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Abstract

The aims of this study were to: (1) estimate genetic correlation for milk production traits
(milk, fat and protein yields and fat and protein contents) and fatty acids (FA: C16:0,
C18:1 cis-9, LCFA, SFA, and UFA) over days in milk, (2) investigate the performance of gen-
omic predictions using single-step GBLUP (ssGBLUP) based on random regression models
(RRM), and (3) identify the optimal scaling and weighting factors to be used in the construc-
tion of the H matrix. A total of 302 684 test-day records of 63.875 first lactation Walloon
Holstein cows were used. Positive genetic correlations were found between milk yield and
fat and protein yield (rg from 0.46 to 0.85) and between fat yield and milk FA (rg from
0.17 to 0.47). On the other hand, negative correlations were estimated between fat and protein
contents (rg from −0.22 to −0.59), between milk yield and milk FA (rg from −0.22 to −0.62),
and between protein yield and milk FA (rg from −0.11 to −0.19). The selection for high fat
content increases milk FA throughout lactation (rg from 0.61 to 0.98). The test-day ssGBLUP
approach showed considerably higher prediction reliability than the parent average for all milk
production and FA traits, even when no scaling and weighting factors were used in the H
matrix. The highest validation reliabilities (r2 from 0.09 to 0.38) and less biased predictions
(b1 from 0.76 to 0.92) were obtained using the optimal parameters (i.e., ω = 0.7 and α = 0.6)
for the genomic evaluation of milk production traits. For milk FA, the optimal parameters were
ω = 0.6 and α = 0.6. However, biased predictions were still observed (b1 from 0.32 to 0.81). The
findings suggest that using ssGBLUP based on RRM is feasible for the genomic prediction of
daily milk production and FA traits in Walloon Holstein dairy cattle.

The triacylglycerols (TAG) account for approximately 95% of the lipid fraction in milk solids
and are composed of fatty acids (FAs) of different lengths and saturations (Haug et al., 2007).
Interest in milk FA profile is increasing given its important nutritional value for human health
and its influence on the technological properties of milk and dairy products, such as the
spreadability of butter. In addition, increased levels of unsaturated FA (UFA) content in
milk can contribute to lower stability and oxidation, which directly impact dairy products
(Hanuš et al., 2018). On the other hand, C18:1 cis-9 (oleic acid) is the unsaturated FA with
the highest concentration in milk, which is considered to be favorable for human health
(Haug et al., 2007). Notwithstanding, Jorjong et al. (2014) reported that C18:1 cis-9 shows
potential as an early warning biomarker for metabolic status and subclinical ketosis in dairy
cows. Studies have shown that the milk FA profile is under genetic control in dairy cattle
(Bastin et al., 2011; Paiva et al., 2022). Thus, changes in FA composition can be made through
genetic selection. Moreover, the availability of these specialized phenotypes makes their inclu-
sion in genetic and genomic evaluations possible. This brings unprecedented and substantial
impacts to improving milk quality.

However, potential implications of selection for milk production and FA traits require
accurate estimation of genetic parameters in the studied population. Evaluating the impact
of selecting one trait instead of another is essential to predict indirect genetic gains to deter-
mine the best selection strategies in a breeding program. In this context, to the best of our
knowledge, there are few studies evaluating the impact of the selection of milk production
traits on the FA profile over days in milk (e.g., Bastin et al., 2011; Fleming et al., 2018). It
is important to mention that previous studies did not perform genomic analysis and instead
were only pedigree-based. The inclusion of genomic information has allowed an improvement
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of genomic estimated breeding value (GEBV) accuracies over the
traditional pedigree-based estimated breeding values (EBV;
Legarra et al., 2014). Single-step genomic best linear unbiased pre-
diction (ssGBLUP) is a unified approach that optimally combines
phenotypic records, pedigree information, and genomic informa-
tion in the calculation of GEBV (Aguilar et al., 2010; Christensen
and Lund, 2010). Currently, given the limitation of genotyped
animals in real populations, ssGBLUP is among the most efficient
methods and has been routinely used in animal breeding
(Lourenco et al., 2020). However, this approach usually requires
the use of optimal scaling factors (Misztal et al., 2017; Lourenco
et al., 2020) to assure the ideal compatibility between the marker-
based relationship and pedigree-based relationship matrices.
Adjusting the genomic relationship matrix toward their expected
values in the pedigree-based matrix can improve the accuracy and
reduce bias of GEBV.

In general, studies using ssGBLUP based on RRM provided
higher accuracy and less biased GEBV compared with other
methods (Koivula et al., 2015; Oliveira et al., 2019). To the best
of our knowledge, no study has investigated the optimal scaling
factors to perform ssGBLUP evaluation for milk FAs using
RRM in dairy cattle. Therefore, the aims of this study were to:
(1) estimate genetic correlation for milk production and FA traits
over days in milk using pedigree and genomic information; (2)
investigate the performance of genomic prediction (in terms of
reliability and bias) using the ssGBLUP approach and compare
it with the pedigree-based method in Walloon Holstein cattle;
and (3) identify the optimal scaling factors to be used in the con-
struction of the H matrix in this population.

Material and methods

Datasets

Phenotypic and genotypic data were extracted from the Walloon
genetic evaluation performed in Belgium. Milk samples (contain-
ing 50% morning milk and 50% evening milk) were routinely col-
lected by the Walloon Breeders Association (AWE; Ciney,
Belgium) and were analyzed by a mid-infrared MilkoScan
FT6000 spectrometer (Foss, Hillerød, Denmark). Fat yield (kg),
protein yield (kg), fat content (%), protein content (%), C16:0
fatty acid (palmitic acid), C18:1 cis-9 fatty acid (oleic acid), long-
chain fatty acid (LCFA), saturated fatty acids (SFA), and group
unsaturated fatty acids (UFA) were the traits predicted from the
test-day milk samples evaluated in this study in addition to
daily milk yield (kg). More details about the Walloon Holstein
cow population and dataset quality control can be found in
Paiva et al. (2022). The final dataset is comprised of 302 684 test-
day records from 63 875 first-parity Walloon Holstein cows,
raised in 856 herds. Descriptive statistics of milk production
and FA traits are shown in the Supplementary Table S1.

Routine evaluation genotypes for Walloon Holsteins came
from 11 different SNP chips (Illu50K, Illu50K2, Illu50K3,
IlluHD, GGP150K, IDB3, EuroG10K, IlluHD3, EuroG_MD) of
different densities. Therefore, imputation and edits were per-
formed to develop a list of single nucleotide polymorphism
(SNP) markers. The current list contains 19 468 SNPs in common
with all 11 chips in the database. In this study, a total of 5057 ani-
mals were genotyped (620 sires and 1931 dams in the pedigree).
Genotypic quality control was performed using the preGSf90
software (Aguilar et al., 2014). SNP markers with a minor allele
frequency lower than 0.05 (n = 1,167), call rate lower than 0.90

(n = 494), monomorphic (n = 0), and SNP with Mendelian con-
flicts (n = 3) were removed. Likewise, individual samples with
call rates lower than 0.90 (n = 0) and with parent–progeny
Mendelian conflicts (n = 20) were also excluded. After quality
control, the genotypic dataset included 5037 genotyped animals
(2865 cows with test-day records) and 17 866 SNPs, which were
used for further analysis.

Statistical model

The random regression test-day bi-trait model (RRM) was based
on the optimal statistical model found in a previous study by
Paiva et al. (2022):

y = Xb+Q(Why + Za+ Zp)+ e, (1)

where y is the vector of phenotypic records for each trait; β is the
vector of systematic effects, which included herd × test-day, gesta-
tion stage, minor lactation stage, and major lactation stage × age at
calving × season of calving; hy is the vector of herd-year of calving
random regression coefficients; a is the vector of additive genetic
random regression coefficients; p is the vector of permanent
environment random regression coefficients; X, W, and Z are
the incidence matrices assigning the observations to effects; Q is
the covariate matrix for the third-order Legendre polynomials;
and e is the vector of random residuals.

The expectations and covariance structure for the random
effects were given by:

E[y] =
Xb
0
0
0

⎡
⎢⎢⎣

⎤
⎥⎥⎦and Var

hy
a
p
e

⎡
⎢⎢⎣

⎤
⎥⎥⎦

=
HY0 ⊗ I 0 0 0

0 G0 ⊗H 0 0
0 0 P0 ⊗ I 0
0 0 0 R0 ⊗ I

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (2)

where HY0, G0, and P0 are the random regression coefficients (co)
variances matrices for herd-year of calving, additive genetic, and
permanent environment effects, respectively; I is the identity
matrix; H is a matrix that combines pedigree and genomic infor-
mation; R0 is the (co)variance matrix of residual effects among
traits, assumed to be homogeneous over the lactation; and ⊗ is
the Kronecker product.

The inverse of the H matrix was created as Aguilar et al.
(2010), and Christensen and Lund (2010):

H-1 = A-1 + 0 0
0 t(aG+ bA22)

−1- vA-122

[ ]
, (3)

where A−1 is the inverse of the pedigree-based numerator rela-
tionship matrix, G is the genomic relationship matrix, and A−1

22
is the proportion of A−1 related to the genotyped animals. The
genomic relationship matrix was created as proposed by
VanRaden (2008):

G = ZZ′

2
∑

pi(1-pi)
, (4)

where Z =M – P; M is a matrix of genotypes centered for allele
frequencies (i.e., 0, 1 and 2 to represent aa, Aa and AA,
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respectively), with dimensions equal to a number of animals by
number of SNP; P contains the allele frequency for SNP i (pi)
in its column ith, expressed as 2(pi – 0.5), and 2

∑
pi(1-pi) is a

scaling parameter.

Genetic correlation estimation

The genetic correlations were estimated through bi-trait analysis
via the Gibbs sampling algorithm using GIBBS2F90 software
(Misztal et al., 2002). A chain length of 250 000 iterations and
convergence criteria were used similar to Paiva et al. (2022).
The genetic (co)variance matrix for all DIM was obtained accord-
ing to Druet et al. (2003), which is described as:

G∗ = QG0Q
′, (5)

where G* is a genetic (co)variance matrix among the traits for all
DIM ranging from 5 to 305 d; G0 is a (co)variance matrix of gen-
etic regression coefficients; and Q is a matrix with the values of
the three coefficients of the third-order Legendre polynomial
for each DIM.

The posterior marginal distribution samples for genetic correl-
ation (rg j) at test-day j were calculated as follows:

rg j =
sa12j������������

s2
a1j × s2

a2j

√ , (6)

where σa12j is the additive genetic covariance between traits 1 and
2 at test-day j, and s2

a1jand s2
a2jare the additive genetic variances

of traits 1 and 2, respectively, at test-day j.

Breeding value prediction

Breeding values for random regression coefficients of each animal
were predicted using both the traditional BLUP (A matrix) and
the ssGBLUP (H matrix) approaches on single-trait analysis.
The optimal values for the scaling factors (τ = 1 and ω = 0.70)
reported by Tsuruta et al. (2011) and used by Colinet et al.
(2017), in a subset of the same Walloon Holstein dairy popula-
tion, were used in this study for the genomic evaluation of milk
production traits. In summary, the ω parameter helps to reduce
GEBV inflation and compensates for pedigree incompleteness
(Masuda et al., 2016; Lourenco et al., 2020). Moreover, τ and ω
are used to account for the reduced genetic variance and for dif-
ferent depths of pedigree to make G−1compatible with A−1

22 and
A−1. The weighting factors (α = 0.60 and β = 0.40) were used
for milk production traits as suggested by Colinet et al. (2017)
because these values reflect the partition of the genetic variance
between the SNP markers and residual polygenic parts. The scal-
ing and weighting factors described previously have been used in
the official Walloon evaluation for milk production traits.

As changes in scaling and weighting factors were not investi-
gated for milk FAs in the population analyzed in this study, scen-
arios with different values of scaling factors were tested for ω (i.e.,
0.6, 0.7, 0.8, 0.9, and 1.0). In this analysis, the proportion of mar-
kers variance was fixed to α = 0.95, and the polygenic variance
was fixed to β = 0.05 (default values). Additionally, various scen-
arios with fixed ω = 1 (default values) and different values of α
(i.e., 0.6, 0.7, 0.8, 0.95) were tested. It is worth noting that for
all scenarios, τ = 1 (default values) was used, since changes in
this parameter have been reported to have small effects on the

bias of GEBV (Oliveira et al., 2019). The best combination of
these parameters for each trait analyzed was chosen according
to the validation reliabilities and regression coefficients (see
details in the ‘Prediction Reliability and Bias’ section below).

For each trait, EBV and GEBV of animal i at test-day j were
obtained from a posteriori distribution of additive genetic (esti-
mated by BLUP) and genomic (estimated by ssGBLUP) random
regression coefficients as follows:

EBVij = Cjâi andGEBVij = Cjĝi (7)

where Cj is a matrix of independent covariates associated with the
Legendre polynomials for test-day j; and âi and ĝi are the vectors
of predicted additive genetic and genomic coefficients for each
animal i, respectively. The BLUPF90 software (Misztal et al.,
2002) was used to obtain the solutions of the additive genetic
and genomic for the random regression coefficients.

Prediction reliability and bias

A reduced dataset was created in which the last four years of the
full data were cut off (i.e., excluding records of daughters of young
bulls). Animals born until 2015 (285 507 test-day records from
60 292 cows, in which 2695 are genotyped) and between 2016
and 2019 (17 177 test-day records from 3,583 cows, in which
170 were genotyped) were grouped as the training and validation
populations, respectively. Therefore, the phenotypes of animals
born after 2015 were excluded from the analysis, to create a
reduced dataset to be used to predict the GEBV using ssGBLUP
and parent average (PA) using the traditional BLUP. This scenario
allows us to mimic the Interbull GEBV test (Mäntysaari et al.,
2010). The full dataset was used to predict current EBV, which
was used as a benchmark to validate GEBV and PA obtained
from the reduced data set for validation animals by assessing
the reliability and bias of genomic predictions. Genotyped bulls
that only had daughters born between 2016 and 2019 were
defined as validation animals (151 bulls). These 151 validation
bulls had 3,583 daughters with a total of 17 177 test-day records.
The total number of phenotyped and genotyped animals and test-
day records in the full, training, and validation datasets are shown
in Supplementary Table S2.

The validation reliability for each trait was calculated as the
squared Pearson correlation coefficient (r2) between the daily
GEBV estimated based on the reduced dataset (i.e., excluding
phenotypes for the validation animals or their descendants) and
the daily EBV estimated based on the full dataset, considering
only animals in the validation population. The full dataset EBV
has also been used to validate the performance of genomic predic-
tions using RRM in other studies (Oliveira et al., 2019; Freitas
et al., 2020). Likewise, only the bulls from the validation popula-
tion were considered to assess the genomic prediction bias, which
was calculated by obtaining the regression coefficient (b1) esti-
mated using a linear regression of the daily EBV from the full
dataset on GEBV from the reduced dataset (i.e., EBV = b0 +
b1 × GEBV) (Mäntysaari et al., 2010). To evaluate the impact of
including genomic information and to compare the prediction reli-
ability and bias of GEBV to those of EBV from traditional genetic
evaluation, the parent average (PA) was predicted for validation
animals. The PA was used to calculate r2 (i.e., squared Pearson cor-
relation coefficient between EBV and PA) and b1 (i.e., obtained
from EBV = b0 + b1 × PA) using daily PA and daily EBV predicted
based on the reduced and full dataset, respectively.
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Results

Genetic correlation estimates

Figure 1a shows the genetic correlations of fat and protein yield
with milk yield (range from 0.46 to 0.85) over days in milk, as
well as of fat and protein contents (range from −0.22 to −0.59).
Posterior mean genetic correlations of FA with milk yield over
days in milk are shown in Figure 1b. In general, most estimates
were negative, and higher magnitudes were observed in the mid-
dle of lactation. The genetic correlation curves of milk yield with
fat yield and content, C16:0, and SFA had similar patterns across
lactation, with estimates ranging from −0.22 to −0.59.

Positive genetic correlations were estimated between fat yield
and milk FA, and they tended to decrease across lactation, as
shown in Figure 2a. Higher estimates were found for C16:0
(range from 0.43 to 0.49), but for other FAs the estimate curves
were similar, with the lowest values at 305 DIM. Genetic correla-
tions of milk FA with protein yield presented a similar pattern
over days in milk, as shown in Figure 2b. Positive estimates
were found at the beginning of lactation (35–65 DIM) and

became negative thereafter, with average daily genetic correlations
ranging from −0.11 to −0.19.

The posterior mean genetic correlations estimated between
milk FA and fat content were positive across lactation and had
a similar pattern, as shown in Figure 2c. The estimates increased
until the middle of lactation where maximum values were
reached. Then, they were stable until the end of lactation.
Genetic correlations estimated between fat content and C16:0 as
well as SFA were similar and high, ranging from 0.89 to 0.98
across lactation. On the other hand, lower estimates were found
between fat content and protein content (range from 0.55 to
0.72) and C18:1 cis-9 (range from 0.44 to 0.66).

Genetic correlations estimated between protein content and
milk FA are shown in Figure 2d. Estimates were positive through-
out lactation (range from 0.06 to 0.74) and showed the same trend
of low values in early lactation, increasing thereafter. From the
middle to the end of lactation, estimated genetic correlations
between protein content and C16:0, LCFA, SFA, and UFA were
moderate to high and slightly close over days in milk, ranging
from 0.56 to 0.74.

Fig. 1. Posterior means of genetic correlations over days in milk estimated between milk yield and (a) milk production traits and (b) FA traits.

Fig. 2. Posterior means of genetic correlations over days in milk estimated between milk production and FA traits and (a) fat yield, (b) protein yield, (c) fat content,
and (d) protein content.
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Genetic correlations among all FA traits were positive over
days in milk, with higher magnitude estimates observed from
the middle (around 125 DIM) to the end of lactation, as shown
in Figure 3. The highest genetic correlations for FA were found
between C16:0 and SFA, C18:1 cis-9 and LCFA, C18:1 cis-9 and
UFA, and between LCFA and UFA, which tended to be slightly
stable along the lactation curve. Genetic correlations among the
other FAs had similar patterns, with low values in early lactation
that increased as lactation progressed up to the middle of lacta-
tion. Genetic correlations estimated between C18:1 cis-9 and
C16:0 and between C18:1 cis-9 and SFA were similar, ranging
from 0.07 to 0.53. Moreover, similar genetic correlations across
lactation were found between C16:0 and LCFA (ranging from
0.35 to 0.76) and between C16:0 and UFA (ranging from 0.25
to 0.70). Likewise, the genetic correlation estimated between
SFA and LCFA and between SFA and UFA ranged from 0.41 to
0.78 and from 0.31 to 0.72, respectively.

Prediction reliability and bias

The average validation reliability and bias (with their respective
standard deviations) of EBV and GEBV estimated for milk pro-
duction and FA traits are shown in Tables 1 and 2, respectively.
Overall, the use of ssGBLUP increased the reliability compared
to the traditional BLUP (i.e., parent average) for the validation
bulls even when no scaling and weighting factors (default; ω = 1

and α = 0.95) were used for milk production traits. However,
the highest validation reliabilities were obtained using scaling
and weighting factors ω = 0.7 and α = 0.6 (Table 1) to combine
G−1 and A-122 in the genomic evaluations for milk production traits.
Average reliabilities were especially higher for the milk yield,
fat and protein contents (r2; 0.38, 0.19, and 0.18, respectively),
while for fat and protein yield, they tended to be lower (r2;
0.14 and 0.09, respectively). In addition, the use of optimal
scaling factors yielded the least biased prediction for milk produc-
tion traits, with average b1 coefficients ranging from 0.76 to 0.92
(Table 1).

For milk FAs, the ssGBLUP models achieved higher average
validation reliability than the parent average (Table 2). Similar
validation reliabilities were estimated using different scaling and
weighting factors for all milk FAs. The largest gain in genomic
reliability was observed for C16:0 and SFA (r2; 0.11 and 0.17,
respectively), as well as in all the scenarios considered. The valid-
ation average reliability was low for C18:1 cis-9 (0.04), LCFA
(0.05) and UFA (0.05). However, a greater effect of scaling and
weighting factors was observed in the regression coefficients for
milk FA (Table 2). The inclusion of optimal values of ω = 0.6
and α = 0.6 for genomic evaluation of milk FAs greatly decreased
bias (i.e., average b1 coefficients ranged from 0.32 to 0.81). Even
though an improvement was observed, the GEBV predicted for
most milk FA traits was still inflated when using the optimal scal-
ing and weighting factors.

Fig. 3. Posterior means of genetic correlations over days in milk among milk fatty acid traits with (a) C16:0, (b) C18:1 cis-9, (c) LCFA, (d) SFA, and (e) UFA.
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Discussion

Genetic correlations

One century of selection has mostly focused on increasing milk
production (Miglior et al., 2017). However, an antagonistic asso-
ciation across lactation (rg from −0.22 to −0.59) was found
between milk yield and fat and protein content. Thus, herds
selected to increase milk volume can disfavor simultaneous milk
content genetic gain, although they will increase fat and protein
yield. Hence, challenges arise and are likely to be overcome by cau-
tious evaluation of selection criteria chosen in the dairy breeding
program. Decisions should be made to achieve the main selection
objectives, particularly based on the payment system for the farmer,
recognizing that they could change according to each country.

In general, daily genetic correlations between milk yield and
FA were negative (they ranged from −0.38 to −0.49), which indi-
cates that selection for improved milk yield would affect to a
greater or lesser extent all FA traits in milk throughout lactation.
Although in early lactation the genetic correlations were positive
and weak for LCFA, C18:1 cis-9 and UFA, the selection for higher
milk yield would decrease FA in milk as soon as lactation pro-
gressed, thus showing a strong influence mostly on C18:1 cis-9,
for which the correlation becomes negative after 35 DIM. As
already reported by Bastin et al. (2011), a variation in the milk
FA profile is prominent in early lactation, and genetic correlations
with milk yield are weaker than in late lactation.

Highly positive genetic correlations between SFA and fat con-
tent (average above 0.96) and protein content (average above
0.62) were also reported by Penasa et al. (2015), who found gen-
etic correlations of 0.99 and 0.60, respectively, in Holstein cows.
In addition, C16:0 had a strong genetic correlation with fat con-
tent, which could be explained because of its important role in
the synthesis of triacylglycerol in the mammary gland. Bovine
milk fat is mainly composed of triacylglycerols (95%), and the
most abundant fatty acid is C16:0. The increase in fat content
has led to higher amounts of SFA and especially of C16:0,
which affects the triacylglycerol structure and consequently has
an effect on the thermal properties of milk fat (Tzompa-Sosa
et al., 2014). Tzompa-Sosa et al. (2014) reported that a modifica-
tion in the triacylglycerol structure suggests that the distribution
of FA could be triggered by differences in blood-derived fatty
acids or by changes in the activity of enzymes related to fat syn-
thesis that respond to the availability of FA for triacylglycerol
synthesis.

Overall, the selection for higher fat yield and fat content would
increase all underlying fatty acids in milk throughout lactation (rg
from 0.17 to 0.98). Likewise, there were positive correlations
between milk protein content and FA, ranging from lower at
the beginning (rg from 0.06 to 0.57) to higher magnitude at the
end of lactation (rg from 0.56 to 0.68). On the other hand, the
genetic correlations between protein yield and FA were negative
(rg from −0.11 to −0.19). Similar curves across lactation for
milk FA with protein yield and content were also shown by
Fleming et al. (2018) using a fifth-order Legendre polynomial.
Nevertheless, they found weaker estimates which were close to
zero for the association between protein content and LCFA and
UFA in early lactation, as well as lower values in late lactation.

There was a strong genetic correlation estimated between milk
FA from the middle to the end of lactation, which suggests that
selection for one-time point will likely result in genetic gains
for all lactation stages. In addition, individual FAs were strongly
associated with the group to which they belonged, as seen by
the average genetic correlation between C16:0 and SFA (0.98)
and between C18:1 cis-9 and LCFA (0.91), and UFA (0.93).
C18:1 cis-9 is the single UFA with the highest concentration in
milk accounting for approximately 8 g/l whole milk (Haug
et al., 2007), which could explain the high association found.
Genetic correlations between C18:1 cis-9 and C16:0 and SFA
had approximately the same average estimates (i.e., 0.44 and
0.45, respectively). Therefore, selection in favor of C18:1 cis-9 is
likely to yield similar results for these FAs. It seems that the gen-
etic mechanism that drives de novo (i.e., half of C16:0) FA synthe-
sis also drives the FA originating from other syntheses. Previous
results were expected as well as an estimated high genetic correl-
ation between C16:0 and SFA (0.98) because palmitic acid is a
16-carbon SFA and is most commonly found in animals
(Loften et al., 2014). Furthermore, similar genetic gains would
have been expected for LCFA and UFA regarding selection on
C18:1 cis-9 (rg 0.91 and 0.93, respectively).

The lowest genetic correlations were estimated between C18:1
cis-9 and C16:0, and between C18:1 cis-9 and SFA at the begin-
ning of lactation. These estimates can be explained by the differ-
ent origins of FA and its dynamic pattern influenced by lactation
stage, energy balance and dietary composition. Milk fat is the
main component determining energy expenditure for milk pro-
duction in dairy cows, and most ruminant adipose tissue is stored
as triglycerides, which comprise mainly C16:0, C18:0, and C18:1
cis-9 (Chilliard et al., 2000; Gross et al., 2011). In early lactation,

Table 1. Mean validation reliabilities (r2), regression coefficients (b̂1) and their respective standard deviation for parentage average (PA) and genomic breeding
value estimated assuming different* scaling (ω) and weighting (α) factors for milk production traits for the Walloon Holstein bulls.

Scenario

Milk yield Fat yield Protein yield Fat content Protein content

r2 b̂1 r2 b̂1 r2 b̂1 r2 b̂1 r2 b̂1

PA 0.35
(0.04)

0.91
(0.15)

0.12
(0.03)

0.70
(0.13)

0.07
(0.03)

0.71 (0.15) 0.12 (0.02) 0.71 (0.08) 0.10 (0.04) 0.73 (0.19)

ω 1 α 0.95a 0.36
(0.06)

0.91
(0.12)

0.14
(0.03)

0.47
(0.10)

0.08
(0.03)

0.59 (0.11) 0.16 (0.09) 0.65 (0.21) 0.16 (0.09) 0.60 (0.18)

ω 0.7 α 0.6b 0.38
(0.04)

0.92
(0.15)

0.14
(0.04)

0.78
(0.16)

0.09
(0.04)

0.77 (0.15) 0.19 (0.09) 0.86 (0.38) 0.18 (0.10) 0.76 (0.24)

aω = 1 and α = 0.95; default values.
bω = 0.70 and α = 0.60; the optimal values assumed for scaling and weighting factors proposed by Colinet et al. (2017).
*τ scaling factor used for genomic relationship matrix (1.0G−1); ω = scaling factor used for pedigree relationship matrix (ω A−1

22 ); α and β = weighting factors used for polygenic effect
(ssGBLUP – βA22).
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dairy cows mobilize their body reserves to deliver the energy
required for milk synthesis and secretion in the mammary
gland. Thus, the FA in milk originates from both the mammary
gland uptake of preformed FA from circulating blood (approxi-
mately 60%) and de novo synthesis within the mammary gland
(approximately 40%) (Chilliard et al., 2000). C18:1 cis-9 is the
predominant FA in adipocytes and is primarily released through
lipolysis during negative energy balance (NEB). When lipolysis is
high, the FA composition of milk has a much higher proportion
of C18:0 and C18:1 cis-9 (Barber et al., 1997).

In early lactation, C16:0 originates primarily from mobilized
body fat, and thereafter the cow achieves a positive energy balance
and most of the C16:0 should now be produced within the mam-
mary cells from acetate (Loften et al., 2014). Furthermore, the
lower genetic correlation found between C16:0 and LCFA in
early lactation can be associated with this mobilization of body
fat. In particular, LCFAs are derived from plasma and incorpo-
rated into milk, which inhibits de novo synthesis (part of
C16:0) by the mammary gland. Selecting C18:1 cis-9 would result
in a great increase in UFAs and LCFAs (genetic correlations above
0.90) in milk. Increased mobilization of lipids is associated with
higher NEFA levels, which are particularly rich in LCFAs, espe-
cially C18:1 cis-9 (Jorjong et al., 2014). Efforts to carry out prac-
tical improvements of these milk FAs are usually driven by their
several roles firstly as possible biomarkers for early lactation meta-
bolic disorders (Jorjong et al., 2014), then from specifically nutri-
tional effects to benefit consumers (Haug et al., 2007) and finally
from technological properties influencing phenomena such as
oxidation and possible sensory changes (Hanuš et al., 2018).

Prediction reliability and bias

Genomic predictions using optimal scaling and weighting factors
in the ssGBLUP approach led to greater validation reliability and
less bias compared to the traditional BLUP for most milk produc-
tion traits. These findings are in agreement with previous studies
in dairy cattle (Koivula et al., 2015; Oliveira et al., 2019). The
ssGBLUP models using the optimal scaling and weighting factors
improved the reliability by 0.03 for milk yield, 0.02 for fat and
protein yield, and 0.07 and 0.08, respectively, for fat and protein
content, which represent an increase ranging from 8.57% to 80%.
The use of optimal factor scaling to combine G−1 and A-122 is
required for a better model fit (increase r2 and decrease b1) and
may better account for differences in the genetic architecture of
each trait analyzed (Oliveira et al., 2019). According to Gao
et al. (2012), the bias of prediction tended to decrease with
increasing polygenic weights in the G matrix and suggests that
genetic markers number is not able to explain the total genetic
variance. Thus, the polygenic effect would account for the residual
genetic variance, which is not accounted for by using only genetic
markers (Guarini et al., 2018). As seen in our results, it becomes
important to optimize the weighting factor α used in the combin-
ation of the raw genomic and the pedigree relationship matrix.

Overall, differences in validation reliabilities r2 among differ-
ent scenarios to build the H matrix were smaller than effects on
regression coefficients b1, which is consistent with Guarini et al.
(2018). According to Koivula et al. (2015), the degree of inflation
in GEBV is affected by the method used in construction of the H
matrix. Decreasing ω led to an increase in the regression coeffi-
cient and consequently decreased inflation, and according to
Martini et al. (2018), this can be due to the fact that decreasing
ω tends to reduce the variance in the GEBV. Thus, the scalingTa
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factors could be chosen to achieve smaller bias (degree of infla-
tion), which was expected for young animals (Masuda et al.,
2016). Furthermore, decreasing ω increases the importance of
pedigree information in genomic prediction, and it is also
dependent on the completeness of the pedigree. As reported by
Misztal et al. (2017), ssGBLUP evaluations are inflated when
the pedigree is deep but incomplete. The best ω parameter
assumed in this study was 0.70 (lower than 1.00) for milk produc-
tion traits, which increases the importance of pedigree informa-
tion on GEBV prediction. Likewise, Tsuruta et al. (2011)
reported that smaller values for ω (0.70) could be used to reduce
the inflation of US Holstein genomic evaluations for young bulls
without affecting accuracy.

For all milk FAs, the inclusion of genomic information based
on the ssGBLUP approach also improved the reliabilities for
young bulls in all scenarios evaluated. The combination of ω
equal to 0.60 associated with a polygenic effect α equal to 0.60
yielded the least biased GEBVs predicted for milk FAs. These
ssGBLUP models improved the accuracy by 0.05 for C16:0, 0.01
for C18:1 cis-9, 0.02 for LCFA, 0.07 for SFA, and 0.01 for UFA,
representing an increase from 25% to 70%. Similarly, gains in pre-
diction by using ssGBLUP for milk FA profiles predicted by MIR
were also reported by Freitas et al. (2020) in dairy cattle. The pre-
diction reliabilities were very low (ranging from 0.005 to 0.19) for
C16:0 and C18:1 cis-9 predicted by gas chromatography and were
presented by Gebreyesus et al. (2019) using GBLUP model in
Chinese, Danish and Dutch Holstein cows. The effect of a small
training population size and the lower heritability estimates
may be the cause of the lower prediction reliability of GEBV.
According to Guarini et al. (2018), predictions for lowly heritable
traits benefit greatly from genomic information, especially when
using the ssGBLUP approach. Improvement in genomic predic-
tion may be achieved by increasing the numbers of both geno-
typed and phenotyped animals as well as using optimal scaling
and weighting factors to maximize the observed accuracy of the
GEBVs for milk FA in our population.

In conclusion, changes in milk production and FA traits can be
achieved using genomic selection over days in milk. Selection for
higher milk yield would decrease fat and protein content, as well as
all FAs (C16:0, C18:1 cis-9, LCFA, SFA, and UFA). Improving the
milk FA profile (especially based on C16:0 and SFA) seems to be
an effective way to indirectly select for fat yield and fat content.
The ssGBLUP approach yielded higher reliabilities than the trad-
itional BLUP for young bulls. A less biased GEBV was found by
choosing optimal scaling factors in the construction of theHmatrix.
Therefore, ssGBLUP based on RRM is feasible for the genomic pre-
diction of milk production and FA traits in Walloon Holstein cattle.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0022029922000474
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