
Bardhyl Miftari, Mathias Berger, Guillaume Derval and Damien Ernst

Exploiting structure in MILP:
a modeler’s perspective

SIAM Conference on Optimization (OP23)
Seattle, USA

May 31- June 3, 2023

1/22

Table of content

• Structured MILPs

• MILP workflow

• Modeling tools

• GBOML

• Benchmarking

• Conclusion

2/22

Structure in MILPs
Examples

• Network of components
• Similar components re-used several times
• Frequent in energy or supply chain optimization

Figure 1: renewable energy community Figure 2: Belgian energy model

3/22

Same !

Same !

How to exploit this structure ?

4/22

MILP Workflow

Modeling Tool Solver

Basics

Figure 3: MILP workflow

5/22

MILP Workflow

Modeling Tool Solver

Basics

Figure 3: MILP workflow

5/22

Modeling Tools
Basics

Encoding Inner
representation

Solver
Interface

Conversion Instance Output

Figure 4: Modelling tools workflow

6/22

Modeling Tools
Basics

Exploiting structure at each step

Encoding Inner
representation

Solver
Interface

Conversion Instance Output

Figure 4: Modelling tools workflow

6/22

Modeling Tools
AMLs

[1]

[2] [3]

[4]

[5]

• Algebraic Modeling Languages (AMLs)

• Formulation close to mathematical notation

• Very expressive (e.g. can represent any mixed-integer nonlinear program)

• Often interface with multiple solvers

• Do not exploit structure encoding in their basic form

• Examples:

7/22

Modeling Tools
OOMEs

[6]

[7]

[8]

[9]

[10]

[11]

• Object-Oriented Modeling Environments (OOMEs)

• Focus on one particular application (e.g. energy system sizing and operations)

• Usually make use of predefined components that are “imported”

• Difficult to add or modify the components

• Typically have advanced data processing capabilities tailored to the application

• Examples:

8/22

Can we go further ?

9/22

Going Further

• The Graph-Based Optimization Modeling Language (GBOML)[12-13] combines the
strengths of AMLs and OOMEs

• Open-Source and Stand-alone

• Can represent any MILP

• Exploits structure in various ways

• Syntax close to the mathematical notation

• Time-indexed models can be encoded easily

• Allows component definition, re-use and component assembling

• Interfaces with various solvers

GBOML

10/22

Going Further

• In GBOML, structure is exploited at all levels:

GBOML

Encoding Inner
representation

Solver
Interface

Conversion Instance Output

Structure encoded
via a hierarchical

hypergraph

Symbolic representation
hierarchical hypergraph

representation

Parallel instance
generation

Interface to structure
exploiting methods

Structured output

Figure 5: GBOML structure exploiting workflow

11/22

GBOML abstraction
Hierarchical hypergraph

Node

Node Node

Node

Node

Node

Node

Node

Hyperedges

FIGURE 6 : Representation of one particular hierarchical hypergraph made-up of 5 nodes and 2 hyperedges. The node most to
the left and to the right both contain a hypergraph themselves. 12/22

GBOML language
Basics

#NODE <node_name>
#PARAMETERS
<param_def>
#VARIABLES
<var_def>
#CONSTRAINTS
<constr_def>
#OBJECTIVES
<obj_def>

#HYPEREDGE <edge_name>
#PARAMETERS
<param_def>

#CONSTRAINTS
<constr_def>

#TIMEHORIZON
T = <value>;

13/22

GBOML language
Basics

#NODE <node_name>
#PARAMETERS
<param_def>
#VARIABLES
<var_def>
#CONSTRAINTS
<constr_def>
#OBJECTIVES
<obj_def>

#HYPEREDGE <edge_name>
#PARAMETERS
<param_def>

#CONSTRAINTS
<constr_def>

#TIMEHORIZON
T = <value>;

13/22

GBOML language
Basics

#NODE <node_name>
#PARAMETERS
<param_def>
#VARIABLES
<var_def>
#CONSTRAINTS
<constr_def>
#OBJECTIVES
<obj_def>

#HYPEREDGE <edge_name>
#PARAMETERS
<param_def>

#CONSTRAINTS
<constr_def>

#TIMEHORIZON
T = <value>;

13/22

GBOML inner structure
Hierarchical hypergraph

Node

Node Node

Node

Node

Node

Node

Node

Parameters
Variables
Constraints
Objectives

Hyperedges
Parameters
Constraints

FIGURE 6 : Representation of one particular hierarchical hypergraph made-up of 5 nodes and 2 hyperedges. The node most to
the left and to the right both contain a hypergraph themselves. 14/22

GBOML inner structure
Hierarchical hypergraph

Node

Node Node

Node

Node

Node

Node

Node

Parameters
Variables
Constraints
Objectives

Hyperedges
Parameters
Constraints

Reference
tree

FIGURE 6 : Representation of one particular hierarchical hypergraph made-up of 5 nodes and 2 hyperedges. The node most to
the left and to the right both contain a hypergraph themselves. 14/22

GBOML inner structure
Hierarchical hypergraph

Node

Node Node

Node

Node

Node

Node

Node

Parameters
Variables
Constraints
Objectives

Hyperedges
Parameters
Constraints

Re-usable

FIGURE 6 : Representation of one particular hierarchical hypergraph made-up of 5 nodes and 2 hyperedges. The node most to
the left and to the right both contain a hypergraph themselves. 14/22

GBOML inner structure
Hierarchical hypergraph

Node

Node Node

Node

Node

Node

Node

Node

Parameters
Variables
Constraints
Objectives

Hyperedges
Parameters
Constraints

// //

//

//

//

FIGURE 6 : Representation of one particular hierarchical hypergraph made-up of 5 nodes and 2 hyperedges. The node most to
the left and to the right both contain a hypergraph themselves. 14/22

GBOML solver interface

• Commercial solvers

• Open-source solvers

• Structure exploiting methods

• DSP[19]: Dantzig-Wolfe decomposition

• CPLEX: Benders decomposition

Methods

[14] [15] [16]

[17]
[18]

15/22

Benchmarking

16/22

Benchmarking
Instance generation time

FIGURE 7 : time to generate a remote renewable energy hub instance[20]
for a growing time horizon with different tools 17/22

Benchmarking
Peak RAM usage

FIGURE 8 : peak ram usage of generating a remote renewable energy hub instance[20]
for a growing time horizon with different tools 18/22

Benchmarking
Solving time

FIGURE 9 : No swot problem from the MIPLIB[21] representation without structure
in a MPS file (left) and with structure in GBOML (right)

Solved by Gurobi in 25 seconds Solved using Dantzig-Wolfe in 2.5 seconds

19/22

Conclusion

• Structure can be used to

• encode problems in a more «natural» way

• allow component definition, re-use and model assembling

• generate instances of problems faster and use less RAM

• parallelize model generation

• interface with structure exploiting methods

• which can sometimes lead to faster solving time

Exploiting structure in MILPs

20/22

Acknowledgments

• We would like to thank

• SPF Economie (Federal government of Belgium)[30] for their financial support
through the INTEGRATION project

• The Walloon Region for their financial support through the INTEGCER project on
renewable energy communities

• SIAM OP23 for the opportunity of presenting our work and the organization

21/22

References
[1] The General Algebraic Modeling Language, GAMS. https://www.gams.com/

[2] JuMP, https://jump.dev/JuMP.jl/stable/

[3] A Mathematical Programming Language, AMPL. https://ampl.com/

[4] Pulp. https://github.com/coin-or/pulp

[5] Pyomo. http://www.pyomo.org/

[6] PyPSA, Python for Power System Analysis. https://pypsa.org/

[7] Calliope. Calliope: a multi-scale energy systems modelling framework. https://calliope.readthedocs.io/en/stable/#

[8] Plexos, The Energy Analytics and Decision Platform for all Systems. https://www.energyexemplar.com/plexos

[9] Balmorel, http://www.balmorel.com/

[10] oemof.solph, https://github.com/oemof/oemof-solph

[11] The Dispa-SET model. http://www.dispaset.eu/en/latest/

[12] Bardhyl Miftari et al., ”GBOML: Graph-Based Optimization Modeling Language”, https://joss.theoj.org/papers/10.21105/joss.04158, 2022

[13] Bardhyl Miftari et al., ”GBOML: a Structure-exploiting Optimization Modeling Language in Python”, https://orbi.uliege.be/handle/2268/296930, 2022

[14] Gurobi Optimization, LLC. All Rights Reserved. https://www.gurobi.com/

[15] FICO® Xpress Optimization. https://www.fico.com/en/products/fico-xpress-optimization

[16] IBM ILOG CPLEX Optimizer. https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer

[17] HiGHS - high performance software for linear optimization. https://highs.dev/

[18] CBC/CLP from COIN-OR Foundation, Inc..https://www.coin-or.org/

[19] DSP, Argonne National Laboratory. https://github.com/Argonne-National-Laboratory/DSP

[20] Mathias Berger et al., “Remote Renewable Hubs for Carbon-Neutral Synthetic Fuel Production”, in Frontiers in Energy Research 9 (2021), p.200. DOI 10.3389/
fenrg.2021.671279. https://www.frontiersin.org/article/10.3389/fenrg.2021.671279

[21] MIPLIB, https://miplib.zib.de/ 22/22

https://www.gams.com/
https://jump.dev/JuMP.jl/stable/
https://ampl.com/
https://github.com/coin-or/pulp
http://www.pyomo.org/
https://pypsa.org/
https://calliope.readthedocs.io/en/stable/#
https://www.energyexemplar.com/plexos
http://www.balmorel.com/
https://github.com/oemof/oemof-solph
http://www.dispaset.eu/en/latest/
https://joss.theoj.org/papers/10.21105/joss.04158
https://orbi.uliege.be/handle/2268/296930
https://www.gurobi.com/
https://www.fico.com/en/products/fico-xpress-optimization
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://highs.dev/
https://www.coin-or.org/
https://github.com/Argonne-National-Laboratory/DSP
https://www.frontiersin.org/article/10.3389/fenrg.2021.671279
https://miplib.zib.de/

