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Abstract— We derive gain-tuning rules for the positive and
negative spatial-feedback loops of a spatially-distributed filter to
change the resolution of its spatial band-pass characteristic ac-
cordingly to a wavelet zoom, while preserving temporal stability.
The filter design is inspired by the canonical spatial feedback
structure of the primary visual cortex and is motivated by
understanding attentional control of visual resolution. Besides
biology, our control-theoretical design strategy is relevant for
the development of neuromorphic multiresolution distributed
sensors through the feedback interconnection of elementary
spatial transfer functions and gain tuning.

I. INTRODUCTION

Our visual system is able to let us “see the forest and the
trees” [1], meaning that the fine local details and the coarse
global structure of a scene are perceived simultaneously. In
other words, our visual systems processes the visual world
simultaneously at multiple scales. Psychophysical [2] and
electrophysiological [3] evidences suggest that the ability of
perceiving the visual world in a multi-scale fashion might
rely on a continuous adjustment of the spatial resolution at
which incoming visual stimuli are filtered by the first layers
of the visual system. Attention is key in driving modulation
of visual resolution [4]. The same location in the visual field
can be processed at high or low resolution depending on
whether the attentional focus is directed toward it or not.
The transition between high-resolution and low-resolution
processing is seemingly continuous, both in time and in
space.

Recently [5], we suggested a formal analogy between
attention-driven visual resolution changes and a wavelet
zoom, that is, the progressive zooming-in into the structure of
a signal through a continuous wavelet transform at increas-
ingly finer scales [6]. We showed numerically in a linear
neural field model that the canonical local-excitation/lateral-
inhibition feedback structure of the primary visual cortex [7]
can focus (i.e., increase the resolution of) the feedforward
visual kernel accordingly to a wavelet zoom. Crucially, our
model does not require any unrealistic finely-tuned, space-
localized scaling of synaptic connectivity, as a feedforward
model would require. A space-homogeneous upscale of
excitatory and inhibitory feedback connections is sufficient to
realize the wavelet zoom, robustly to parameter uncertainties
and spatial heterogeneities.

In this paper, we illustrate the theory and key ideas un-
derlying our numerical results. We prove that in a spatially-
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distributed feedback filter, with fixed feedforward and feed-
back spatial transfer functions, a balanced (i.e., proportional)
scaling of the positive and negative spatial-feedback gains re-
alizes the whole space-frequency dictionary generated by the
feedforward kernel while preserving the temporal stability of
the filter. In other words, we show that it is possible to change
the resolution of a spatially-distributed filter accordingly
to a wavelet zoom by gain-tuning and, crucially, without
changing its feedforward and feedback convolution kernels,
robustly to parameter uncertainties and heterogeneities.

Our work is similar in spirit to classical works on the ana-
log realization of wavelet transforms (see, e.g., [8]) but with
some key differences. First, time is replaced by space, that is,
capacitors are replaced by spatially-distributed, hard-wired
connections. Second, we do not aim at realizing a spatial-
filter bank, but rather at designing a spatially-distributed
system whose transfer function can continuously be modu-
lated in resolution accordingly to a wavelet transform and
through a few tuning parameters. Third, our approach is
neuromorphic, that is, we do not aim at fitting existing
computational wavelets. Rather, our wavelets are those that
arise from the feedforward and feedback structure of the
first layers of the visual system. The result is a design
methodology that relies on the feedback interconnection of
elementary spatial transfer functions, easily implementable
in practice without the need of any fine tuning. In particular,
our methodology is compatible with the sloppiness of analog
hardware because the lack of any fine tuning makes it
naturally robust to parameter uncertainties and other practical
approximations. It is a new candidate for the design of
neuromorphic multiresolution analog visual sensors inspired
by attention mechanisms in the primary visual cortex [9].

The paper is organized as follows. Section II introduces
the needed notations and definitions. In Section III, we derive
a spatial-feedback model of the primary visual cortex and
we construct its closed-loop spatial transfer function. In
Section IV, we use frequency-domain methods to derive the
gain-tuning rules to robustly realize a wavelet zoom in the
closed-loop transfer function and illustrate our theoretical
results via a numerical example. A discussion and future
directions are presented in Section V.

II. NOTATION AND DEFINITION

R denotes the set of real numbers and R+ denotes the
set of positive real numbers. L2(R) denotes the space of
square-integrable (finite energy) functions, i.e., f ∈ L2(R)
if and only if

∫
R |f(x)|2dx < ∞ . L2(R) is equipped with

the norm ‖f‖ =
(∫

R |f(x)|2dx
)1/2

. Given f, g ∈ L2, their
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convolution is defined as

f ? g(x) =

∫
R
f(u)g(x− u)du

Given f ∈ L2, its Fourier transform is defined as

F(f)(λ) =

∫
R
f(x)e−iλxdx =: f̂(λ) .

The inverse Fourier transform is defined as

F−1(f̂)(x) =
1

2π

∫
R
f̂(λ)eiλxdλ =: f(x)

Given f : R2 → R such that f(·, t) ∈ L2(R) for all t, we
also define

f̂(λ, t) =

∫
R
e−iλxf(x, t)dx .

The following definitions are borrowed from [6].

Definition 1. A function f : R → R is said to have a fast
decay if for any m ∈ N there exists Cm > 0 such that

∀x ∈ R, |f(x)| ≤ Cm
1 + |x|m

.

Definition 2 (Mallat). A wavelet is a function ψ ∈ L2(R)
such that it has zero average, i.e.,

∫
R ψ(t)dt = 0 and is

normalized, i.e., ‖ψ‖ = 1.

Here, we will only consider real wavelets ψ : R→ R.

Definition 3. The dictionary of space-frequency atoms gen-
erated by a wavelet ψ is the set

Dff =

{
ψu,s(x) =

1√
s
ψ

(
x− u
s

)}
u∈R,s∈R+

.

Definition 4. Given f ∈ L2 and a real wavelet ψ, the
wavelet transform of f is defined as

Wf(u, s) =

∫
R
f(x)ψu,s(x)dx = f ? ψ̄s(u) ,

where ψ̄s(x) = ψ0,s(−x).

Because by definition F(ψ̄s)(0) = 0, a wavelet transform
performs a multi-scale band-pass filtering.

III. V1 AS AN EXCITATORY/INHIBITORY FEEDBACK
SPATIAL FILTER

A. A linear neural field description of V1

The primary visual cortex (V1) codes incoming visual
stimuli into the electrical activity of its millions of neurons.
Neural fields [10] constitute a useful spatially-distributed
mathematical description of the rich spatiotemporal dynam-
ics of the primary visual cortex. Let a(x, t) ∈ R represent
the electrical activity of an infinitesimal patch of the visual
cortex located at position x and at time t. Then

at(x, t) = −γa(x, t) +

∫
Ω

w(x, y)σ(a(y, t))dy + h̃(x, t),

(1)
where at = ∂a

∂t , γ ≥ 0 is the damping coefficient of
V1 electrical activity (biologically related to V1 neurons’

input conductance), Ω is the spatial domain of the visual
cortex, w(x, y) defines how and how strongly neurons at
position x are affected by neurons at position y, σ : R →
R is a monotone increasing function modeling neuronal
synaptic interactions and h̃(x, t) represent exogenous inputs
at location x and time t. In this paper we are interested in
the (linear) spatial-filtering properties of a the primary visual
cortex. We thus assume σ(a) = a. We will come back to the
role of nonlinearities in neuronal interactions in Section V.

A useful mathematical simplification is to assume that the
spatial domain Ω = R. Under this simplification, another
natural, useful and commonly made assumption is that the
spatio-temporal dynamics are homogeneous (i.e., spatially-
invariant), that is, w(x, y) = W (x−y). Then, the spatial part
of model (1) can be rewritten in spatial convolution form as

at = −γa+W ? a+ h̃. (2)

The input h̃(x, t) to V1 is obtained by filtering the actual
visual input to the animal h(x, t) through the visual layers
upstream V1. We let Wff the convolution kernel associated
to these upstream neural layers, i.e., h̃(x, t) = (Wff ?
h̃(·, t))(x). For obvious reasons, we call W the feedback
kernel and Wff the feed-forward kernel associated to V1.

Assumption 1. W,Wff ∈ L2(R).

Under Assumption 1, model (2) defines a linear space-
invariant integro-differential operator on L2(R), which can
be diagonalized in the Fourier basis by taking the spatial
Fourier transform of both sides of the equation

ât(λ, t) = −γâ(λ, t) + Ŵ (λ) â(λ, t) + Ŵff (λ) ĥ(λ, t). (3)

B. Excitatory and inhibitory feedback kernels

Neuronal interactions inside V1 are both excitatory and
inhibitory. It follows that W (x− y) can both be positive or
negative depending on whether a majority of neural projec-
tions between neurons at relative position x−y are excitatory
or inhibitory. Both types of projections decay exponentially
in space, i.e., given a pair of neurons at distance r, the
probabilities pconn,E(r) and pconn,I(r) of an excitatory or
inhibitory connection between them are given by [11]

pconn,E(r) =
1

2rE
e
− r
rE , pconn,I(r) =

1

2rI
e
− r
rI , (4)

where rE > 0 and rI > 0 are the characteristic spatial scales
of recurrent (feedback) excitatory and inhibitory interactions.

The feedback kernel W can thus naturally be modeled as
W = KEWE − KIWI , where KE ≥ 0 is the excitatory
connection gain, KI ≥ 0 is the inhibitory connection gain,

|WE(x− y)| ≤ 1

2rE
e
− |x−y|rE (5)

and
|WI(x− y)| ≤ 1

2rI
e
− |x−y|rI (6)

Exponential decay of recurrent excitatory and inhibitory
connections means that the kernels WE and WI are localized
in space.



C. The feedforward kernel

Feedforward connections from upstream visual system to
V1 (i.e., from the retina and through the visual thalamus) are
also both excitatory and inhibitory. Feedforward projections
also follow an exponential probability distribution (4) as a
function of the distance between the projecting and receiving
neuron. We thus assume

|Wff (x− y)| ≤ 1

2rff
e
− |x−y|rff , (7)

where rff > 0 is the characteristic spatial scale of feed-
forward connections. Furthermore, because visual neurons
are only sensitive to spatial contrast variations, i.e., spatially
uniform visual stimuli do not elicit a neural response, the
feedforward visual kernel has zero average. For mathematical
convenience and without loss of generality, we assume that
Wff has been L2-normalized, which leads to

Ŵff (0) = 0, ‖Wff‖ = 1 . (8)

D. The spatial transfer function of V1

Given a static visual stimulus h(x, t) ≡ l(x), l ∈ L2(R),
the equilibrium solution a∗(x) of model (2) can easily be
found in its frequency domain representation (3) and reads

â∗(λ) =
Ŵff (λ)

γ −KEŴE(λ) +KIŴI(λ)
l̂(λ) . (9)

This solution is stable if and only if all Fourier modes of (3)
are stable [12], that is, if and only if

− γ + Ŵ (λ) < 0, ∀λ ∈ R . (10)

Assuming the stability condition (10) is satisfied, equa-
tion (9) defines a spatial transfer function

Ĥγ,KE ,KI (λ) =
Ŵff (λ)

γ −KEŴE(λ) +KIŴI(λ)
(11)

that characterizes the steady-state spatial filtering properties
of our model V1. Figure 1 show a block-diagram real-
ization of Ĥ . It highlights the (spatial) feedback nature
of horizontal connections. Horizontal excitatory connections
provides (spatial) posititve feedback. Horizontal inhibitory
connections provide (spatial) negative feedback. The role of
these feedback loops is to shape the kernel through which
the neuronal layer filters the incoming signal l. For KE =
KI = 0, the open-loop layer’s kernel is the feed-forward
kernel Wff . For non-zero feedback gains, the closed-loop
kernel is reshaped by spatial feedback. Observe that the only
tunable parameters in (11) are the feedback gains KE and
KI , and the damping γ. The feed-forward Wff and feedback
WE ,WI kernels are fixed.

IV. FEEDBACK REALIZATION OF A WAVELET ZOOM

In this section we use frequency-domain close-loop anal-
ysis to illustrate how to realize a whole space-frequency
dictionary through the modulation of the damping coefficient,
and the excitatory and inhibitory feedback gains in the
closed-loop transfer function (11). In our construction, the
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Fig. 1. Block diagram of the closed-loop spatial transfer function
Ĥγ,KE ,KI (λ).
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Fig. 2. Qualitative shape of the feedforward kernel Wff (x − y). Red-
shaded regions indicate inhibitory interactions. Blue-shaded regions indicate
excitatory interactions.

feedfoward kernel Wff defines the mother wavelet, which
generate the space-frequency atom dictionary. We start by
illustrating these results in the case in which feedback and
feedforward interactions are isotropic, that is, they solely
depend on the distance between two neurons, i.e, all kernels
are even functions of x−y. Generalizations are discussed in
Section V.

A. An exponentially-decaying isotropic feedforward kernel
defines the mother wavelet

A natural choice to represent the feedforward visual kernel
while respecting the exponential decay of both excitatory and
inhibitory feedforward connections (4) is

Wff (x− y) =
1

N(a, b)

(
1

2a
e−
|x−y|
a − 1

2b
e−
|x−y|
b

)
(12)

where 0 < a < b and the L2-normalization factor N(a, b) =√
(b−a)2

64ab(a+b) . As illustrated in Figure 2, the feedforward
kernel is made of a narrower excitatory part, with spatial
scale a, and a broader inhibitory part, with spatial scale b.
This choice can be seen as an exponential approximation of
center-surround receptive fields [13]. The advantage of using
an exponential approximation is that it leads to the rational
transfer function

Ŵff (λ) =
1

N(a, b)

(b2 − a2)λ2

(1 + a2λ2)(1 + b2λ2)
(13)

which is amenable to closed-loop algebraic manipulation,
much in the same way as temporal transfer function design.



The following proposition shows that Wff is a wavelet
and that, moreover, it can be written as the second derivative
of a fast-decaying function with non-zero average.

Proposition 1. Wff as defined in (12) is a wavelet with fast
decay and, moreover, there exist a function with fast decay
θ, such that

∫
R θ(x)dx 6= 0 and Wff = θ′′.

Proof. Invoking (8), Wff is a wavelet by construction and
it has fast decay because it decays exponentially as x →
±∞. To show the second part of the statement, recall that
for any f ∈ L2(R) ∩ C2(R), such that f ′′ ∈ L2(R),
F(θ′′) = −λ2F(θ), and observe that Wff = θ′′ with
θ = F−1

(
−1

N(a,b)
(b2−a2)

(1+a2λ2)(1+b2λ2)

)
. The fact that θ has the

fast decay property follows by the fact that F(θ) is smooth
and [6, Theorem 2.5].

B. A wavelet zoom defined by the feedforward kernel

The dictionary of space-frequency atoms generate by the
wavelet is Wff is

Dff =

{
ψffu,s(x) =

1√
s
Wff

(
x− u
s

)}
u∈R,s∈R+

. (14)

Invoking Proposition 1 and [6, Theorem 6.2], the wavelet
transform Wf(u, s) of a function f ∈ L2(R) through
the space-frequency dictionary Dff realizes a second-order
multi-scale differential operator, in the sense that

lim
s→0
Wf(u, s) = Ks5/2f ′′(u), (15)

where K = F(θ)(0). It follows that if f is two-time
differentiable in a neighborhood of u, then its wavelet
transform at u is O(s5/2), i.e., it is fast decreasing as a
function of s. Conversely, if f ′′(u) is unbounded or it is
not defined, then the wavelet Wf(u, s) decreases at small
scales less rapidly than O(s5/2). In other words, the multi-
scale band-pass filtering performed by the wavelet transform
associated to the mother wavelet Wff realizes a zoom into
the signal structure by detecting singularities in its second
order derivative. This is a key principle of a wavelet zoom.

C. The wavelet zoom is not robustly realizable in a feedfor-
ward model

Despite its favorable multi-resolution properties, the feed-
forward wavelet zoom is not realizable in an analog hard-
ware, being it artificial of biological, without unrealistic
topographically precise (and thus not robust) tuning of neural
connectivity. To see this, consider a neuron at position x
receiving feedforward inputs from two neurons at locations
y1 and y2 A change in scale from 1 to s would imply
changing the two associated synaptic strengths by

∆W1 = ψffy1,s−ψ
ff
y1,1

=
1√
s
Wff

(
x− y1

s

)
−Wff (x−y1) ,

∆W2 = ψffy2,s−ψ
ff
y2,1

=
1√
s
Wff

(
x− y2

s

)
−Wff (x−y2) ,

respectively. Because the kernel Wff is nonlinear, in general
∆W1

Wff (x−y1) 6=
∆W2

Wff (x−y2) , i.e., the two gains must be scaled

by different amounts. In particular at small s, this difference
can be large even when y1 and y2 are close. This means
that changing the scale in a feedforward fashion requires
a scale- and position-dependent finely-tuned scaling of all
synaptic gains. There are no biological evidence of such a
precise tuning of synaptic gains and the same tuning would
be unreliable in sloppy analog hardware.

D. Feedback design of the wavelet zoom

In this section we show that it is possible to realize the
space-frequency dictionary Dff , defined in (14), through the
space-homogeneous scaling of the damping coefficient γ, the
excitatory connection gain KE , and the inhibitory connection
gain KI in model (3), for suitably designed excitatory and
inhibitory feedback kernels. To this end, let

WE(x− y) =
1

2α
e−
|x−y|
α (16)

and
WI(x− y) =

1

2β
e−
|x−y|
β (17)

with 0 < α < β, which is an exponential approximation
of the local-excitation/lateral-inhibition feedback motif of
spatially extended neural systems [7]. In the spatial frequency
domain and for static visual input h(x, t) ≡ l(x), l ∈ L2(R),
the resulting neural dynamics (3) read

ât =

(
−γ +

KE

1 + α2λ2
− KI

1 + β2λ2

)
â+ Ŵff l̂ . (18)

Lemma 1. Dynamics (18) are exponentially stable (in the
sense of [12, Definition 3]) provided γ > 0 and KE

KI

β2

α2 ≤ 1.

Proof. (18) is exponentially stable provided [12, Theorem 1]
that γ − KE

1+α2λ2 + KI
1+β2λ2 ≥ C > 0 for all λ ∈ R. This

evidently holds with C = γ if KE
KI

1+β2λ2

1+α2λ2 ≤ 1 for all λ ∈ R.

Recalling that 0 < α < β, we have that 1 ≤ 1+β2λ2

1+α2λ2 <
β2

α2

for all λ ∈ R and the result follows.

The next theorem provides sufficient conditions for the ex-
istence of and explicitly constructs the space-homogeneous,
scale-dependent tuning of damping coefficient, and exci-
tatory and inhibitory feedback gains to realize the space-
frequency dictionary Dff as the spatial transfer function (11)
of model (18).

Theorem 1. Let Wff , WE , WI be defined as in (12), (16),
and (17), respectively, with a = α and b = β. Let ρ(s) =
s3/2,

κe(s) =
α2(s−5/2 − s−1/2)− β2(s−1/2 − s3/2)

β2 − α2
,

κi(s) =
β2(s−5/2 − s−1/2)− α2(s−1/2 − s3/2)

β2 − α2
.

The spatial transfer function (11) satisfies

Hρ(s),ke(s),ki(s)(λ) = ψ̂ffs (λ)

where ψ̂ffs (λ) = F(ψff0,s)(λ). Furthermore, dynamics (18)
with γ = ρ(s), KE = κe(s), KI = κi(s) are exponentially
stable for all 0 < s ≤ 1.



Proof. Start by observing that, for a = α, b = β,

ψ̂ffs (λ) =
(N(α, β))−1(β2 − α2)λ2

s−5/2 + (α2 + β2)s−1/2λ2 + α2β2s3/2λ4
.

On the other hand,
Hγ,KE ,KI (λ) = (N(α, β))−1(β2 − α2)λ2

(
γ −KE +KI +

(γ(α2 + β2)−KEβ
2 +KIα

2)λ2 + γα2β2λ4
)−1

.
Equating the monomial coefficients in the denominators
leads to the system of equations

γ −KE +KI = s−5/2

γ(α2 + β2)−KEβ
2 +KIα

2 = (α2 + β2)s−1/2

γα2β2 = a2β2s3/2

whose solution is γ = ρ(s), KE = κe(s), and KI = κi(s).
To show stability of the resulting spatio-temporal dynamics,
observing that ρ(s) > 0 and invoking Lemma 1, it remains
to show that

κ(s) :=
κe(s)

κi(s)
≤ α2

β2
(19)

for all 0 < s ≤ 1. The rational function κ(s) is smooth on
(0, 1), indeed, its denominator vanishes for |s| = 1, |s| =
β
α > 1, and

lim
s→0

κ(s) =
α2

β2
, lim

s→1
κ(s) =

β2 − α2

β2

α2

α2 − β2
. (20)

Furthermore, it is easy to verify that k′(s) < 0 for s ∈ (0, 1)
and (19) follows.

E. The design is robust to approximations and uncertainties

Our wavelet-zoom feedback design is naturally robust to
approximation and uncertainties that might arise in practical
applications. We illustrate this fact through a numerical
example. For instance, it might be difficult to jointly tune
the two feedback gains exactly accordingly the complicated
functions κe(s) and κi(s) defined in Theorem 1. However, as
show in (20), at small scales, the two feedback gains can be
scaled proportionally, i.e. κe(s) ≈ α2

β2 κi(s) . In our numerical
realization we thus approximate

κe(s) = δ
α2

β2
κi(s), 0 < δ . 1 .

The factor δ enforces that the stability condition derived in
Lemma 1 is robustly satisfied. We also add global small
(10−2 of the nominal values) random uncertainties to the
spatial spread of the various kernels and to the scale parame-
ter s passed to the three functions ρ(s), κe(s), κi(s). Finally,
we add local perturbations to all local coupling gain, i.e.,
in our numerical discretization on the one-dimensional mesh
{x1, . . . , xNspace}, we perturb WE(xi − xj) to WE(xi −
yj)(1 + εpij), where pij is drawn from a normal distribu-
tion and ε = 10−4. Each panel of Figure 3A shows five
realizations of the resulting closed-loop kernel Ws(x− y) =
F−1(Hρ(s),ke(s),ki(s))(x−y), under random perturbations as
specified above and at three different scales s = 0.8, 0.3, 0.1.
The effect of perturbations becomes noticeable at small

scales, but the realization is robust. Future work will aim at
quantify precise robustness bounds. Each panel of Figure 3B
shows the input-output performance of the perturbed closed-
loop filter at the same scales. The gray trace shows the
input signal (l(x) = tanh(x) in this example). The black
dashed trace shows the input signal second derivative. The
black trace is the filter response a(x) scaled by s−5/2.
Despite perturbations becoming evident at small scales, the
scaled filter response robustly converge to the signal’s second
derivative as predicted by wavelet-zoom theory (15).

V. DISCUSSION AND EXTENSIONS

A. Realizing spatial wavelet zooms via feedback interconnec-
tion of simple spatial transfer functions and gain modulation

Theorem 1 shows that it is possible to realize a whole
continuous space-frequency atom dictionary on a fixed ker-
nel interconnection topology, that is, without reshaping the
feedforward and feedback kernels, but solely modulating the
feedback gains, homogeneously in space, and robustly to un-
certainties and spatial heterogeneities. How can this theorem
be used in practice? The key idea is that the feedforward and
feedback kernels can be hard-wired once and for all (e.g., in
an analog DNF architecture [9]). Only their gains need to
be modulated and this modulation does not need to be fine-
tuned in space. A space-homogeneous balanced up-scaling
of excitatory and inhibitory interconnection gains suffices to
change the closed-loop filter resolution.

B. Realizing richer space-frequency dictionaries

Although focused on a specific feedforward kernel and
associated space-frequency atom dictionary, the spatial
frequency-domain closed-loop design methodology spelled
out in this paper is general. Namely, any kernel with a ratio-
nal transfer function is a good candidate to realize its associ-
ated space-frequency dictionary by spatial loop-shaping. For
instance, the unisotropic case Ŵff (λ) = iλ

(1+α2λ2)(1+β2λ2)
can be treated along exactly the same lines of the isotropic
case considered here. Richer (e.g., Gabor-like) kernels and
associated dictionaries can also be realized taking inspira-
tion from the multi-layer structure of the primary visual
cortex [14]. The primary visual cortex is indeed composed
of multiple feedforward, feedback, and horizontal pathways,
of which the ones considered in Section III are just the most
basic approximation.

C. The role of nonlinearities

Biological neural dynamics are intrinsically nonlinear,
both in time and space. The role of nonlinearities is to
transform linear instability into multi-scale excitability and
pattern formation [15], [16]. These all-or-none responses
robustify information processing by providing neuronal com-
munication with a mixed analog/digital nature [17], [18].
It will be crucial to understand how the linear information
processing level studied here interacts with the nonlinear
nature of neural dynamics, as proposed in [19] for the purely
temporal case.



x

x

x

x

x

x

x+5 x+5 x+5x-5 x-5 x-5

0

0 0 0

1 1 1

-1 -1 -1
0 0 0-10 -10 -1010 10 10

0 0

0.06
A

B

0.06 0.06
s=0.8

s=0.8
l(x) l(x) l(x)
l''(x) l''(x) l''(x)

5/2 5/2 5/2a(x)/s a(x)/s a(x)/s

W
 (

x-
y)

W
 (

x-
y)

W
 (

x-
y)

s s s

s=0.3

s=0.3

s=0.1

s=0.1

Fig. 3. A. Closed-loop kernel Ws(x − y) = F−1(Hρ(s),ke(s),ki(s))(x − y) with α = 1 and β = 2 at three different scales and under random
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D. Time-varying visual stimuli

Actual visual stimuli are time-varying. A fundamental
extension of the ideas proposed here will be to build
time-and-space-invariant systems that realizes space-time-
frequency dictionaries capable of performing a wavelet zoom
on incoming signal both in time and space. The design
procedure could approximate the system response via a
separable transfer function, much in the same way as [20],
which would allow to independently design the temporal and
spatial responses by joining the theory developed here with
classical works on analog temporal wavelet realization such
as [8].
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