
Bardhyl Miftari, Mathias Berger, Guillaume Derval and Damien Ernst

Exploiting structure in MILP: 
a modeler’s perspective

SIAM Conference on Optimization (OP23) 
Seattle, USA 

May 31- June 3, 2023

1/22



Table of content

• Structured MILPs 

• MILP workflow 

• Modeling tools 

• GBOML 

• Benchmarking 

• Conclusion

2/22



Structure in MILPs
Examples

• Network of components 
• Similar components re-used several times 
• Frequent in energy or supply chain optimization

Figure 1: renewable energy community Figure 2: Belgian energy model
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How to exploit this structure ? 
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MILP Workflow

Modeling Tool Solver

Basics

Figure 3: MILP workflow
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Modeling Tools
Basics
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Modeling Tools
Basics
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Modeling Tools
AMLs

[1]

[2] [3]

[4]

[5]

• Algebraic Modeling Languages (AMLs) 

• Formulation close to mathematical notation 

• Very expressive (e.g. can represent any mixed-integer nonlinear program) 

• Often interface with multiple solvers 

• Do not exploit structure encoding in their basic form 

• Examples:
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Modeling Tools
OOMEs

[6]

[7]

[8]

[9]

[10]

[11]

• Object-Oriented Modeling Environments (OOMEs) 

• Focus on one particular application (e.g. energy system sizing and operations) 

• Usually make use of predefined components that are “imported” 

• Difficult to add or modify the components 

• Typically have advanced data processing capabilities tailored to the application 

• Examples: 

8/22



Can we go further ?
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Going Further

• The Graph-Based Optimization Modeling Language (GBOML)[12-13] combines the 
strengths of AMLs and OOMEs 

• Open-Source and Stand-alone 

• Can represent any MILP 

• Exploits structure in various ways 

• Syntax close to the mathematical notation 

• Time-indexed models can be encoded easily 

• Allows component definition, re-use and component assembling 

• Interfaces with various solvers

GBOML
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Going Further

• In GBOML, structure is exploited at all levels: 

GBOML

Encoding Inner  
representation

Solver  
Interface

Conversion Instance Output

Structure encoded  
via a hierarchical 

hypergraph

Symbolic representation 
hierarchical hypergraph 

representation

Parallel instance 
generation

Interface to structure 
exploiting methods

Structured output

Figure 5: GBOML structure exploiting workflow
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GBOML abstraction
Hierarchical hypergraph

Node

Node Node

Node

Node
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Node

Node
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FIGURE 6 : Representation of one particular hierarchical hypergraph made-up of 5 nodes and 2 hyperedges. The node most to 
the left and to the right both contain a hypergraph themselves. 12/22



GBOML language
Basics

#NODE <node_name>
#PARAMETERS
<param_def>
#VARIABLES
<var_def>
#CONSTRAINTS
<constr_def>
#OBJECTIVES
<obj_def>

#HYPEREDGE <edge_name>
#PARAMETERS
<param_def>

#CONSTRAINTS
<constr_def>

#TIMEHORIZON
T = <value>;
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GBOML inner structure
Hierarchical hypergraph
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FIGURE 6 : Representation of one particular hierarchical hypergraph made-up of 5 nodes and 2 hyperedges. The node most to 
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GBOML inner structure
Hierarchical hypergraph
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GBOML inner structure
Hierarchical hypergraph
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GBOML solver interface

• Commercial solvers 
 

• Open-source solvers 
 
 

• Structure exploiting methods 

• DSP[19]: Dantzig-Wolfe decomposition 

• CPLEX: Benders decomposition

Methods

[14] [15] [16]

[17]
[18]
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Benchmarking
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Benchmarking
Instance generation time

FIGURE 7 : time to generate a remote renewable energy hub instance[20] 
for a growing time horizon with different tools 17/22



Benchmarking
Peak RAM usage

FIGURE 8 : peak ram usage of generating a remote renewable energy hub instance[20]  
for a growing time horizon with different tools 18/22



Benchmarking
Solving time

FIGURE 9 : No swot problem from the MIPLIB[21] representation without structure  
in a MPS file (left) and with structure in GBOML (right)

Solved by Gurobi in 25 seconds Solved using Dantzig-Wolfe in 2.5 seconds
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Conclusion

• Structure can be used to  

• encode problems in a more «natural» way 

• allow component definition, re-use and model assembling 

• generate instances of problems faster and use less RAM 

• parallelize model generation 

• interface with structure exploiting methods  

• which can sometimes lead to faster solving time

Exploiting structure in MILPs
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