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Abstract— We study the emergent dynamics of a network
of synaptically coupled slow-fast oscillators. Synaptic coupling
provides a network-level positive feedback mechanism that co-
operates with cellular-level positive feedback to ignite in-phase
network oscillations. Using analytical bifurcation analysis, we
prove that the Perron-Frobenius eigenvector of the network
adjacency matrix fully controls the oscillation pattern locally
in a neighborhood of a Hopf bifurcation. Besides shifting the
focus from the spectral properties of the network Laplacian
matrix to the network adjacency matrix, we discuss other key
differences between synaptic and diffusive coupling.

I. INTRODUCTION

Synchronization is usually studied in the context of dif-
fusive coupling [1], [2], i.e., when the interaction between
the oscillators is proportional to the difference in their states.
Focusing on diffusive coupling has various limitations. First,
because diffusive coupling is passive, oscillators must be
intrinsic, that is, they must exhibit limit cycle oscillations in
the absence of network interactions. Second, the only type
of emergent network activity is a practically synchronous
one, where, for large enough diffusive coupling strength, the
oscillators converge to the same state modulo a synchro-
nization error. Motivated by understanding the emergence of
sustained in-phase oscillations in the suprachiasmatic nucleus
(SCN) in the mammal master circadian clock [3], [4], we
introduce a model of slow-fast oscillators with synaptic-like
coupling and study the emergence of in-phase oscillations in
it. A fundamental experimental observation, reproduced in
our model but impossible to reproduce in diffusively coupĺed
models, is that in the SCN many clock neurons behave
as sustained oscillators only in the presence of network
interactions, whereas they behave as damped oscillators
when isolated [5]. SCN dynamics are therefore emergent, in
the sense that the collective behavior (sustained oscillations)
relies on network interactions and it is distinctively different
from the isolated node behavior (damped oscillations) [6].1

The intrinsic dynamics of our oscillators include a satu-
rated fast cellular positive feedback loop and a linear slow
negative feedback loop. It is a simplified version of excitable
neural dynamics [7], [8]. The interaction of the two loops
leads to relaxation (slow-fast) neural-like oscillations for
strong enough positive feedback through a Hopf bifurcation.
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The network synaptic-like couplings are approximated as
saturated inputs to the receiving oscillator of the state of the
sending oscillator. They provide network positive feedback,
which cooperates with cellular positive feedback to ignite
and shape emergent network oscillations.

The contributions of our analysis are the following. First,
we prove a general lemma for the spectral properties of
a class of block-defined matrices with the structure of the
Jacobian matrix of our model. Second, we show that diffusive
coupling cannot induce synchronous oscillations in a network
of damped oscillators. Third, we prove that under a strongly
directed network topology synaptic coupling can lead to in-
phase oscillations even when the uncoupled oscillators are
damped. If the coupling is in-regular, in-phase oscillations
become synchronous, i.e., all oscillators converge to the same
state. In this work, we rely on (local) bifurcation analysis at
the model equilibrium and show that the (dominant) Perron-
Frobenius eigenvector of the network adjacency matrix fully
determines the in-phase oscillation pattern. Our results are in
line with existing ones on automata synchronization [9], [10]
and, together with [11], they stress the importance of con-
sidering non-diffusive coupling in synchronization studies. In
future works, we will couple our local results with a global
analysis, using, for instance, dominance analysis [12]. Also,
we only consider here homogeneous (identical) intrinsic
dynamics. In future works we will relax this assumption
as well by exploiting the power of synaptic coupling of
being naturally apt to cope with non-synchronous in-phase
oscillations, as those that are expected in heterogeneous
populations.

II. NOTATION AND DEFINITIONS

N denotes the set of positive natural numbers, and R the
set of real numbers. In general, N ∈ N will be a positive
integer. As usual, Re(z) = x denotes the real part of a
complex number z = x+ iy ∈ C. RN denotes the set of real
N -tuples, and x ∈ RN denotes an arbitrary N -tuple. Because
of the specific models used, it will be convenient to denote
R2N = RN×RN and its elements as (x, y) ∈ R2N . The zero
and one vectors 0N ∈ RN , 1N ∈ N, denote tuples which
have all their entries equal to zeroes and ones, respectively.
Finally, a vector is said to be positive if all its entries are
strictly positive, denoted by x > 0.

A sigmoid is a bounded, continuously differentiable func-
tion S : R → R such that S(0) = 0, S′(x) > 0 for all
x ∈ R, S′(0) = 1, and argmaxx∈RS

′(x) = 0.
The set MN×N contains all real N × N matrices rep-

resented as M = (Mij). IN denotes the identity matrix in
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dimension N , and ON denotes the zero matrix in dimension
N . The determinant of a matrix A ∈MN×N is denoted by
|A|, and its characteristic polynomial is denoted by p(λ) =
|A− λIN |.

Definition 1. A matrix M ∈MN×N is called non-negative
if Mij > 0. A matrix M ∈ MN×N is called Metzler if
Mij > 0 for all j 6= i. A matrix is said to be simple if all of
its diagonal entries are equal to zero.

A weighted digraph G = (V,A) is a 2-tuple consisting of
a set of vertices or nodes V = {1, . . . , N} and an adjacency
matrix A ∈ MN×N with the convention that there exists a
directed edge from vertex j to vertex i if and only if Aij 6= 0,
in which case Aij is the weight of the edge. We will always
assume that Aii = 0, i.e., there are no self-loops in the
digraph, so that every adjacency matrix considered is simple
as defined before. Given a node i ∈ V of a weighted digraph
G , its weighted in-degree is denoted by ∂−i :=

∑
j Aij . The

in-degree matrix D− of a weighted digraph G is a diagonal
matrix defined by D−ii = ∂−i . The in-degree Laplacian matrix
of a weighted digraph G = (V,A), denoted as L−, is defined
by L− := D− −A. Throughout this paper we don’t require
the graphs to be undirected, that is, we don’t assume that A
is symmetric. Therefore, the eigenvalues µ1, . . . , µN of the
Laplacian matrix L− may be complex and they all satisfy
Re(µi) ≥ µ1 = 0.

Definition 2. A weighted digraph G = (V,A) is in-regular
if every node i ∈ V has the same in-degree d−. Under
such a condition, d− will denote the global in-degree of the
weighted digraph. G is strongly connected if, for any two
nodes i and j, there exists a directed path which connects i to
j; in this case, its adjacency matrix is said to be irreducible.

III. A NETWORK OF SLOW-FAST OSCILLATORS

We present a single, general model that includes diffusive
and excitatory synaptic coupling between slow-fast damped
or sustained oscillators

ẋi =− xi − yi +

N∑
j=1

Adij(xj−xi)+S

αixi+ N∑
j=1

Aeijxj

 ,

ẏi =ε(xi − yi),
(1)

for every i ∈ V = {1, . . . , N}, where ε ∈ (0, 1) is the
time constant of the slow variables yi, αi > 0 are cellular
positive feedback gains, and S is a sigmoid function model-
ing intrinsic and synaptic nonlinearities. Ad is the diffusive
coupĺing adjacency matrix, and Ae is the excitatory coupling
adjacency matrix. Clearly, (x0, y0) = (0N , 0N ) constitutes
an equilibrium point for system (1). When Ae = ON the
coupling between the oscillators is purely diffusive, and when
Ad = ON the coupling is purely excitatory. The two matrices
Ad and Ae define the diffusive Gd(V,Ad) and excitatory
Ge(V,Ae) digraphs, respectively.

A. Transitions from damped to sustained oscillations ruled
by a Hopf bifurcation

We now show that the parameter α rules the transition
from damped to sustained slow-fast oscillations for uncou-
pled oscillators. Consider model (1) for N = 1, which
reduces to the single-oscillator model

ẋ = −x− y + S(αx),

ẏ = ε(x− y),

The Jacobian matrix evaluated at equilibrium is readily

computed as J(0, 0) =

(
α− 1 −1
ε −ε

)
, which leads to the

pair of eigenvalues λ1,2 = α−(1+ε)
2 ±

√
(α+ε−1)2−4ε

2 . For

αH = 1 + ε > 0 (2)

both eigenvalues are purely imaginary. Moreover, continuity
of the discriminant function ∆ guarantees λ1,2 ∈ C\R for
α sufficiently close to αH . Furthermore, observe that

∂Re(λ1,2)

∂α
(αH) =

1

2
6= 0.

Invoking [13, Theorem 3.5.2], we can conclude the existence
of a simple Hopf bifurcation for α = αH , at which the
model transitions from damped (α < αH ) to sustained
(α > αH ) oscillations. The global validity of this result can
be proved via Lyapunov and Poincaré-Bendixon arguments
[13, Theorem 1.8.1]. We do not include it here due to space
limitations.

B. In-phase oscillations from network positive feedback be-
tween two coupled oscillators

Consider model (1) in the low-dimensional case N = 2,
α1 = α2 = 0, Ad = O2, and

Ae =

(
0 β2
β1 0

)
.

It is easy to show that the model undergoes a network Hopf
bifurcation along the parametric curve

√
β1β2 = 1 + ε,

at which point the oscillators start to oscillate in phase,
as shown in Fig. 1. Observe that the uncoupled oscillators
are damped in this case. The positive feedback brought by
network interactions has the double role of both igniting and
synchronizing the emergent oscillations.

We will show that the behavior observed in this low-
dimensional example is impossible in general if the coupling
is diffusive, whereas it generalizes to arbitrary strongly
connected excitatory coupling topologies.

IV. A USEFUL LEMMA

During our discussion, we will find several block-wise
defined matrices of the form

J =

(
−aIN + cM −IN
εIN + dM −εIN

)
, (3)

where M ∈ MN×N is any real matrix, ε > 0 is a (small)
real constant, and a, c, d ∈ R. The following general lemma
will turn out very useful in our analysis.
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Fig. 1. Model (1) in the particular case N = 2 and parameters as shown
in Subsection III-A. Variables x1 and x2 (in red and blue, respectively)
are seen to oscillate in phase when excitatory parameters are taken near the
curve β1β2 = (1 + ε)2. Particular values for this graphs were ε = 0.01,
β2 = 2.5 and β1 =

(1+ε)2

β2
+ 0.01 (top) and β1 =

(1+ε)2

β2
− 0.01

(bottom). Image generated using Julia 1.5.2.

Lemma 1. Let J ∈ M2N×2N be of form (3). Then its
characteristic polynomial p(λ), for λ 6= −ε, is obtained as

(ε+ λ)N
∣∣∣(a+ λ+ ε

ε+λ

)
IN −

(
c− d

ε+λ

)
M
∣∣∣ , (4)

Moreover, any eigenvector (x, y) ∈ R2N of J , corresponding
to an eigenvalue λ ∈ C\{−ε}, must satisfy

y = 1
ε+λ (εIN + dM)x,

(c− d
ε+λ )Mx = (a+ λ+ ε

ε+λ )x.
(5)

Proof. Obtaining the characteristic polynomial only requires
us to apply the determinant formula for block-wise defined
matrices [14] to

|J − λI2N | =
∣∣∣∣ −(a+ λ)IN + cM −IN

εIN + dM −(ε+ λ)IN

∣∣∣∣ .
This will require −(ε+λ)IN to be invertible, which imposes
λ 6= −ε. Thus, the formula calculates p(λ) as

|−(ε+ λ)IN |
∣∣∣−(a+ λ)IN + cM − 1

ε+λ (εIN + dM)
∣∣∣ ,

whence (4) follows. As for the eigenvector condition (5),
consider λ ∈ C\{−ε} a root of p(λ) as given above, and
suppose (x, y) ∈ R2N satisfies(
−(a+ λ)IN + cM −IN

εIN + dM −(ε+ λ)IN

)(
x
y

)
=

(
0N
0N

)
,

This yields the linear system

(−(a+ λ)IN + cM)x− y = 0N ,

(εIN + dM)x− (ε+ λ)y = 0N .

Given ε+λ 6= 0, we may solve for y in the second equation
as y = 1

ε+λ (εIN + dM)x. We then substitute this into our
first equation, getting

(−(a+ λ)IN + cM)x− 1
ε+λ (εIN + dM)x = 0N .

From here the second eigenvector condition follows, thus
concluding this proof.

The relevance of this lemma lies in that the matrix M
fully characterizes the spectral properties of the higher-
dimensional matrix J . More precisely, equation (4) estab-
lishes a one-to-two correspondence between the eigenvalues
of J and those of M . Equation (5) establishes a similar
correspondence between eigenvectors of these two matrices.

V. DIFFUSIVE COUPLING CANNOT TRIGGER SUSTAINED
SYNCHRONOUS OSCILLATIONS IN NETWORKS OF DAMPED

OSCILLATORS

In this section we show that global rhythms are not
sustainable within networks of damped nodes that are cou-
pled diffusively (as a matter of fact, under such conditions,
sustained synchronous oscillations are possible if individual
feedback is high enough, that is, if every node is an intrinsic
oscillator).

Theorem 1. Consider model (1) with Ae = ON and αi =
α < 1 for all i ∈ V = {1, . . . , N}, and Ad ∈ MN×N an
arbitrary non-negative weighted adjacency matrix. Then, for
sufficiently small ε > 0 the origin is locally exponentially
stable.

Proof. Observe that

∂ẋi
∂xi

= αS′(0)− 1−
∑
j 6=i

Adij = αS′(0)− 1− ∂−i .

Thus, the model Jacobian computed at equilibrium is given
by

Jd = J(0, 0) =

(
(α− 1)IN −D− +Ad −IN

εIN −εIN

)
=

(
(α− 1)IN − L− −IN

εIN −εIN

)
,

where L− is the in-Laplacian matrix associated to Gd(V,Ad),
which is exactly in the form of Lemma 1, with matrices
J = Jd, M = L−, and parameters a = 1 − α, c = −1,
d = 0. The associated characteristic polynomial reads

p(λ) = (ε+ λ)N
∣∣∣L− − (α− 1− λ− ε

ε+λ )IN

∣∣∣ .
Let µ1, . . . , µN be the eigenvalues of L− and recall that
Re(µi) ≥ µ1 = 0 for all i ∈ {1, . . . , N}. Then any
eigenvalue λ of Jd satisfies α − 1 − λ − ε

ε+λ = µk, which
is equivalent to

λ2 + (µk + 1 + ε− α)λ+ ε(µk + 2− α) = 0. (6)

Thus, each L−-eigenvalue µk yields two J-eigenvalues
λ2k−1 = λ−k and λ2k = λ+k , where

λ±k =
α−1−ε−µk ±

√
(µk + 1− ε− α)2 − 4ε

2
(7)

for k ∈ {1, . . . , N}. Setting ε = 0 in (6) yields λ−k = 0
with multiplicity m = N , and λ+k = α − 1 − µk, which
satisfies Re(λ+k ) = α− 1− Re(µk) < 0. By continuity, the
real parts of eigenvalues λ+k remains negative for sufficiently
small ε > 0. To guarantee a similar result for λ−k , we can



split (6) into its real and imaginary parts. Letting λ = σ+ iτ
and µ = u+ iv, we get

σ2 − τ2 + σ(u+ ε+ 1− α)− vτ + ε(2− α+ u) = 0,

2στ + σv + τ(u+ ε+ 1− α) + εv = 0,

which can be interpreted as zero-level sets of some functions
F , G, respectively. Using the Implicit Function Theorem,
variables σ and τ can be expressed as functions S, T of the
remaining variables ε, u, v whenever

∂(F,G)

∂(σ, τ)
= (2σ + (u+ ε+ 1− α))2 + (2τ + v)2 6= 0

is satisfied. The derivative ∂S
∂ε is readily obtained by implicit

differentiation as

(α− σ − 2− u)(2σ + 1 + ε+ u− α)− (2τ + v)(τ + v)

(2σ + (u+ ε+ 1− α))2 + (2τ + v)2

which is negative for ε = σ = τ = 0, given that u =
Re(µ) > 0 and α < 1. recall that λ−k = 0 is obtained as a
zero of (6) when ε = 0. Thus, for positive and sufficiently
small values of ε, every Jd-eigenvalue has negative real part,
and the equilibrium at the origin is locally exponentially
stable.

Theorem 1 shows that diffusive coupling requires intrinsic
oscillators to lead to synchronous network oscillations. One
could provide a global proof by means of Lyapunov functions
and convergent systems analysis [15]. We omit this proof due
to space constraints.

VI. NETWORK AND CELLULAR POSITIVE FEEDBACK
COOPERATE IN TRIGGERING SYNCHRONOUS

OSCILLATIONS IN NETWORKS OF SLOW-FAST DAMPED
NODES

We now turn to the network positive feedback present in
model (1), for Ad = ON and non-negative Ae. Throughout
this section we will make the standing homogeneity assump-
tion αi = α for every i ∈ {1, . . . , N}, i.e., we assume
that the uncoupled oscillators are identical. We will relax
this homogeneity assumption in future works. We also let
Ae = βA, where A is a simple matrix. The two parameters
α > 0, β > 0 govern cellular and network positive feedback,
respectively. Then, the Jacobian of model (1) evaluated at its
equilibrium at the origin reads

Je = J(0N , 0N ) =

(
−(1− α)IN + βA −IN

εIN −εIN

)
.

So we may apply Lemma 1 to matrix J = Je, considering
M = A, a = 1−α, c = β, d = 0, to arrive at the following
result.

Lemma 2. Let A ∈ MN×N be a simple, non-negative
matrix, and consider model (1) with Ad = ON , Ae = βA
and αi = α, where α > 0 and β > 0 are non-negative
parameters. Let Je be the Jacobian matrix of this system
evaluated at equilibrium (0N , 0N ). Then any eigenvector

(x, y) of Je, associated to eigenvalue λ, must satisfy the
conditions

y = ε
ε+λx, βAx = (1− α+ λ+ ε

ε+λ )x. (8)

Moreover, by letting µ1, . . . , µN be the eigenvalues of matrix
βA, we obtain for each µk two Je-eigenvalues λ±k , where

λ±k =
µk+α−1−ε±

√
(µk+α−1−ε)2−4ε(2−α−µk)

2
.

(9)

Proof. Apply Lemma 1 with J = Je, M = βA, a = 1−α,
c = 1, d = 0. Then equation (8) holds. This implies that
the eigenvalues of βA and Je are linked by the expression
1−α+λ+ ε

ε+λ = µk, which is equivalent to λ2 + (1 + ε−
α − µk)λ + (2 − α − µk)ε = 0. From here we obtain two
Je-eigenvalues λ±k , which are indeed given by expression
(9), thus ending the proof.

The relationship established at the end of Lemma 1 has
become clearer, in that equation (9) explicitly determines Je-
eigenvalues as functions of βA-eigenvalues (and, therefore,
of A-eigenvalues). Thus, spectral analysis of matrix Je, i.e.
local analysis of purely excitatory system (1) under homo-
geneity hypotheses, reduces to spectral analysis of adjacency
matrix A.

A. In-regular homogeneous network

We start by showing that if the coupling topology is
in-regular, then model (1) undergoes a Hopf-bifurcation
for strong enough cellular and network positive feedback.
Furthermore, because 1N is the dominant eigenvector of
the adjacency matrix, the Hopf bifurcation happens along
the synchronization space where each oscillator has the
same state. That is, the network Hopf bifurcation leads to
synchronous network oscillations.

Theorem 2. Let A ∈ MN×N be an irreducible, simple,
non-negative matrix associated to a strongly connected in-
regular digraph of global in-degree d− > 0, and consider
model (1) with Ad = ON , Ae = βA and αi = α, where
α ∈ [0, 1) and β > 0. Then, for sufficiently small ε > 0 the
system undergoes a Hopf bifurcation along the parametric
curve β = 1+ε−α

d− . Moreover, the center manifold associated
to the bifurcation is tangent to the synchronization subspace

E = {(r1N , (εr +
√
ε(1− ε)s)1N ) ∈ R2N : (r, s) ∈ R2}

and is locally exponentially stable.

Proof. Given Ae = βA, where A is in-regular, we conclude
that µ1 = βd− > 0 is an eigenvalue with corresponding
eigenvector x1 = 1N . Applying formula (9) to this eigen-
value yields two Je-eigenvalues, namely λ±1 , given by the
expression

βd+ α− 1− ε±
√

(βd+ α− 1− ε)2 − 4ε(2− α− βd)

2
.

Thus for β = 1+ε−α
d− > 0, λ±1 are purely imaginary complex

conjugates while all other eigenvalues have negative real
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Fig. 2. Contrast of two different configurations for model (1) under in-
regularity and homogeneity conditions as described in Theorem 2. Matrix
A is a weighted modification of an adjacency matrix corresponding to the
Frucht graph [16], N = 12. Specific parameters are α = 0.5, ε = 0.01
and d− = 5.0. Image generated using Julia 1.5.2.

part. Indeed, irreducibility of matrix A makes it possible to
apply the Perron-Frobenius Theorem which guarantees that
the dominant eigenvalue d− > 0 has algebraic and geometric
multiplicity one. Transversality is also easily verified (we
omit details here due to space constraint), which yields the
Hopf bifurcation. Conditions (8) give us the eigenvectors
z1,2 = (1N , (ε∓ i

√
ε(1− ε))1N ) associated to eigenvalues

λ±1 = ±iλ, λ =
√
ε(1− ε). Now, identifying the real and

imaginary parts u = (1N , ε1N ), v = (0N ,
√
ε(1− ε)1N )

of the spanning vectors, it follows that Jeu ∓ iJev =
Je(u ∓ iv) = ±iλ(u ∓ iv) = λv ± iλu. Je, u, v and λ
are real (matrices, vectors and values), so this last equation
implies Je(u) = λv and Jev = −λu. Therefore the center
manifold is tangent to the span of vectors u, v, whence
the form of subspace E is obtained. Because all other
eigenvalues have negative real part, the associated center is
locally exponentially attractive.

Theorem 2 shows that when β − 1+ε−α
d− > 0 the model

exhibits synchronous oscillations. This condition can be
fulfilled both by increasing the cellular positive feedback α
for fixed network positive feedback β or vice-versa. Figure
2 numerically illustrates the predictions of our theorem.

B. Strongly-connected homogeneous network

In-regular networks are too restrictive to accurately model
biological networks like the SCN. In this section we relax
the in-regularity assumption. Irreducibility of the adjacency
matrix for strongly connected coupling topologies implies
uniqueness of a Perron-Frobenius eigenvector that fully de-
termines the pattern of in-phase oscillations emerging at the
network Hopf bifurcation.

Theorem 3. Let A ∈MN×N be an irreducible, simple, non-
negative matrix associated to a strongly connected digraph,
and consider model (1) associated to Ad = ON , Ae = βA
and αi = α, α ∈ [0, 1) and β > 0. Let ρ > 0 be the

leading eigenvalue of A, and x0 > 0 the Perron eigenvector
associated to ρ. Then, for ε > 0 and sufficiently small, the
system undergoes a Hopf bifurcation along the parametric
curve β = 1+ε−α

ρ . Moreover, the center manifold associated
to the bifurcation is tangent to the real subspace

E = {(rx0, (rε+ s
√
ε(1− ε))x0) ∈ R2N : (r, s) ∈ R2},

and is locally exponentially stable.

Proof. Given Ae = βA, where A is irreducible and non-
negative, we conclude that µ1 = βρ > 0 is its leading real
eigenvalue with corresponding eigenvector x0 > 0. Applying
formula (9) to this eigenvalue yields two Je-eigenvalues λ±1 ,
where

λ±1 =
βρ+α−1−ε±

√
(βρ+α−1−ε)2−4ε(2−α−βρ)

2
.

Thus, for β = 1+ε−α
ρ > 0, λ±1 are purely imaginary complex

eigenvalues while all other eigenvalues have negative real
part. Indeed, irreducibility of matrix A makes it possible
to apply the Perron-Frobenius Theorem which guarantees
that leading eigenvalue ρ > 0 has algebraic and geometric
multiplicity one. Transversality is once again easily verified,
which yields the Hopf bifurcation. Setting λ =

√
ε(1− ε),

conditions (8) give us the Je-eigenvector z1,2 = (x0, (ε ∓
i
√
ε(1− ε))x0) associated to λ±1 = ±iλ at bifurcation. As

in the previous Theorem, writing z0 = u0∓iv0 in its real and
imaginary parts, one again sees that u0 and v0 span the real
tangent subspace to the center manifold, whence we conclude
the form of subspace E. Because all other eigenvalues have
negative real part at the bifurcation, the associated center
manifold is locally exponentially stable.

Theorem 3 shows that when β = 1+ε−α
ρ > 0 the model

exhibits in-phase oscillations. This condition can be fulfilled
both by increasing the cellular positive feedback α for fixed
network positive feedback β or vice-versa. Furthermore, it
shows that the Perron-Frobenius eigenvector of the adjacency
matrix fully controls the oscillation pattern, at least close
to the Hopf bifurcation. Figure 3 numerically illustrates the
predictions of our theorem.

VII. DISCUSSION AND FUTURE DIRECTIONS

A. Model extension

As it is the case for many physiological networks, some-
times outputs from one node affect the receiving node along
multiple timescales. To incorporate such an effect in our
model one could consider an extended case of the excitatory
version, adjusting equations (1) to account for the effect of
x-variables over y-variables. Under homogeneity conditions,
computations of this extended case would be very similar
to those made before, as seen by applying Lemma 1 when
d 6= 0.

B. Extension to global results

The analysis made in this paper relies solely on local prop-
erties of dynamical systems near equilibrium. Therefore, a
more complete and formal approach should also incorporate
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Fig. 3. Contrast of two different configurations for model (1) under
homogeneity conditions as described in Theorem 3. Matrix A corresponds
to a weighted directed cycle, N = 25, with random positive weights
(d1, . . . , dN ). The leading eigenvalue ρ > 0 is the positive solution of
rN =

∏
di. Specific parameters are α = 0.5 and ε = 0.01. In the upper

plot, the dashed black line shows the evolution of l(t) = |〈x0,x(t)〉|
‖x0‖‖x(t)‖

, where
〈·, ·〉 and ‖ · ‖ denote the standard scalar product and 2-norm, respectively,
and x0 is the adjacency matrix Perron-Frobenious eigenvector as defined in
Theorem 3. Observe that l(t)→ 1 at almost all time points, i.e., excluding
time points where x(t) = 0. In other words, along the in-phase network
oscillations, the x-component of the state vector is parallel to the Perron
eigenvector x0, as predicted by Theorem 3.

global tools before and after bifurcation to guarantee conver-
gence to either a stable steady state or a stable limit cycle. For
example, in the diffusive case one could propose a Lyapunov
function [17] or use the theory of convergent systems [15].
Alternatively one can use dominance analysis [12], through
which it might be possible to show the existence of a globally
attractive and invariant 2-dimensional manifold correspond-
ing to the center manifold of the Hopf bifurcation, which
would effectively make our local bifurcation analysis global.

C. Heterogeneous populations

It is evident that real life networks won’t maintain, in
general, the homogeneous hypothesis which were used ex-
tensively in the proofs of the excitatory case. A more delicate
analysis should be provided when considering heterogeneous
networks, much more likely to be found in real life phenom-
ena, through higher dimensional bifurcation theory [13].

D. Application to circadian rhythmogenesis

The model in this work was originally motivated by the
synchronization phenomena observed in the suprachiasmatic
nucleus (SCN) of the mammal hypothalamus. One may iden-
tify different subpopulations and connections inside the SCN
(e.g. spatially [18], GABAergic [19], neuropeptidergic [4],
[20]). Neuromodulation here not only affects the electrophys-
iological rhythms, but also gives input to the molecular clock
through a much slower loop [21]. Other works have pointed
out that neural appositions and density of connections vary
according from one neuropeptidergic subpopulation to the
other [22], [23]. Therefore, a multilayer digraph model may

result useful in capturing the dynamic properties of this
circadian phenomenon. Additional topologies Aej could be
incorporated to account for different neuropeptide release
(VIP, AVP, GRP being the main ones).
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