicting rectal temperature. Another recent study 
compared different ML algorithms in predicting physiological responses 

Fig. 8. Local interpretation heatmaps of the overall best models (artificial 
neural networks) plotting the top five influential predictor variables of five 
observations with the highest prediction selected from the testing set of (a) 
respiration rate, (b) vaginal temperature, and (c) eye temperature. DMY1D =
daily milk yield of the day before the test day (kg/day); DMY2D = daily milk 
yield of the 2nd day before the test day (kg/day); DMY3D = daily milk yield of 
the 3rd day before the test day (kg/day). 

Fig. 9. Local interpretation heatmaps of the overall best models (artificial 
neural networks) plotting the top five influential predictor variables of five 
observations with the lowest prediction selected from the testing set of (a) 
respiration rate, (b) vaginal temperature, and (c) eye temperature. DMY1D =
daily milk yield of the day before the test day (kg/day); DMY2D = daily milk 
yield of the 2nd day before the test day (kg/day). 
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using historical data collected from 20 Holstein dairy cows restrained in 
outdoor headlocks and deprived of sprinklers (Gorczyca and Gebre-
medhin, 2020). RF models produced the lowest RMSE for predicting RR 
(9.70 breaths/min) and BST (0.33 ◦C), while an ANN model produced 
the lowest RMSE for predicting VT (0.43 ◦C). However, efforts have not 
been done yet to predict physiological responses of dairy cows managed 
with sprinklers. The RMSE of the overall best models proposed in this 
study was close to those of the abovementioned studies, particularly VT, 
which had the lowest RMSE among relevant studies. Our results extend 
the advantage of non-linear models over linear regression models to 
situations equipped with sprinklers. More importantly, the gains in 
performance from non-linear models over linear models are greater than 
the previous studies. This fact highlights the non-linear effect induced by 
sprinkler systems and the ability of advanced ML algorithms to fit it. 

3.3. Model interpretation 

In this study, 13 predictors from both animal and environmental 
perspectives were used for modeling. This provided a basis for further 
mining the effects of comprehensive predictors on physiological re-
sponses by applying state-of-the-art post-hoc interpretability methods. 
The global interpretation of the overall best models shown in Fig. 4 helps 
to understand the relationships between response and predictor vari-
ables by visualizing the change in predicted values as the specified 
predictor changes assuming the remaining predictors fixed at their mean 
value. 

The mean response in predicted RR, VT, and ET along with changing 
DMY of the three days before the test day is shown in Fig. 4(a-c). The 
positive association between production level and RR prediction re-
ported by Janni (2019) and Li et al. (2020) is not clear in our results, 
probably because the test cows had similar high production levels when 
entering the study and thus the difference in heat sensitivity between 
production levels was not discernible. In fact, it is rather difficult to 
interpret these variables separately because they contained dynamic 
information as a pattern of response. Acclimatization manifests in 
different physiology and production dynamics depending on the in-
tensity and duration of heat stress exposure. Cows typically lose milk 
production when they enter the acute phase of heat stress, but their 
productivity can be restored to some extent during chronic stress 
(Collier et al., 2019). Thus, the input of these production variables 
should contribute to a better prediction because they function like 
sensors, recording the results of cows’ acclimatization to heat stress and 
its mitigation. 

Cows born in summer had much lower RR and VT compared with 

those born in other seasons (Fig. 4(d)). This result is consistent with 
previous knowledge that in-utero heat stress would affect thermoregu-
lation during the entire life of newborn cattle (Dado-Senn et al., 2020a). 
Lower RR and VT, in this case, could represent a better ability to 
maintain thermal homeostasis, which benefits from fetal heat acclima-
tization (Ahmed et al., 2017). Autumn calving cows had the lowest mean 
predicted RR and VT compared with cows calving in winter and spring 
(Fig. 4(e)). The lower RR and VT of autumn calving cows are probably 
because they were more advance in their lactation thus having less heat 
load due to lower milk production during heat waves (Ferreira and De 
Vries, 2015). This is confirmed by a decreased VT since approximately 
170 DIM (Fig. 4(f)). Similarly, a decreased VT was reported during late 
lactation (>150 DIM) in a recent study using 826 Holstein cows (Yan 
et al., 2021). It is hard to say why RR stayed at a high level during late 
lactation (Fig. 4(f)), possibly due to its more primary function in ther-
moregulation or simply because the effect of DIM was masked by that of 
calving season. Indeed, an increase in RR is used by cows to reduce heat 
load and hence prevent an increase in CBT (Gaughan et al., 2000). 

Parity was found to have a positive relationship with predicted RR 
and VT (Fig. 4(g)), and possibly masked the effects of AIM (Fig. 4(h)). 
Older cows are known to be more susceptible to heat stress (Benni et al., 
2020). A trend of RR increasing with parity was also found in the study 
of Yan et al. (2021). In addition, Choukeir et al. (2020) reported that 
multiparous cows had a higher VT than primiparous cows. Lying cows 
had higher RR, VT, and ET than standing cows (Fig. 4(i)). Similarly, 
lying was related to increased RR and CBT in the study of Atkins et al. 
(2018). Increasing standing time is well known as a behavioral change 
strategy taken by heat-stressed cows to dissipate excessive heat (Nor-
dlund et al., 2019). The THI threshold for RR was found to be 65 in lying 
cows and 70 in standing cows, suggesting that lying cows are more 
susceptible to heat stress (Pinto et al., 2020). The inapparent association 
of ET with the abovementioned cow-related factors is most likely due to 
its direct exposure to external environments and thus being less con-
nected with internal animal factors. 

The predicted physiological responses had a clear positive relation-
ship with Ta (Fig. 4(j)). The predicted RR and VT increased with a 
gradually decreasing slope until around 30 ◦C, after which they 
increased at a much steeper slope. These results demonstrate the effec-
tiveness of sprinklers in alleviating heat stress in dairy cows by delaying 
the upper critical temperature of 25 ◦C (Kadzere et al., 2002) to about 
30 ◦C. On the other hand, ET increased almost linearly with Ta, sug-
gesting that BST is a better representation of microenvironments and a 
dominant front-line heat dissipator. In the case of RH, ET and VT 
increased sequentially at around 45% and 70% RH, respectively, 
whereas RR increased almost linearly with RH within the measured 
range (Fig. 4(k)). These findings are not surprising since high RH would 
significantly inhibit latent heat dissipation and result in a high physio-
logical level (Maia et al., 2008). In the case of WS, RR and ET had an 
overall decreasing trend with WS, whereas VT stayed relatively stable 
(Fig. 4(l)). These results are consistent with previous knowledge that RR 
and ET respond much more promptly to microenvironmental changes 
than VT (Shu et al., 2022a). As expected, observations measured in P.M. 
had higher RR, VT, and ET than those measured in A.M. (Fig. 4(m)), 
which is consistent with previous studies on the circadian rhythm of 
physiological indicators related to heat stress (Kaufman et al., 2018). 
Again, the above results re-emphasize the non-linear relationship be-
tween environmental parameters and physiological responses of dairy 
cows managed with sprinklers and the ability of ML algorithms to fit it. 

The R2 (mean ± standard deviation) obtained for the local inter-
pretation of the overall best models were 0.81 ± 0.14, 0.78 ± 0.15, and 
0.82 ± 0.09 for RR, VT, and ET, respectively, indicating good quality of 
the interpretations of LIME. As shown in Figs. 5-7, time block and 
calving season were common features that strongly influenced RR and 
VT predictions, whereas posture, Ta, and WS had consistently strong 
influences on ET predictions. The cases with the highest predicted RR 
and VT were marked by P.M. measurements plus certain levels of cow- 

Table 5 
Performance of the proposed classifiers, temperature-humidity index (THI) 
classifiers, adjusted temperature-humidity index (THIadj) classifier, and equiv-
alent temperature index for cattle (ETIC) classifier in recognizing heat stress 
state on the testing sets based on measured respiration rate (RR) and vaginal 
temperature (VT), respectively.  

Response Classifier 
(threshold) 

Recall 
(%) 

Precision 
(%) 

F1- 
score 
(%) 

Accuracy 
(%) 

RR (n =
426) 

Predicted RR (60 
breaths/min) 

85.6 73.4 79 77.7  

THI (68) 99.5 50.7 67.2 52.3  
THI (70) 98.6 53 68.9 56.3  
THI (72) 97.1 55.9 71 61  
THIadj (74) 93.8 58.9 72.3 64.8  
ETIC (23) 100 49.1 65.8 49.1 

VT (n =
235) 

Predicted VT 
(38.5 ◦C) 

89.6 78.1 83.4 75.3  

THI (68) 97.5 69.4 81.1 68.5  
THI (70) 91.4 69.3 78.8 66  
THI (72) 85.9 69.7 76.9 64.3  
THIadj (74) 82.2 70.5 75.9 63.8  
ETIC (23) 100 69.4 81.9 69.4  
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related factors (e.g., births in autumn and spring calving for RR, winter 
calving for VT, and multiparity for both) (Fig. 8), whereas the cases with 
the lowest predicted RR and VT were marked by A.M. measurements 
plus other levels of cow-related factors (e.g., autumn calving, births in 
summer, and standing posture for RR) (Fig. 9). In the case of ET, Ta was 
the factor that consistently had a strong positive influence on the pre-
dictions, whereas WS and standing posture always had the greatest 
negative influence (Fig. 8 and Fig. 9). These results are consistent with 
those from the partial dependence plots, suggesting that cow-related 
factors had a greater impact on RR and VT than on ET, which was 
more determined by microenvironmental factors. Identifying common 
contributing features among the most extreme cases can provide useful 
information for targeted cooling. Collectively, our results suggest herd 
homogeneity in response to heat stress as well as a potential for 
customized heat abatement in different subgroups of cows. 

3.4. Recognition of heat stress state 

The classification performance of the proposed classifiers (i.e., pre-
dicted RR and VT), THI classifiers, THIadj classifier, and ETIC classifier 
in recognizing the state of heat stress is listed in Table 5. As expected, the 
F1-score and accuracy of the predicted values were the highest, indi-
cating a good ability in recognizing the actual heat stress state. In gen-
eral, the predicted RR and VT had lower recall than the environmental 
classifiers, implying a worse ability for detecting heat-stressed animals. 
However, the better recall of THI and ETIC thresholds was compromised 
by the lower precision and accuracy, with a huge number of non-heat- 
stressed cows being misclassified as heat-stressed cows. In fact, THI 
(68) and ETIC (23) almost classified all the cows as being heat-stressed. 
Accordingly, environmental classifiers performed poorly on the RR set 
where 49.1% of the cases were truly heat stressed, but performed very 
well on the VT set where most cases were truly heat stressed (69.4%). It 
can be reasonably speculated that the proposed classifiers would 
perform much better than environmental classifiers when processing on 
a more balanced dataset. Similarly, the high recall of THI thresholds was 
balanced by the low precision in the study of Li et al. (2020). These facts 
demonstrate the deficiency of environmental thresholds in dealing with 
individual variation since different animals behave differently under 
identical thermal environment. Our findings highlight that heat abate-
ment strategies controlled by environmental thresholds can be abused 
by wasting unnecessary efforts on non-heat-stressed animals. A more 
appropriate way is to make heat abatement decisions according to the 
predicted heat stress state of animals. 

3.5. Limitations and perspectives 

One of the biggest limitations of the present study is that data were 
collected over one single summer. Besides, only mid-lactating cows were 
included. These limitations resulted in inadequate heterogeneity of DMY 
and some cow-related factors (i.e., DIM, calving season). Although most 
interpretations are rational and consistent with previous knowledge, it 
should be noted that the interpretations could be arbitrary at certain 
ranges when there was insufficient training data to make a meaningful 
prediction. Increasing sample size and balancing data distribution, in 
this respect, is of great importance to improve the interpretations. The 
dilemma between prediction and interpretation should also be noticed. 
Although multicollinearity was not detected mathematically, some 
predictors correlated logistically, e.g., DIM and calving season, AIM and 
parity. Certain predictors would have to be removed to get more reliable 
interpretations. However, accuracy would be sacrificed to some extent 
as a result of information loss. 

The moderate R2 might indicate that there is still room for 
improvement in the fit of the current dataset. This could be done by 
introducing more variables that contribute to explaining the variance of 
cow physiological responses (Brown-Brandl et al., 2005). In this respect, 
sprinkler-related parameters (e.g., flow rate) and other variables that 

could reflect the interaction between cows and sprinklers (e.g., how 
much and how long cows receive watering) should be considered in 
further studies. These variables may be collected by future sprinklers 
equipped with cow sensing systems. Another possible way to increase 
the fit is to increase the data size since ANN would perform better when 
training with sufficiently large data (Becker et al., 2021). Collectively, 
further studies with data collected over different seasons and years, as 
well as more useful variables with more reasonable combinations, are 
required to confirm the results of this study and further improve the 
model fit and interpretation. 

4. Conclusions 

The models proposed in this study provide acceptable prediction 
errors and are reliable in the real-world farm equipped with sprinklers. 
Our work highlights the benefits of inputting more contributing vari-
ables in predicting physiological responses of dairy cows under heat 
stress. The attempt at global and local interpretation using the state-of- 
the-art method was basically in line with previous knowledge in this 
field, and therefore, will help future studies to deeply explain non-linear 
relationships between physiological responses and their influencing 
factors as well as to identify the most vulnerable animals taking into 
account individual variations in response to heat stress. Furthermore, 
recognizing the heat stress state of animals based on the predicted 
physiological responses can inform better heat abatement decisions by 
saving efforts from non-heat-stressed animals to heat-stressed animals. 
Further studies on larger datasets with more influencing factors are 
warranted to improve model fitness abilities. 
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