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Abstract
Spiking neural networks (SNNs) are a type of artificial neural networks in which communication
between neurons is only made of events, also called spikes. This property allows neural networks
to make asynchronous and sparse computations and therefore drastically decrease energy
consumption when run on specialized hardware. However, training such networks is known to be
difficult, mainly due to the non-differentiability of the spike activation, which prevents the use of
classical backpropagation. This is because state-of-the-art SNNs are usually derived from
biologically-inspired neuron models, to which are applied machine learning methods for training.
Nowadays, research about SNNs focuses on the design of training algorithms whose goal is to
obtain networks that compete with their non-spiking version on specific tasks. In this paper, we
attempt the symmetrical approach: we modify the dynamics of a well-known, easily trainable type
of recurrent neural network (RNN) to make it event-based. This new RNN cell, called the spiking
recurrent cell, therefore communicates using events, i.e. spikes, while being completely differen-
tiable. Vanilla backpropagation can thus be used to train any network made of such RNN cell. We
show that this new network can achieve performance comparable to other types of spiking
networks in the MNIST benchmark and its variants, the Fashion-MNIST and the Neuromorphic-
MNIST. Moreover, we show that this new cell makes the training of deep spiking networks
achievable.

1. Introduction

In the last decade, artificial neural networks (ANNs) have become increasingly powerful, overtaking human
performance in many tasks. However, the functioning of ANNs diverges strongly from the one of biological
brains. Notably, ANNs require a huge amount of energy for training and inferring, whereas biological brains
consumes much less power. This energy greediness prevents ANNs to be used in some environments, for
instance in embedded systems. One of the considered solutions to this problem is to replace the usual
artificial neurons by spiking neurons, mimicking the function of biological brains. Spiking neural networks
(SNNs) are considered as the third generation of neural networks [1]. Such networks, when run on
neuromorphic hardware (like Loihi [2] for instance), can show very low power consumption. Another
advantage of the SNNs is their event-driven computation. Unlike usual ANNs that propagate information in
each layer and each neuron at each forward pass, SNNs only propagate information when a spike occurs,
leading to more event-driven and sparse computations. Nonetheless, the development of SNNs face a
challenging problem: the spike generation is not differentiable, therefore preventing training using usual
backpropagation [3], which is a the core of ANNs success. Several solutions are being considered nowadays,
as discussed in section 2. The classical approach consists in using a simple model for the spiking neurons to
which are added learnable weights. Then, methods inspired from classical machine learning are used to train,
either by directly training the SNN, for instance using surrogate gradient-descent [4], or by first training an
ANN and then converting it into a SNN.
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In this paper, we approach the problem from the other side: from the well-known gated recurrent cell
(GRU) [5], we derive a new event-based recurrent cell, called the spiking recurrent cell (SRC). SRC neurons
communicate via events, generated with differentiable equations. Unlike the usual artificial spiking neurons
which generate binary spikes that always last exactly one timestep, the SRC creates more natural spikes,
which can span multiple timesteps. The SRC and its equations are described in section 3. Such event-based
cell permits to leverage the potential of classical recurrent neural networks (RNN) training approaches.

The performance of SRC-based RNNs has been tested on neuromorphic versions of classical
benchmarks, such as the MNIST benchmark and some variants, whose results are discussed in section 4. To
make a comparison, we have trained usual SNNs on the same benchmarks. We show that SNNs built with
SRCs achieve comparable results obtained with classic SNNs on these benchmarks for shallow networks. But,
as soon as the depth of the network increases, training becomes more and more fastidious for classic SNNs.
On the other hand, we show that SRC-SNNs composed of 10+ layers are still trainable and lead to more
stable learning.

2. Related works

This section introduces RNNs and SNNs. Different approaches to train SNNs are also described.

2.1. RNNs
RNNs are a type of neural networks that carry fading memory by propagating a vector, called the hidden
state, through time. More precisely, a RNN is usually composed of recurrent layers, also called recurrent cells,
and classical fully-connected layers. Each recurrent cell has its own hidden state. At each time step, a new
hidden state is computed from the received input and the previous hidden state. This allows RNNs to process
sequences. Mathematically, this gives:

h [t] = ϕ (x [t] ,h [t− 1] ;Θ)

where h[t] and x[t] are the hidden state and the input at time t, respectively, ϕ is the recurrent cell andΘ its
parameters.

Training RNNs has always been difficult, especially for long sequences, due to vanishing and exploding
gradients [6]. Indeed, RNNs are trained using backpropagation through time (BPTT) [7]. This algorithm
consists in first unfolding the RNN in time, i.e. turning it into a very deep feedforward network whose
number of hidden layers is equal to the sequence length and whose weights are shared among layers. Usual
backpropagation is then applied to this network. However, due to the huge number of layers, gradient
problems are much more prone to appear than in usual feedforward networks. There exist several solutions
to solve or at least attenuate these problems. For instance, exploding gradients can be easily solved using
gradient clipping [6]. But the most notable improvement in RNNs was the introduction of the gating
mechanism: gates, i.e. vectors of reals between 0 and 1, are used to control the flow of information, i.e. what
is added to the hidden state, what is forgotten, etc. This has led to the two most known recurrent cells: the
long-short term memory (LSTM) [8] and the GRU [5]. LSTM uses 3 gates, while GRU is more lightweight and
uses 2 gates. The new recurrent cell introduced in this paper (section 3) is a derivation of GRU and can be
expressed as an usual RNN. Furthermore, recent work by Subramoney et al [9]introduces a new type of RNN
also derived from GRU, called event-based GRU. This biologically inspired recurrent cell is made event-based
thanks to a thresholding function, allowing the output of the cell to be only transmitted at some timesteps.
This property allows it to be more efficient than usual RNNs, while showing competitive performance on
real world tasks. Although it does not generate spikes and information can be contained in the event itself, it
is related to our approach as both are derived from GRU and include biologically inspired mechanisms.

2.2. SNNs
Biological neurons communicate using spikes, i.e. short pulses in neuron membrane potential, generated by
a non-linear phenomena. These membrane potential variations are created from the flow of ions that go in
and out of the cell. There exist a lot of different mathematical models of neuron excitable membranes, the
most notable being the Hodgkin–Huxley model [10], and similar models called conductance-based models.
Such models represent the neuron membrane as a capacitance in parallel with several voltage sources and
variable conductances that respectively model the electrochemical gradients of the different ions and ion
membrane permeability. Despite being very physiological, these models contain are too complex in term of
variables and parameters to be used in machine learning. That is why much more simple, phenomenological
models are usually used to model spiking neurons in a SNN.

A classical model of this type is the leaky integrate-and-fire (LIF) model. It is composed of a leaky
integrator that integrates the input current into membrane potential variations, associated to a reset rule that
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is triggered when a threshold potential is reached. Once the threshold is reached, a spike is emitted and the
potential is reset to its resting value. Unlike conductance-based models, the LIF model generates binary
spikes, i.e. spikes that last one timestep and whose value is a fixed parameter, usually set to 1 in SNNs.
Mathematically, it writes:

V [t] = αVV [t− 1] + x [t]{
if V [t]> Vthresh, then s [t] = 1 and V [t] = Vrest

otherwise s [t] = 0

where V[t], x[t] and s[t] are the membrane potential, the input and the output at time t, respectively, αV is the
leakage factor, Vthresh the threshold and Vrest the resting potential. The LIF model is far less physiological then
conductance-based models, but it is much more lightweight and retains the core of spike-based computation.

LIF neurons can be organized in layers to form a complete network. The question is now how to train
such a network? Due to the non-differentiable activation, usual backpropagation cannot be used (or at least
cannot be used directly). To achieve reasonable training performance, many approaches to train SNNs have
been proposed [11, 12], which can be split into three categories. First, SNNs can be trained using
unsupervised learning rules, which are local to the synapses [13–16]. These learning rules are often derived
from the spike-timing-dependent plasticity process [17], which strengthens or weakens synaptic connections
depending on the coincidence of pre and post-synaptic spikes. This non-optimization-based training
method is usually slow, often unreliable, and leads to poor performance. The second category is an indirect
training. It consists in first training a usual ANN (with some constraints) and then converting it into a SNN
[18–20]. Indeed, ANNs can be seen as special spiking networks that uses a rate-based coding scheme. These
methods allow to use all the algorithms developed for training ANNs, and thus can reach high performance.
However, they do not unlock the full potential of spiking networks, as rate-coding is not the only way of
transmitting information through spikes. Also, rate-based coding usually results in a higher number of
generated spikes, weakening the energy-efficiency of SNNs. The third and last approach is to rely on
gradient-based optimization to directly train the SNN [4, 21–26]. These methods usually smooth the entire
networks or use a surrogate smoothed gradient for the non-differentiable activation to allow
backpropagation. Notably, Huh and Sejnowski [27] used a smooth spike-generating process which replaces
the non-differentiable activation of the LIF neurons. This approach is closely related to ours, as they both use
soft non-linear activations to generate spikes. SNNs trained by gradient-based algorithms have achieved
good performance, even competing with ANNs on some benchmarks. However, it is known to be very
difficult to train deep SNNs. Indeed, adding more layers makes the training much harder, which prevents
from obtaining efficient deep SNNs and therefore limits the complexity of the tasks SNNs can solve.

3. SRC

The new spiking neuron introduced in this paper is derived from the well-known RNN GRU. This section
describes its derivation and the different parts of the neuron, namely the spike-generation and the
input-integration parts.

3.1. Spike-generation
As the starting point of the derivation of the SRC equations, another recurrent cell will be used, itself derived
from GRU: the bistable recurrent cell (BRC) created by Vecoven et al [28]. Its main property is its
never-fading memory created by the bistability property of its neurons.

Here are the equations of GRU:

z [t] = σ (Uzx [t] +Wzh [t− 1] + bz) (1a)

r [t] = σ (Urx [t] +Wrh [t− 1] + br) (1b)

ĥ [t] = tanh(Uhx [t] + r [t]⊙Whh [t− 1] + bh) (1c)

h [t] = z [t]⊙ h [t− 1] + (1− z [t])⊙ ĥ [t] . (1d)

And here are the ones of BRC:

z [t] = σ (Uzx [t] +wz⊙h [t− 1] + bz) (2a)

r [t] = 1+ tanh(Urx [t] +wr⊙h [t− 1] + br) (2b)
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ĥ [t] = tanhUhx [t] + r [t]⊙ h [t− 1] + bh (2c)

h [t] = z [t]⊙ h [t− 1] + (1− z [t])⊙ ĥ [t] . (2d)

Both use two gates (z and r) to control the flow of information. r is used to compute what we will call the
candidate hidden state ĥ[t]. r controls how much of the previous hidden state will be included in ĥ[t]. z is then
used to compute the next hidden state from the previous one and the candidate one. It controls the ratio of
history and novelty in the new hidden state.

There are two major differences between GRU and BRC, highlighted in red. First, the memory in BRC is
cellular, meaning that each neuron of the cell has its own internal memory that is not shared with the others,
while in GRU all internal states can be accessed by each neuron. This is constrained by the shape of BRC
recurrent weights, which are all vectors instead of matrices. The second difference is the range of possible
values of r: in GRU, it is included between 0 and 1 while in BRC, it is included between 0 and 2. This
difference allows the BRC neuron to switch from monostability (r≤ 1) to bistability (r> 1).

These two properties of BRC, i.e. the cellular memory and the bistability, are useful to generate spikes.
The cellular memory can represent the membrane potential of the spiking neurons, while the bistability is
created by a local positive feedback, which is the first step of a spike. Indeed, a spike can be described in two
steps: a fast local positive feedback that brings the potential to a high value followed by a slower global
negative feedback that brings back the potential to its resting value. Therefore, integrating such a negative
feedback to BRC equations allows the cell to generate spikes. This can be done by adding a second hidden
state hs, which lags behind h equation (3c), and a new term in the update equation of h (highlighted in red in
equation (3b)). As no information can be transmitted between neurons except when a spike occurs, the fast
hidden state h is passed through a ReLU function to isolate the spikes from the small, subthreshold variations
of h. This creates the output spikes train sout equation (3d). The input of SRC, i.e. the integration of the input
pulses, will be discussed afterwards, therefore we will simply use x to denote the input used by the spike
generation.

This leads to the equations that generate spikes:

ĥ [t] = tanh(x[t] + r⊙ h[t− 1]+ rs ⊙ hs[t− 1] + bh) (3a)

h [t] = z⊙ h [t− 1] + (1− z)⊙ ĥ [t] (3b)

hs [t] = zs ⊙ hs [t− 1] + (1− zs)⊙ h [t− 1] (3c)

sout [t] = ReLU(h[t]) . (3d)

From the point of view of RNNs, these equations contain four gates: r, rs, z and zs. r and rs control the
impact of the previous hidden states h[t− 1] and hs[t− 1] on the candidate hidden state, while z and zs
control the update speed of h and hs. To understand how these equations allow to generate spikes, we should
approach them from the perspective of dynamical systems. Indeed, spike creation comes from a mix of
feedbacks: first a positive one, followed by a negative one. These feedbacks are initiated through the recurrent
connections of equation (3a), and the coefficients r and rs control the feedbacks strengths. The fast feedback
must be generated by the fast hidden state, i.e. h, therefore its coefficient r should be positive and high
enough. Following the same logic, the slow feedback is brought by hs. Its coefficient rs should thus be
negative. The control of the timescales, i.e. the convergence speed of h and hs, is managed by the two other
coefficients, z and zs along with equations (3b) and (3c). hmust be very fast, thus z should be close to 0, while
hs must lag behind h, imposing zs to have a greater value. To enforce that no computation could be achieved
through alterations in the shape of a spike, the 4 gates cannot depend anymore on learnable weights. We have
fixed three of them with constant values: r= 2, rs =−7 and z= 0. The last one, zs, which controls the
convergence speed of hs towards h, has been made dependent of h. To create spikes with short depolarization
periods, zs should be low at depolarization potentials (high h), and larger at subthreshold potentials (low h),
mimicking the voltage-dependency of ion channel time constants in biological neurons. Therefore, we have
decided to use a simple step function to allow zs to jump between two values:

zs [h] = zhyps +
(
zdeps − zhyps

)
×H(h [t]− 0.5)

where zhyps is the value of zs when h is low, zdeps the value of zs when h is high andH denotes the Heaviside step

function. In practice, we use zhyps = 0.9 and zdeps = 0.
Finally, the bias bh controls the propensity of neurons to fire spikes: the higher, the easier. However if it

reaches too high values, the neurons may saturate. As this is a behavior that we would rather avoid, the bias
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Figure 1. Simulation of a SRC neuron for some inputs sequence x and different biases bh.

should be constrained to always be smaller than some value. In the experiments, we have fixed this higher
bound to−4.

figure 1 shows the behavior of one SRC neuron given different inputs x and biases bh. It can be observed
that for a high bias figure 1, the neuron is able to spike even with a null input, while for a lower one figure 1,
the neuron remains silent. Appendix B explains in more details the spike generation of SRC by showing the
interaction between the negative and positive feedbacks.

SNNs are often put forward for their very small energy consumption, due to the sparse activity of spiking
neurons. It is thus important to be able to measure the activity of said neurons. In the context of SRC
neurons, the spikes do not last exactly one timestep. It is therefore better to compute the number of timesteps
during which spikes are emitted rather than the number of spikes. This brings us to define the relative
number of spiking timesteps:

T (s) =
1

T

T∑
t=1

H(s [t]) , (4)

where T is the number of timesteps.

3.2. Input-integration
The last point to be addressed before being able to construct networks of SRCs is how to integrate the input
spikes sin. We decided to use leaky integrators with learnable weights wi:

i [t] = α i [t− 1] +
∑
i

wi sin [t]

where α is the leakage factor.
To prevent the SRC from saturating due to large inputs, we also added a rescaled hyperbolic tangent to i

to create neuron input x. The rescaling factor ρ is set to 3, forcing x to be between−3 and 3.
The equations of a whole SRC layer therefore writes, starting from the input pulses sin up to the output

pulses sout:

i [t] = α i [t− 1] +Ws sin [t] (5a)

x [t] = ρ · tanh
(
i[t]

ρ

)
(5b)

zs [h] = zhyps +
(
zdeps − zhyps

)
×H(h [t]− 0.5) (5c)

h [t] = tanh(x[t] + r⊙ h[t− 1] + rs ⊙ hs[t− 1] + bh) (5d)

hs [t] = zs [h]⊙ hs [t− 1] + (1− zs[h])⊙ h [t− 1] (5e)

sout [t] = ReLU(h[t]) (5f )

To sum up, equation (5a) first integrates the input pulses using a leaky integrator. The result then passes
through a rescaled hyperbolic tangent in equation (5b). zs is computed, based on h, in equation (5c). This
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Table 1. Summary of the parameters present in the equations of SRC.

Name Description Typical value

α Leakage factor of the integrator 0.9/0.99
Ws Learning weights
ρ Rescaling factor to avoid saturation 3.
r Positive feedback factor 2.
rs Negative feedback factor −7.
bh Bias of h, controls the propensity to spike −6.

z Controls the convergence speed of h towards ĥ 0.

zhyps Controls the convergence speed of hs towards h at low values of h 0.9

zdeps Controls the convergence speed of hs towards h at high values of h 0.

forms the input used by the spike generation part equations (5d) and (5e) to update h and hs. Finally,
equation (5f ) isolates the spikes from the small variations of h and generates the output pulses. Finally, like
the other recurrent cells, SRC can be organized in networks with several layers.

SRC has indeed a non negligible number of parameters, especially compared to simple models like LIF.
However, these are required to create an artificial spiking neuron able to mimic, to some extent, the
subthreshold dynamics of real neurons. Most of these parameters should not be learned, as they ensure fixed
and stable dynamics to generate the spikes and to avoid saturation of the cell. Table 1 summarizes the
parameters of SRC and briefly describes them.

4. Experiments

This section describes the different experiments that were made to assess SRC performance. We have used
PyTorch to implement the cell and to train it. To make a comparison, we have trained LIF SNNs on the same
benchmarks. To train them, we have used the snnTorch library [29], which allows to easily train SNNs using
the surrogate gradient approach and is based on PyTorch. All the parameters are given in appendix A.

4.1. Benchmarks
The SRC has been tested on the well-known MNIST dataset [30], as well as two variants. The first variant is
the Fashion-MNIST dataset [31], that contains images of fashion products instead of handwritten digits. It is
known to be more difficult than the original MNIST. The second variant is the Neuromorphic MNIST
(N-MNIST) [32] which, as its name suggests, is a neuromorphic version of MNIST where the handwritten
digits have been recorded by an event-based camera.

The MNIST and Fashion-MNIST datasets are not made to be used with spike-based networks, therefore
their images must first be encoded into spike trains. To do so, a rate-based coding and a latency-based coding
were used in the experiments. The first one creates one spike train per pixel, where the number of spikes per
time period is proportional to the value of the pixel. More precisely, the pixel is converted into a Poisson
spike train using its value as the mean of a binomial distribution. To avoid having too many spikes, we have
scaled the pixel values by a factor (the gain) of 0.25. Therefore, a white pixel (value of 1) will spike with a
probability of 25% at each timestep, while a black one (value of 0) will never spike. The latency-based coding
is much more sparse, as each pixel will spike at most one time. In this case, the information is contained in
the time at which the spike occurs. The idea is that brighter pixels will spike sooner than darker ones. The
spike time tspk of a pixel is defined as the duration needed by the potential of a (linearized) RC circuit to
reach a threshold Vth if this circuit is alimented by a current I equivalent to the pixel value:

tspk =min(−τ (I− 1) ,Vth)

where τ is the time constant of the RC circuit. In our experiments, we have used a τ = 10 and a Vth = 0.01.
The spike times are then normalized to span the whole sequence length, and the spikes located at the last
timestep (i.e. the spikes whose t equals to Vth) are removed. The encodings were performed using the
snnTorch library [29]. All the experiments were made using spikes trains of length 200. Therefore, the
MNIST (or Fashion-MNIST) inputs of dimension (1,28,28) are converted to tensors of size (200,1,28,28).

On the other hand, N-MNIST already has event-based inputs. Indeed, each sample contains the data
created by an event-based camera. Therefore this data just need to be converted to tensors of spikes. An
event-based camera pixel outputs a event each time its brightness changes. There are therefore two types of
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events: the ones issued when the brightness increased and the ones issued when it decreases. A N-MNIST
sample is a list of such events, which contains a timestamp, the coordinates of the pixel that emitted it, and its
type. The Tonic library [33] was used to load the N-MNIST dataset and convert its samples into tensors of
size (200,2,34,34). The first dimension is the time, the second is related to the type of the event and the two
last are the x and y spatial coordinates.

4.2. Readout layer
In order to extract the predictions from the outputs of a SNN, the final layer is connected with predefined
and frozen weights to a readout layer of leaky integrators, with one integrator per label and a leakage factor of
0.99. Each integrator is excited (positive weight) by a small group of neurons and is inhibited (negative
weight) by the others. In our experiments, this final layer contains 100 neurons. Each integrator is connected
to all neurons: 10 of these connections have a weight of 1, while the others have a weight of−0.1. The
prediction of the model corresponds to the integrator with the highest value at the final timestep.

4.3. Loss function
The networks were trained using the cross-entropy loss, which is usually used in classification tasks. This
function takes as inputs the values x of the leaky integrators at the final timestep and the target class y. The
loss is then computed (for a single sample) as:

l(x,y) =−log

(
exp
(
xy
)∑C

c=1 exp(xc)

)

where C is the number of classes and xc refers to the element of x associated to the class c.
This function basically applies the Softmax function to x and then computes the negative log likelihood.

For a whole batch, we simply take the mean of the l’s.

4.4. Learning
The loss function being defined, it is now possible to train networks of SRCs using the usual automatic
differentiation of PyTorch.

SRCs contain more parameters than LIFs, however most of them are not learnable, i.e. their values are
fixed at initialization and they are not updated during training. In addition to the weightsWs, only the bias
bh has been made learnable. While it is possible to make other parameters learnable, we wanted to focus on
the network ability to learn through changes in weights and biases.

Before presenting the results, there are two last things that must be discussed. The first point concerns the
backpropagation through the layers. Experiments showed that bypassing the ReLU during backpropagation
improves learning. As explained in section 3.1, this ReLU is used to isolate the spikes (high variations of h)
from the small fluctuations. Considering the backward pass, this ReLU blocks the gradients when no spike is
currently occurring, i.e. h[t]< 0. We therefore tested to let these gradients pass even when no spike is
occurring:

sout [t] = ReLU(h[t])

∂sout [t]

∂h [t]
= 1, ∀h [t]

Figure 2 shows the evolution of the accuracy and cross-entropy of two SRC networks composed of 5
layers, one trained with the ReLU bypass, the other without. For each network we have trained 5 models.
Except the bypass of the ReLU, all the other parameters are the same. When the gradients are
back-propagated through the ReLU, the models do not manage to learn, while when the ReLU is skipped,
learning is achieved, fast and leads to a good performance. We have therefore decided to use this trick for all
the experiments. Although, note that the ReLU is still used during forward passes, to ensure that information
is transmitted between neurons only when spikes occur.

The second point concerns the BPTT. A SRC neuron has three states: i, h and hs. This means that
gradients can be backpropagated through time via three different paths. However, we found out empirically
that preventing the gradients from flowing though the recurrent connections of h and hs improves learning.
In this case, only the state of the leaky integrator, hence the synapse, is used to transmit gradients back in
time, which is similar to what is done in LIF neurons. The improvement is not as important as skipping the
ReLU, yet we decided to use it in the experiments. In practice, this can be easily done in PyTorch, using the
detachmethod.
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Figure 2. Evolution of the training cross-entropy and the validating accuracy on the MNIST dataset for two sets of networks
composed of 5 SRC layers. For one set, the ReLU has been skipped during the backpropagation.

Table 2.Mean accuracies (in %) obtained on the test sets of the different datasets and the different encodings.

Layers Neuron

MNIST Fashion MNIST

N-MNISTRate Latency Rate Latency

1 SRC 97.27 96.54 86.24 86.28 97.42
LIF 97.18 96.98 86.02 84.72 98.18

2 SRC 98.32 98.30 87.80 87.06 98.25
LIF 98.06 96.92 79.32 87.27 97.34

3 SRC 98.44 98.21 88.35 84.86 98.34
LIF 98.18 94.73 80.64 78.09 97.36

5 SRC 98.39 97.52 88.54 82.09 98.11
LIF 98.08 97.61 84.22 85.88 98.05

4.5. Results
This subsection describes the results obtained from the different experiments we made with SRC and LIF
SNNs. First, shallow networks have been tested on the different benchmarks to compare the performances of
both neurons. Then, deeper networks have been tested to analyse the capacity of learning in depth. All the
parameters are given in appendix A.

4.5.1. Shallow networks
As a first experiment, we have tested several shallow networks with either 1, 2, 3 or 5 layers on the different
benchmarks.

Table 2 shows the different testing accuracies achieved by these networks. We can observe that SRC
networks were able to learn and achieved equal and sometimes superior performances compared to LIF
networks. Also, adding hidden layers usually leads to better performance. However, we noticed that SRC
networks were prone to overfitting in some cases. For instance, when trained on the Fashion MNIST with a
latency-based coding, their performance decreases when hidden layers are added. Figure 3 shows the
evolution of the accuracies on training and validation sets for the SRC networks. All networks with hidden
layers manage to reach a training accuracy very close to 100%, but the validating accuracy obtained at the
end decreases with the number of hidden layers. This problem of overfitting it is well-known in classic deep
learning, and further research might find ways to reduce it.

As previously mentioned, another important aspect of such networks is neuron activity. Using the
measure defined in equation (4), the mean activity of the neurons has been computed on the test set of the
different benchmarks. As a reminder, we have defined this activity as the relative number of timesteps where
a spike is being emitted. For the LIF, it corresponds to the relative number of spikes, while it is not the case
for SRC. Figure 4 reports these values for the MNIST dataset with the two codings. The same tendency can be
observed with both codings: SRC networks tend to spike more when there is no hidden layer, while it is the
opposite for LIF networks. In overall, the activity of both types of neurons is comparable.

4.5.2. Training deeper neural networks
Shallow networks of SRC neurons have successfully been trained. However, one of important breakthroughs
in deep learning was the ability to train deep neural networks. Training deep SNNs is known to be difficult.
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Figure 3. Evolution of the training and validating accuracies of SRC networks with 2, 3 and 5 layers on the Fashion MNIST with
latency-based coding.

Figure 4.Mean spiking activity on the test set of the MNIST dataset with rate-based coding (left) and latency-based coding (right).

We have therefore tested networks with more layers to see if SRCs manage to learn also when the network
becomes deeper. These were made on the MNIST dataset with the rate-based coding and with 10 and 15
layers.

Figure 5 shows the results of this experiment. To compare with more shallow networks, the results
obtained with the 5-layers networks have been added. From this figure we can observe that SRC leads to
much more stable learning for a high number of layers. Moreover, LIF networks completely fail to learn when
they are composed of 15 layers, while for 10 layers they achieve honorable results but with a very unstable
training. Finally, as SRC is a more complex neuron than LIF, we wondered what was the difference in the
training durations. The top-right graph shows the mean duration of the epochs for each network. As
expected, SRC networks take more time, but still stay in the same order of magnitude as LIF networks.

4.5.3. Introducing noise in SRC dynamic
One major difference between LIF and SRC is the shape of the spikes: the spikes of LIF neurons always last
exactly one timestep and have a value of 1, which ensures that no information can be transmitted through
the spike shape. On the other hand, SRC spikes last several timesteps, and take continuous values between 0
and 1. One may wonder if trained SRC networks may learn to transmit information bymodulating the shape
of the spikes. Indeed, despite having no control on the feedback parameters (r and rs) and on the update
parameters (z and zs), the models may learn to shape the spike through the inputs. To check this, we
implemented a slightly different version of SRC, where r and rs are not fixed anymore, but sampled from two
normal distributions:

r∼N (µr,σnoise)

rs ∼N (µrs ,σnoise)
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Figure 5. (left) Evolution of the cross-entropy (top) and the accuracy (bottom) on the validation set during the training of several
networks with 5, 10 and 15 layers. (top, right) Evolution of the epoch duration in seconds of these networks. (bottom, right)
Cross-entropies and accuracies obtained on the MNIST test set by the models with respect to their number of hidden layers.

Figure 6. Two simulation of SRC with the same input stimulation and with σnoise = 0.2.

where µr and µrs are the fixed values that we used previously, i.e. 2 and−7, and σnoise is the level of noise we
want to apply. Figure 6 shows two simulations of SRC (with only the spike-generation part) where some
noise was applied as explained before. It is clear that this added noise prevents from having the same output
if the same input is received.

Figure 7 shows the results of experiments on the rate-coded MNIST, with SRC networks of 5 layers and
several level of noises. Aside from the introduction of noise, all parameters are kept identical. For each level
of noise, 5 models have been trained. The introduction of noise has nearly zero impact on the performance
and the learning of the networks. It is therefore safe to say that the performance obtained by SRC networks
does not rely on the non-binary shape of its spikes.
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Figure 7. Evolution of the training cross-entropy (left) and test accuracy (right) of 5-layers SRC networks with several level of
noises on the rate-based coded MNIST.

5. Conclusion

In this paper, we have introduced a new type of artificial spiking neuron. Instead of deriving this neuron
from existing spiking models, as it is classically done, we have started from a largely used RNN cell. This new
spiking neuron, called the SRC, can be expressed as a usual recurrent cell. Its major advantage is the
differentiability of its equations. This property allows to directly apply the usual backpropagation algorithm
to train SRCs. SNNs made of SRCs have been tested on the MNIST benchmark as well as two variants, the
Fashion MNIST and the Neuromorphic MNIST. These networks have achieved results which are comparable
to the ones obtained with other non-convolutional SNNs. Furthermore, training deep SNNs with LIF
neurons is very fastidious and unstable, while using SRCs in such networks make the training much easier.
This proof of concept shows promising results and paves the way for new experiments. On the machine
learning side, it would be interesting to test SRC on more complex benchmarks to check its capabilities. Like
it is done with LIFs, it is possible to make a convolutional version of SRC, to use it on more difficult image
classification tasks. Also, adding feedback connections could increase the computational power of the SRC,
as it is up to now only a feedforward SNN. On the neuromorphic engineering side, it is feasible to improve
SRC equations to make it exhibit new biological behaviors such as bursting for instance. It would be very
interesting to see if applying backpropagation to a spiking neuron that can have different firing patterns leads
to an utilization of these different patterns depending on the context. It is also possible to apply
neuromodulation on the internal parameters of SRC in order to adapt neuron response is a
context-dependent manner.

Finally, SRC networks gain in energy efficiency can only be obtained when running on specialized,
neuromorphic hardware. Most neuromorphic chips created nowadays are designed to run LIF networks, and
they may not be able to run SRCs. The greatest difficulty lies in the shape of the spikes generated by SRC,
which take continuous values, unlike LIF spikes. First, it is likely that SRC does not require high precision real
numbers, as we have seen that adding noise in the shape of the spikes does not affect performance. It should
there be possible to quantize output values, which would make the implementation of SRC on such hardware
much easier. Second, SRC being derived from GRU cells, one could implement an energy-efficient version on
a FPGA, taking advantage of the work that has been done for GRU cells [34, 35]. Third, the continuous
nature of SRC spikes could be exploited in fully-analog spiking systems [36].
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Appendix A. Experiments details

This section gives the details about the experiments whose results are presented in section 4.5. Note that,
unless specified, the parameters of the neurons are not learnable.

Name Value

For training
Number of epochs 100 (except on Fashion-MNIST: 200)
Batch size 64
Learning rate Cosine annealing starting at 0.005
Optimizer Adam
Clipping gradients norm 1.
Ratio of training and validation sets sizes 90%/10%

For datasets
Sequences length 200
Gain (for rate-based coding) 0.25
τ (for latency-based coding) 10
Vth (for latency-based coding) 0.01

For networks
Size of hidden layers 512
Size of final layer 10× the number of outputs
Excitatory weight of readout 1.
Inhibitory weight of readout −0.1
α of readout integrators 0.99
Initialization of weights Xavier uniform

For SRC
α 0.9 (except for latency-based coding: 0.99)
ρ 3.
z 0.

zhyps 0.9

zdeps 0.
r 2.
rs −7.
bh −6., learnable
max bh −4.

For LIF
αV 0.9 (except for latency-based coding: 0.99), learnable
Vthresh 1., learnable
Vrest 0.
Surrogate activation ATan

Appendix B. Feedback dynamics in SRC

This section analyses the interaction of the two feedbacks rh and rshs that allow to generate spikes in a SRC.
Figure 8 shows a simulation of the spike generation part of SRC when some stimulation is applied. Two

versions of SRC are compared: whether zs is fixed or not. The advantage of the variable zs is twofolds. First,
the duration of the spike is smaller, thanks to a very fast descending side. Then, during the refactory period,

zs switches back to z
hyp
s , making the convergence of hs towards hmuch slower. This decoupling between the

convergence speed of hs during the spike and during the refactory period allows to control the duration of
this period without any impact on the spike duration.
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Figure 8. Evolution of h and the feedbacks rh (positive) and rshs (negative) given a stimulation of inputs x. Two versions of SRC
are compared: when zs is fixed, and when it is not. Four parts of the simulation are highlighted. A The stimulation is not high
enough, the threshold is not crossed and no spike is emitted. The negative feedback quickly overtakes the positive feedback. B The
stimulation is high enough, the threshold is crossed and the positive feedback pushes h towards higher values. C The negative
feedback overtakes the positive feedback, creating the descending side of the spike. When zs is variable, the negative feedback is

much quicker at this particular moment, as zs switches to z
dep
s . D The spike is finished but the negative feedback still applies,

preventing another spike to happen. This can be seen as the refactory period. When zs is variable, it switches back to z
hyp
s making it

much slower. Once this period is finished, another spike is emitted.
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