

Alfvén waves related to moonmagnetosphere interactions Bertrand Bonfond and Ali Sulaiman

Take home message 1

 \blacktriangleright The obstacle formed by a moon (or a planet) in a plasma flow can generate powerful Alfvén waves propagating along the field lines.

Take home message 2

 \triangleright On their path to the parent planet, these waves trigger a wealth of intriguing phenomena.

 x/R_e

Inspired by Saur et al. 2021/Simon et al. 2015/Jia et al. 2009

A smooth transition

▶ As the Alfvén Mach number decreases, the interaction region transitions from a magnetosheath into Alfvén wings

- ▶ Io controlled radio emissions (Bigg 1964)
- \blacktriangleright Echo 1 and the invention of Alfvén wings (Drell et al. 1965)
- \blacktriangleright The unipolar inductor model (Goldreich and Lynden-Bell 1969)

- ▶ Io controlled radio emissions (Bigg 1964)
- ▶ Echo 1 and the invention of Alfvén wings (Drell 1965)
- \blacktriangleright The unipolar inductor model (Goldreich and Lynden-Bell 1969)

- ▶ Io controlled radio emissions (Bigg 1964)
- \blacktriangleright Echo 1 and the invention of Alfvén wings (Drell et al. 1965)
- \blacktriangleright The unipolar inductor model (Goldreich and Lynden-Bell 1969)

Saur et al. 2004

- ▶ Voyager probes: Io plasma torus => ideal Alfvén wings model (Neubauer 1980)
	- Possibility for reflections
- ▶ Galileo: stagnant wake downstream of Io => the return of the unipolar inductor

Neubauer 1980

- ▶ Voyager probes: Io plasma torus => ideal Alfvén wings model (Neubauer 1980)
	- Possibility for reflections
- ▶ Galileo: stagnant wake downstream of Io => the return of the unipolar inductor

- ▶ Voyager probes: Io plasma torus => ideal Alfvén wings model (Neubauer et al. 1980)
	- Possibility for reflections
- ▶ Galileo: stagnant wake downstream of Io => the return of the unipolar inductor

Alfvén waves filamentation

- Galileo observed fast fluctuations of the electric and magnetic fields during the Alfvén wings crossing
- ▶ Interpreted as signatures of the turbulent filamentation of the AW (Chust et al. 2005)
- This filamentation is necessary for energy to cross the torus density gradient (Hess et al. 2010, 2013, Sulaiman et al. 2023).

The satellite footprints

Bonfond 2012

Io in the plasma torus

- ▶ Io moves across the torus because of the tilt of the Jovian magnetic field.
- ▶ The AW reflection pattern evolves with time.

Bonfond et al. 2013

The Io footprint

t al. 2008

Transhemispheric electron beams

Bonfond et al. 2013

Bonfond et al. 2013 Bonfond et al. 2013

Energy distribution

▶ Only a broadband energy distribution can explain the auroral vertical profile.

Bonfond et al. 2009

Particle and field measurements

▶ The Juno crossings of the Io footprint confirmed the broadband distribution and the presence of Alfvén waves

Szalay et al. 2018

Alfvén waves, particle fluxes and turbulence

- \triangleright The AW Poynting fluxes and the particle energy fluxes are well correlated.
- \blacktriangleright The efficiency (~10%) is consistent with AW filamentation via a turbulent cascade.

Sulaiman et al. 2022

Auroral hiss over the Io footprint

▶ Intense ioncyclotron and whistler mode waves related to the accelerated ions and electrons

Sulaiman et al. 2020

A Juno surprise: sub -dots

- ▶ High resolution IR images show sub structures fixed with the planet.
- ▶ Since the sub-dots are fixed with the planet, some forms of ionospheric feedback are expected.

Another Juno surprise: a dual tail

▶ Both high resolution IR images and particle measurements sometimes show a double structure

Multiple spots of the Europa footprint

▶ While it is much weaker than Io's, the Europa footprint sometimes shows a tail and a pair of spots

Multiple spots of the Ganymede footprint

Bonfond et al. 2017

▶ The Ganymede footprint also often dispas a tail and a pair of spots.

The Europa and Ganymede footprints

Moirano et al. 2021

▶ All three footprints show the sub-dots features

Juno crossing of the Ganymede footprint tail

▶ Broadband field aligned electron beams, electric currents and Alfvén waves are observed over the Ganymede footprint tail

Szalay et al. 2020

Flying through the Ganymede footprint trans-hemispheric electron beam spot

- ▶ When Juno flew across the GFP TEB spot, it observed a significant particle flux, but very weak currents
- \blacktriangleright This is very strong evidence in favor of the TEB theory

Hue et al. 2022

Jownward L

(pep) A^c

EF (mW/m²

Juno crossing of the Europa footprint tail

▶ While broadband distributions dominated over the Io and Ganymede footprint tails, the JADE data over the Europa tail showed signatures of electrostatic acceleration.

Allegrini et al. 2020

The Enceladus footprint

- \blacktriangleright Kronian satellites were not expected to show as clear signatures at the Jovian ones.
- ▶ However, Cassini UVIS detected the UV signature of the Enceladus footprint in Saturn's aurora.

Pryor et al. 2011

Enceladus electron beam

▶ Cassini detected an electron beam related to the Enceladus-Saturn interaction

Pryor et al. 2011

Enceladus auroral hiss

▶ Similarly to what Juno detected at Io, beautiful signatures of auroral hiss were observed when Cassini crossed the Enceladus AW

Sulaiman et al. 2018

 $\frac{1}{2}$

a

a

Electron counts

 $18:10$

6680

CAPS/ELS

3538

1233

fossilized in the thick ionosphere

Bertucci et al. 2008

Energy (eV) 10°

Time (UT)
Alt. (km)

 $17:20$

7467

17:30

4249

1621

An inert obstacle: Rhea

- ▶ Inert satellite
- \triangleright Distant magnetic field signature of an Alfvén wing
- \blacktriangleright The AW originate from the density gradient in the wake

An inert obstacle: Rhea

- \blacktriangleright Inert satellite
- ▶ Distant magnetic field signature of an Alfvén wing
- \blacktriangleright The AW originate from the density gradient in the wake

Our Moon

- ▶ Super-Alfvénic regime
- \blacktriangleright The Alfvén wings are folded on themselves in the wake.

Alfvén wings at Earth?

- \triangleright During 4 hours, the Earth entered a sub-Alfvénic regime and started forming Alfvén wings (Chané et al. 2012)
- \blacktriangleright It should also happen at Mercury.

Conclusions

- ▶ The moon -magnetosphere interactions are valuable laboratories for the Alfvén waves generation, filamentation, transmission and energy conversion.
- \triangleright We do not have all puzzle pieces for all satellites, but commonalities are getting obvious.
- \triangleright Similar interactions are ubiquitous throughout the solar system and probably beyond.

Lysak et al. 2023