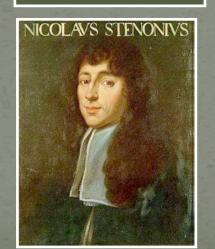
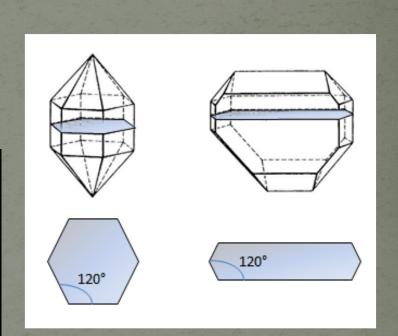


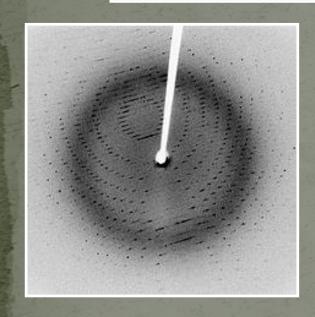
Plan de l'exposé

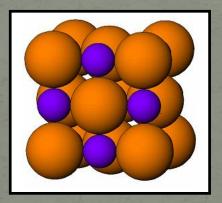

- 1. <u>Définitions</u>
- 2. Caractéristiques des gemmes
- 3. Principaux gisements
- 4. <u>Imitations, traitements et synthèses</u>

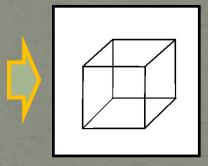
Les cristaux

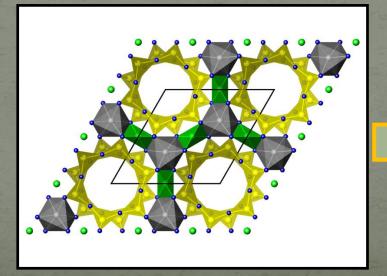

- Corps solides
- Homogènes
- Délimités par des faces planes
- Ces faces font entre elles des angles constants

J.-B. Romé de l'Isle (1736-1790) Nicolas Sténon (1638-1686)


«Peu importe dans quelle mesure les faces d'un cristal peuvent varier dans leur taille ou dans leur forme; l'angle interfacial reste constant, pourvu que les mesures soient effectuées à la même température ».


La structure interne des cristaux


Les faces du cristal sont le reflet de l'arrangement périodique tridimensionnel des atomes



Halite, NaCl, Système cubique

Béryl, Be₃Al₂Si₆O₁₈, syst. hexagonal

<u>Les minéraux</u>

- Corps solides
- Inorganiques
- Cristallins
- Produits par des processus géologiques

Mercure, Hg Minéral liquide

Opale, SiO₂.nH₂O Minéral amorphe

Ambre Minéral organique

Whewellite, CaC₂O₄.H₂O Bio-minéral

Définitions Les gemmes Gisements Traitements

Les gemmes

- Minéral (origine naturelle)
- Taillé ou poli
- Qualités esthétiques suffisantes pour l'utiliser en joaillerie, en orfèvrerie, ...

LIEG

Valeur d'une gemme:

- Esthétique (couleur, limpidité, type de taille)
- Rareté
- Durabilité (caractéristiques physiques: dureté, clivages, ...)

Couleur des gemmes:

- La même espèce minérale peut présenter diverses couleurs.
- Ces variétés sont considérées comme des gemmes différentes, alors que pour le minéralogiste, il s'agit d'un seul et même minéral.

- 1 seule espèce minérale (corindon, Al₂O₃)
- 2 variétés gemmologiques

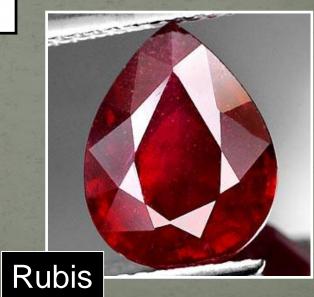
Rubis

Saphir

Définitions Les gemmes

Gisements

Fraitements

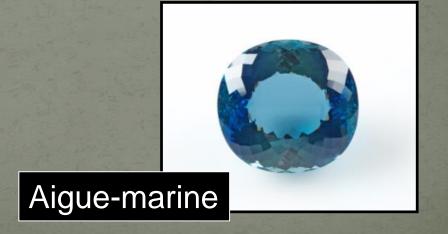

Les « pierres précieuses »

Les pierres « semi-précieuses » ou « pierres fines »

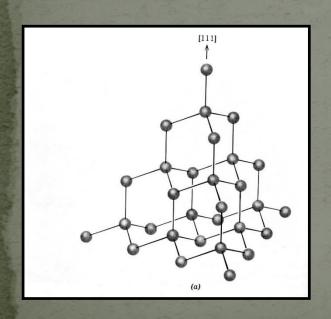
Table 15.1 **GEM MINERALS***

NATIVE	TUNGSTATES	SILICATES	
ELEMENTS	Scheelite	(continued)	
Diamond	PHOSPHATES	Axinite	
SULFIDES	Beryllonite	Beryl	
Sphalerite	Apatite	Cordierite	
Pyrite	Amblygonite	Tourmaline	
OXIDES	Brazilianite	Enstatite-	
Zincite	Turquoise	hypersthene	
Corundum	Variscite	Diopside	
Hematite	SILICATES	Jadeite (jade)	
Rutile	Phenacite	Spodumene	
Anatase	Willemite	Rhodonite	
Cassiterite	Olivine	Tremolite-	
Spinel	Garnet	actinolite	
Gahnite	Zircon	(nephrite jade)	
Chrysoberyl	Euclase	Serpentine	
HALIDES	Andalusite	Talc	
Fluorite	Sillimanite	Prehnite	
CARBONATES	Kyanite	Chrysocolla	
Calcite	Topaz	Dioptase	
Rhodochrosite	Staurolite	Quartz	
Smithsonite	Datolite	Opal	
Aragonite	Titanite	Feldspar	
Malachite	Benitoite	Danburite	
Azurite	Zoisite	Sodalite	
SULFATES	Epidote	Lazurite	
Gypsum	Vesuvianite	Petalite	
		Scapolite	
		Thomsonite	

^{*}Colored photographs of many of these minerals and gems cut from them are given in Plates I-IV.

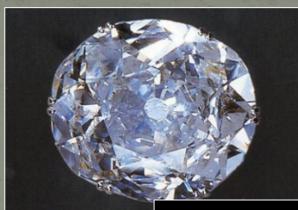

Tourmaline

Améthyste



<u>Le diamant</u>

- •Formule chimique : C
- •Système cristallin : Cubique
- •Propriétés physiques : Clivage {111} parfait ; dureté 10 ; densité 3,52 ;
- éclat adamantin à gras ; n = 2,42, dispersion forte



Diamants célèbres

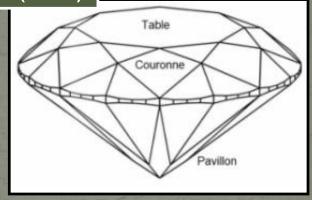
Name	Weight in carats		Origin	Present display
	Original	Cut		
Cullinan	3106	550, etc. ^a	Premier, South Africa	British Crown
Excelsion	995	21 stones	Jagersfontein, South Africa	Tiffany, New York
Star of Sierra Leone	969	770	Sierra Leone	British Crown
Great Mogul	793	280	India	Unknown
Vargas, brown	728		Brazil	Unknown
Jubilee	650	245	Jagersfontein, South Africa	Saudi Arabia
Regent	410	140	India	Louvre, Paris
Star of Yakutia	343	232	Yakutia, Russia	Treasury, Moscow
Orloff	787	190	India	Treasury, Moscow
Oppenheimer, yellow	254		Kimberley, South Africa	Smithsonian
Centenary	600	274	Premier, South Africa	British Crown
Tiffany, yellow	287	129	Kimberley, South Africa	Tiffany & Co., New York
Koh-i-Noor	>600	109	India	British Crown
Sancy	55		India	Louvre, Paris
Hope, blue	112	45	India	Smithsonian

Qualité des diamants (règle des 4C)

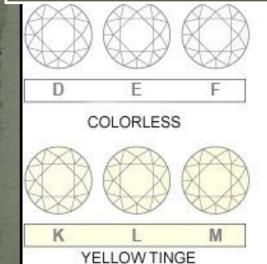
Le poids (Carat)

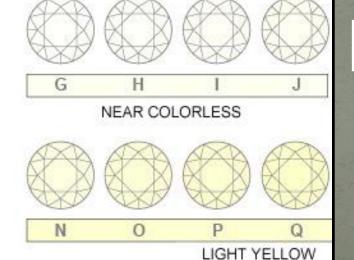
7.00 carats 12.4mm

6.00 carats 11.7mm



5.00 carats 11mm




4.00 carats 10.2mm

La taille (Cut)

La couleur (Colour)

La limpidité (Clarity)

DIAMOND CLARITY GRADING

Inclusions

Flawless or Internally Flawless

Very Very Slight **Inclusions**

VVS1-VVS2 VS1- VS2 SI1-SI2 Very Slight

Slight Inclusions I1-I3

Inclusions

Définitions Les gemmes

Gisements

s Traitements

Les variétés de corindon (rubis et saphir)

•Formule chimique : Al₂O₃

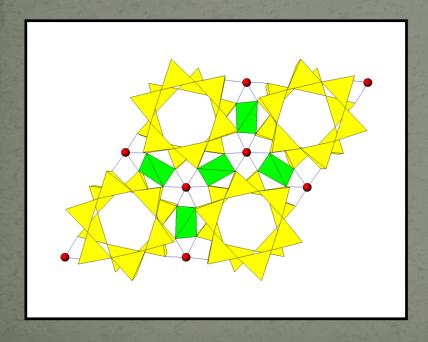
•Système cristallin : Rhomboédrique

•<u>Propriétés physiques</u>: Plans de débitage {0001} et {101}; **dureté 9**; densité 4,02 ; éclat adamantin à vitreux ; Ne = 1,760, NO = 1,769, U-.

Saphirs

Définitions Les gemmes Gisements Traiten

Les variétés de béryl


•<u>Formule chimique</u>: Be₃Al₂[Si₆O₁₈]

•Système cristallin : Hexagonal

• Propriétés physiques : Clivage {0001} imparfait ; dureté 8 ; densité

2,65-2,80 ; éclat vitreux ; Ne = 1,557-1,599, No = 1,560-1,602, U-.

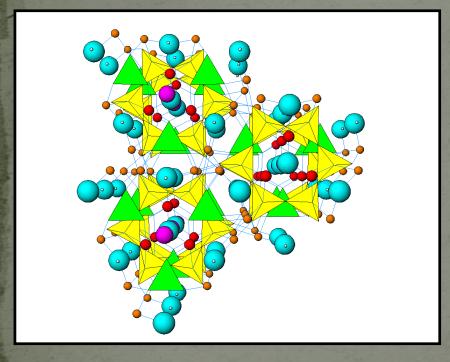
Les variétés de quartz

•Formule chimique : SiO₂

•Système cristallin : Rhomboédrique

Définitions Les gemmes

Gisements


Traitements

Le groupe de la tourmaline

•<u>Formule chimique</u>: Na(Mg,Fe)₃Al₆(BO₃)₃[Si₆O₁₈](OH)₄

•Système cristallin : Rhomboédrique

•Schorl: NaFe₃...

•Dravite: NaMg₃...

•Elbaïte: Na(Li,Al)₃...

Définitions Les gemmes Gisements Traitement

L'elbaite multicolore

Tourmaline « Paraiba »

Le groupe des grenats

•Formule chimique : $R^{2+}{}_3R^{3+}{}_2[SiO_4]_3$

•Système cristallin : Cubique

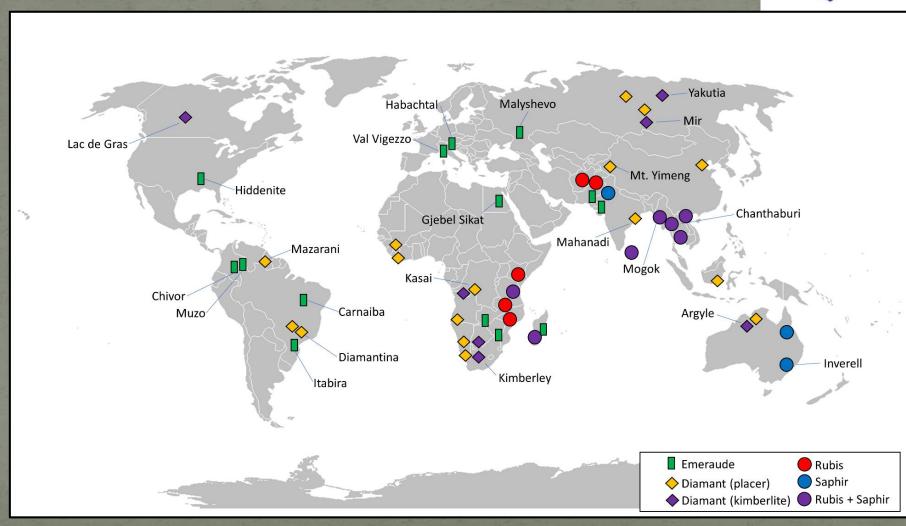
Spessartine, Mn₃Al₂[SiO₄]₃

Almandin, Fe₃Al₂[SiO₄]₃

Pyrope, $Mg_3Al_2[SiO_4]_3$

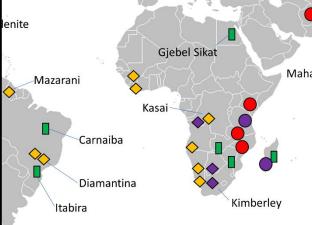
Variétés de grenats

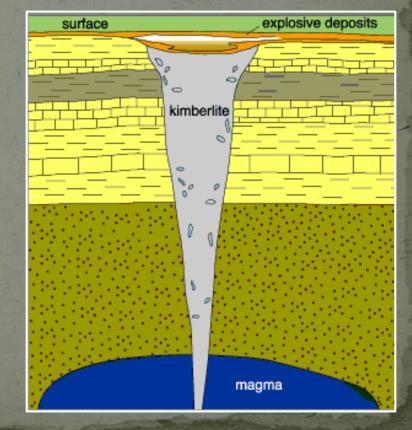
Grossulaire, Ca₃Al₂[SiO₄]₃



Andradite, Ca₃Fe₂[SiO₄]₃

Les gisements de pierres précieuses


« Big Hole »

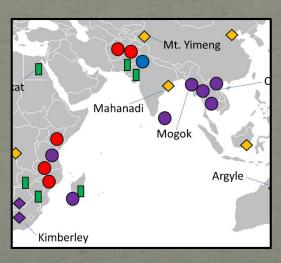

Formation du diamant: les kimberlites

- 140-190 km
- 1100-1400°C
- à 3 milliards d'annéesC

Définitions Les gemmes Gisements Traitements

Les pegmatites granitiques

- Roche magmatiques à grands cristaux
- Concentrent des éléments rares (Li, B, Ta, Be, Cs...)
- Cavités miarolitiques contenant des gemmes

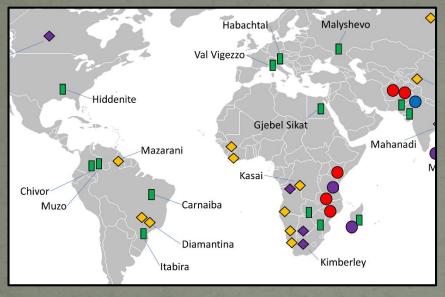


Les gisements de rubis et saphirs

Birmanie Mozambique Madagascar

- Marbres métamorphiques
- Roches métamorphiques recristallisées

Ceylan
Birmanie
Cambodge
Madagascar



Définitions Les gemmes

Gisements

Traitements

Les gisements d'émeraude,

 Veines de carbonates dans des schistes graphitiques

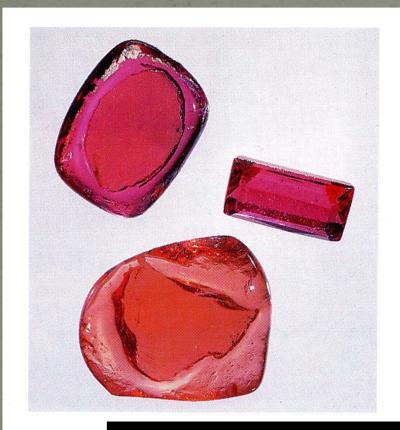
Emeraude, Habachtal

Topaze

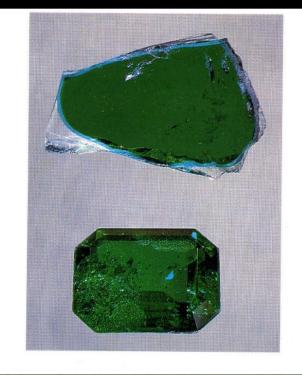
LIÈGE université

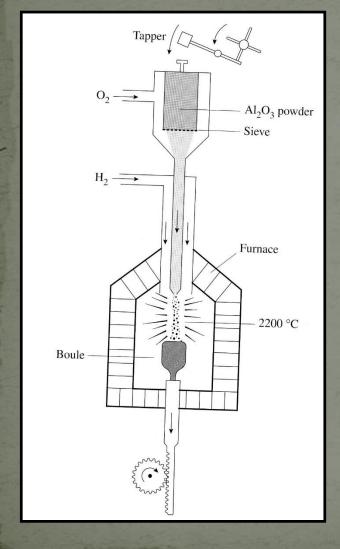
- Imprégnations (émeraude)
- Irradiation
- Chauffage
- Traitements de surface
- Pierres reconstituées

Irradiation



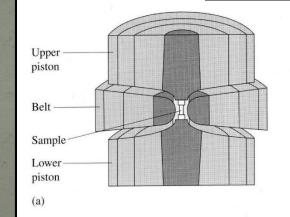
Chauffage

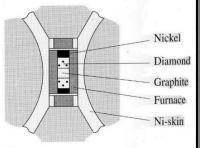

Doublets et triplets


Grenat – Verre coloré

Quartz – Verre coloré - Quartz

Méthodes de synthèse





Diamant - HPHT

(b)

Tungsten carbide

Various steels

Pyrophyllite

- Les gemmes sont constituées de minéraux
- Une vingtaine d'espèces fournissent la plupart des gemmes
- Les « pierres précieuses » sont diamant, rubis, saphir et émeraude
- Il existe de nombreuses variétés gemmologiques pour plusieurs minéraux comme les béryls, corindons, tourmalines, quartz, grenats...
- Chaque gemme se forme dans des conditions géologiques très particulières
- Les traitements, imitations et synthèses sont fréquents et parfois difficiles à détecter