Tree Based Gibbs Sampling for Hierarchical Topic Model

 $\bullet \bullet \bullet$

Orbel 26 Mai 2023

What is topic modelling

- Unsupervised text mining method
- To discover sets of co-occurring words inside documents (topics)

Applications of topic models

- To explore a dataset and quickly understand its content
 - \circ Acts as a dimension reduction method
 - Helps in the data cleaning process
- As pre-processing to cluster similar documents
- Trend analysis (if applied to news articles)
- Text summarization (if applied to paragraphs)
- Customer segmentation (if applied to reviews/comments)
- Text classification based on document topic-distribution
- And countless other applications

A small genealogy of topic models

• LDA

- \circ One of the first and the most popular
- Extracts k topics for a *given* k
- \circ Trained with Gibbs sampling

• HDP

- \circ No need to choose a k
- \circ Trained with Gibbs sampling

• nHDP

- Models topic hierarchy
- Trained with SVI

• HTMOT

- Our model
- Integrates temporal information
- \circ Trained with tree based Gibbs sampling

Training topic models

- Two methods
 - Stochastic Variational Inference
 - Fast
 - Not asymptotically exact
 - Good for large dataset
 - Hard to integrate distribution with no conjugate prior
 - Gibbs sampling
 - Slow (especially for complex models)
 - Bad for large dataset
 - Simple to integrate distribution with no conjugate prior
 - Asymptotically exact
 - Good for small dataset

Training topic models

- In HTMOT
 - We want to accurately extract small sub-topics
 - Represents small subset of the data
 - We want to model temporality as well
 - No conjugate prior for the beta distribution
- Gibbs sampling is best
 - \circ But slower for large dataset
 - How can we improve the speed of the Gibbs sampling procedure?

Tree-based Gibbs sampling

Classic Gibbs sampling

- Six distributions to estimate
 - Topic-time distribution
 - Topic-word distribution
 - Document-topic distribution
 - Corpus-topic distribution
 - Topic hierarchy distribution
 - Topic word assignment distribution

Algorithm 1 Traditional Gibbs sampling	
1: procedure GIBBS(corpus)	
2:	for N iterations do
3:	for each document in corpus do
4:	for each word in document do
5:	Sample word-topic assignment $P(z w, d, t, B, D, T, C, H)$
6:	Sample topic-word $P(B w, d, t, z, D, T, C, H)$
7:	Sample document-topic $P(D w, d, t, B, z, T, C, H)$
8:	Estimate time-topic $P(T w, d, t, B, D, z, C, H)$
9:	Sample corpus-topic $P(C w, d, t, B, D, T, z, H)$
10:	Sample hierarchy-topic $P(H w, d, t, B, D, T, C, z)$
11:	end for
12:	end for
13:	end for
14:	Return solution : (z,B,D,T,C,H)
15: e	nd procedure

- Classic Gibbs sampling
 - Sample from all six distributions iteratively
 - Complexity is linear with respect to # of variables in the model
 - It's really slow to begin with
 - Worse for complex models

Bin-based Gibbs sampling

- Simple solution :
 - Only sample from the
 - Topic word assignment distribution
 - Let a data structure do the rest

[&]quot;Bin counting" Gibbs sampling (z points to one of the box)

- Basic exemple
 - Assign every word in corpus randomly to bins
 - For each word sample the Topic word assignment distribution
 - Condition on all other variables
 - Estimated from bin content
 - \circ $\,$ Re-assign the word to the new chosen bin $\,$
 - \circ Over time the bins are sorted into topics

Bin-based Gibbs sampling

- When & where are the other distributions estimated?
 - By the bins themselves

- Each bin is a topic, its content defines a topic-word distribution
- Each bin is a topic, together the bins define a corpus-topic distribution
- Each word is associated with a document
 - If we only count words associated to a document
 - Together the bins define a document-topic distribution
- => All other distributions are approximated by moving words around

Tree-based Gibbs sampling

- Infinite Dirichlet Trees
 - Same idea, but nested
 - \circ Each time a word is assigned to a bin
 - We draw from a bernoulli to decide to go deeper
 - If yes, we repeat the same process on sub-topics
 - \circ + added small probability to draw a new bin
 - To decide # of topics during training
- Words assignments are now random path in the Tree
- One tree for the corpus
- One tree for each documents
 - Mutually exclusive subset of corpus tree

Sampling from P(z|w,d,t)

- When drawing a topic assignment for a word,
 - \circ we either draw from the local tree with some probability
 - \circ or we draw from the corpus tree with some other probability
 - or else we create a new topic.
- Then, we draw from a Bernoulli to decide if we go deeper or not.
 - \sim If we do go deeper we repeat the same process until we eventually stop.
- We repeat this process for each word of each document until convergence

$$z|w,d = \begin{cases} \sum_{k} \frac{(1+BetaPDF(\rho_{k}^{1}*\Delta_{j},\rho_{k}^{2}*\Delta_{j}))*(A(k|d)+\epsilon)*(A(k|w)+\phi)*\delta_{k}}{(A(k)+(\phi*V))*m_{d}}\\ \sum_{k} \frac{(1+BetaPDF(\rho_{k}^{1}*\Delta_{j},\rho_{k}^{2}*\Delta_{j}))*(A(k|w)+\phi)*\delta_{k}}{m_{w}}\\ new \end{cases}$$

$$p = \frac{P + \theta_1}{N + \theta_1 + \theta_2 + C + P}$$

$$P = \frac{(1 + BetaPDF(\rho_k^1, \rho_k^2)) * (A^*(k|w) + \phi) * (A^*(k|d) + \epsilon)}{A^*(k) + (\phi * V)}$$

$$\overline{N} = \frac{\phi * \epsilon}{\phi * V}$$

$$\overline{C} = \sum_i \frac{(1 + BetaPDF(\rho_i^1, \rho_i^2)) * (A(i|w) + \phi) * (A(i|d) + \epsilon)}{A(i) + (\phi * V)}$$

Results : interface

Results : examples

• Space

- Astronomy
- Astronauts
- Topic are coherent
 - Content, Hierarchy, & time

Words

- 0.02499 launch
- 0.02182 space
- 0.02003 mission
- 0.01268 planet
- 0.01252 astronaut
- 0.01113 rocket
- 0.00963 test
- 0.00939 spacecraft
- 0.00914 satellite
- 0.00845 orbit

Entities

- 0.02839 @NASA
- 0.01395 @Earth
- 0.00894 @International Space
 Station
- 0.00843 @Mar
- 0.00688 @SpaceX
- 0.00525 @Dragon
- 0.00457 @Crew
- 0.00291 @Starlink
- 0.00254 @Florida
- 0.00237 @European Space Agency

Words

Entities

0.05180 - galaxy

0.03595 - black

0.03462 - hole

0.02630 - star

0.02537 - image

0.02181 - light

0.01533 - ga

0.02471 - telescope

0.01335 - astronomer

0.01163 - observe

0.01097 - @Hubble

0.00846 - @ESA

0.00740 - @Way

0.00687 - @Milky

0.00595 - @Spitzer

0.00330 - @NGC

0.00291 - @Southern

• 0.00581 - @Telescope

0.00383 - @Observatory

0.00449 - @Hubble Space Telescope

Topic time distribution

Words

- 0.07890 astronaut
- 0.05679 space
- 0.04230 crew
- 0.03757 station
- 0.02684 mission
- 0.02222 spacecraft
- 0.01900 capsule
- 0.01106 flight
- 0.00913 launch
- 0.00913 return

Entities

- 0.06076 @International Space Station
- 0.05335 @NASA
- 0.03328 @Dragon
- 0.02984 @Crew
- 0.01707 @SpaceX
- 0.01578 @Earth
- 0.00730 @American
- 0.00719 @Behnken
- 0.00709 @Bob Behnken
- 0.00644 @Hurley

Any questions?