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Maxime.Fays@uliege.be

Abstract—Minute-long gravitational-wave bursts are transient
events that arise from a wide variety of astrophysical phenomena.
In opposition to the already-detected compact binary mergers,
minute-long bursts are poorly modeled, preventing the use of
matched filtering techniques. These events are thus probed
through the excess-power method, consisting in searching for
a local excess of power in the time-frequency space correlated
between detectors. The search for minute-long GWs can then
be viewed as a search for high-value clustered pixels within
an image, which has already been tackled extensively in the
machine learning realm. In this paper, we use a convolutional
neural network as an anomaly detection tool. We show that our
algorithm can reach a pixel-wise detection despite trained with
minimal assumptions.

Index Terms—gravitational waves, bursts, machine learning,
CNN, anomaly detection, time-frequency maps

I. INTRODUCTION

On September 14, 2015, the collision of two black holes
was revealed through their gravitational-wave (GW) signal
for the first time by the Advanced LIGO [1] detectors. Since
then, the Advanced Virgo detector [2] has joined the efforts
of LIGO to unravel more than 90 compact binary coalescence
(CBC) events [3], among which the newly detected black hole-
neutron star [4] and binary neutron collisions [5]. As both
Virgo and LIGO have planned new sensitivity improvements in
the coming years, new gravitational wave sources are expected
to be observed. Among these expected candidates, unmodeled
GW transients, also known as bursts, are a prime target for the
next observing run. Bursts include a variety of astrophysical
phenomena, such as supernova [6], nonaxisymmetric deforma-
tions in magnetars [7] and gamma-ray bursts [8]. They include
both short (< 10 seconds) and long (from 10 to a few hundreds
of seconds) events. The uncertainties in their physical models
force us to make minimal assumptions on GW waveform
characteristics. The existing models cannot consequently be
taken as accurate patterns to be recognized and are thus
used as tests for pipelines rather than actual targets of the
search. A template-free approach has thus been developed,
known as excess-power method, to search for GW transients
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with minimal assumptions. It consists in cross-correlating the
data from two or more detectors into time-frequency maps
(TF maps) or spectrograms and search for high-value clusters
of pixels. The current search algorithms that implement this
method do not use neural networks as their main detection
engine, leading to hours of tuning and lack of speed. This
works thus aims at providing a new tool to the search for
minute-long GW transients that takes advantage of the speed
and robustness of convolutional neural networks (CNNs).

II. DATA

The time-frequency maps used in the excess-power method
are produced thanks to the cross-correlation, also known as
coherence, of the data from at least two detectors. In this work,
we use the data from the two Advanced LIGO interferometers,
located at Hanford Livingston in the US. The coherence
between two signals x and y is expressed as:

Cx y(f) =
|Gx y(f)|2

Gx x(f)Gy y(f)
, (1)

where Gxy(f) is the cross-spectral density (CSD) between
signals x and y, while Gxx(f) and Gyy(f) are the power
spectral densities (PSD) of x and y respectively. The cross-
spectral density is defined as:

Gx y(f) =

∫ ∞

−∞

[
lim

T→∞

1

T

∫ ∞

−∞
xT (t− τ) yT (t)dt

]
e−i2πfτdτ

(2)

A vector of coherence values versus frequency bins can be
generated by evaluating expression (1) at several sampled
frequencies. Then, we apply Welch’s method [9] to small
overlapping subsets of our original signal to produce a full
time-frequency array. This is equivalent to repeatedly updating
the coherence vector and compiling its time evolution as a
single map. The resulting array is called a spectrogram or a
TF map. The last pre-processing step consists in whitening
[10] the spectrogram. To constitute a sufficient number
of spectrograms containing only detector noise, we use
time-slides [11]. It consists in shifting the detector data by
time delays larger than the time of flight of GWs between
detectors to guarantee our cross-correlated data to contain
only detector noise. We use data from the third LIGO-Virgo
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Fig. 1. Architecture of ALBUS

observing run to produce 4500 TF maps, constituting our
background dataset. We use a time resolution of 6 seconds
and a frequency bin of 2 Hz. Taking a 1000s data stream
from the spanning frequencies up to 2048 Hz, results in
spectrograms with dimensions of 166x1025 pixels.

Neural networks are particularly good at recognizing shapes
and patterns in images (YOLO [12], AlexNet [13], etc) and
are therefore well suited for the detection of minute-long
GW transients in TF maps. However, we cannot use the
existing models as accurate patterns to recognize and our
algorithm should also detect unexpected GW signals. That
is why we make use of the Scipy library [14] to generate
chirp signals sufficient close to the actual waveform models.
This allows us to generate random chirps to cover the whole
time-frequency plane with varying parameters such as the
duration, the frequency bandwidth, and the frequency and
energy evolution. The chirping signals are then injected into
noise-only spectrograms with 9 levels of visibility, defined as:

V =
∑
i,j

(
Sij − Nij

)
(3)

where Nij is a noise-only spectrogram and Sij refers to the
same spectrogram in which a chirp has been injected. The
sum is carried over all the pixels (i, j) in the map. The
visibility has been introduced to ensure chirps to be visible in
the TF maps, which is not guaranteed with existing injection
methods relying on intensity criteria based solely on signal
characteristics. We choose 9 intensity levels in order to cover
a quite large intensity range. We use this intensity criterion to
build our second dataset, containing 4500 TF maps. Our final
dataset thus contains 9000 spectrograms.

III. METHODOLOGY

In order to detect high-value clusters of pixels in our
TF maps, we will make use of CNNs. Most of the CNNs
that detects objects also involve a classification task [12]
[13]. However, we want to highlight the pixels of the burst
signals rather than assigning a label to the whole spectrogram.
Therefore, inspired by the authors in [15], we build a network
that returns a pixel-by-pixel localization map. The network,

shown in Fig. 1, is made up of two parts, a downscaling part
that keeps the useful information through its different layers,
and an upscaling part that aims at localizing precisely this
information in a map with the same dimensions as the input.
The connections between the downscaling and upscaling parts
help both the gradients to flow in the network and the network
to learn the precise position of the patterns detected.

Fig. 2. Background spectrogram in which a chirp signal is injected (left) and
its associated target map used for the training phase (right).

The training method then consists in minimizing a loss
between the output of the network and a target map, so
that the former keeps approaching the latter as the training
progresses. To form the target maps corresponding to the TF
maps in our dataset, we set a threshold on the spectrogram
pixels corresponding to the 99th percentile of the values.
This is equivalent to keeping the top 1% pixels showing
the highest values. We then normalize the target map. This
procedure leads to a target map that follows the intensity
evolution of the signals through the input map. An example of
a spectrogram containing a chirp signal and its corresponding
target map can be seen in Fig. 2.

To train our network, the ADAM optimizer [16] has been
chosen with a learning rate of 10−4. We use the Mean Squared
Error loss as minimization loss, guaranteeing a well-behaved
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Fig. 3. Detection performance of ALBUS on 6 different visibility levels (from
left to right : 60, 40, 30, 20, 16 and 12) for the waveform model GRBplateau
[8]. The top panel shows the input images and the lower panel shows the
output of ALBUS.

loss surface. The batch size is set to 20 where one half is taken
from the background images and the other half from the chirp
images. The validation is made of 10% of the original dataset.
We decided to stop the training after 30 epochs because both
losses started to reach a plateau, indicating that the network
do not improve anymore.

IV. RESULTS

Once the network is trained on random chirp signals, we
need to evaluate how good it is at detecting minute-long
models. Fig. 3 shows the output of ALBUS for one of the
selected models in [17] across 6 different intensities. The
signals are well recognized even at low intensity and the
variation of intensity in the input TF map is also seen in the
localization map. Our network is not only looking at the pixels
having a high value but also at the connectivity between these
pixels. It then naturally looks prolongs the main structure to
catch pixels following the general trend of the signal. Such a
propriety can be a relevant tool to reject background images
showing isolated hot pixels.

V. DISCUSSION AND CONCLUSION

We have shown that convolutional neural networks can
be applied to the search for minute-long gravitational wave
transients in the time-frequency space of the cross-correlated
LIGO noise. Our approach allows a fast and pixel-precise
identification of the long-duration signals with no training on
the latter.

The threshold for the detection of burst signals is determined
by the highest background candidates, i.e. the background
candidates that show the highest detection score as defined
by a particular pipeline. Usually, the highest candidates are

identified after analyzing at least 50 years of background
data, making more than 1 million spectrograms to process.
In order to rank these candidates and automate the detection,
a detection statistics needs to be defined in follow-up works.
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