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Control of Agreement and Disagreement Cascades with Distributed Inputs

Anastasia Bizyaeva, Timothy Sorochkin, Alessio Franci, and Naomi Ehrich Leonard

Abstract— For a group of autonomous communicating
agents, the ability to distinguish a meaningful input from
disturbance, and come to collective agreement or disagreement
in response to that input, is paramount for carrying out
coordinated objectives. In this work we study how a cascade
of opinion formation spreads through a group of networked
decision-makers in response to a distributed input signal. Using
a nonlinear opinion dynamics model with dynamic feedback
modulation of an attention parameter, we show how the
triggering of an opinion cascade and the collective decision
itself depend on both the distributed input and the node
agreement and disagreement centrality, determined by the
spectral properties of the network graph. We further show
how the attention dynamics introduce an implicit threshold that
distinguishes between distributed inputs that trigger cascades
and ones that are rejected as disturbance.

I. INTRODUCTION

Emerging technologies rely on network communications

and sensor input in order to make coherent collective de-

cisions. For example, autonomous multi-robot teams must

cooperate to move as a group, avoid obstacles and one

another, and perform collective tasks in potentially dynamic

and uncertain environments. These objectives necessarily

involve on-the-fly collective decision-making about context-

dependent options, such as which of multiple available paths

to take, which direction to turn, or how to distribute available

tasks among the team members. There is urgent need for a

unified design framework that enables autonomous teams to

coordinate decisions across different contexts in a distributed

manner. Mathematical models of networked opinion dynam-

ics, e.g. [1]–[5], are particularly useful for this purpose, in

part due to their relative simplicity and analytic tractability.

With this as motivation, we focus in this paper on a general

model of distributed opinion formation on a network recently

introduced in [6], [7]. In this multi-agent, multi-option frame-

work, opinion formation is treated as a nonlinear process in

which agents update their real-valued opinions in continuous

time in response to saturated information exchanges from

their communication network. A prominent feature of this

model is the emergence of consensus and dissensus solutions

in easily identifiable parameter regimes, even when all of the
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agents are homogeneous and the communication network is

all-to-all. These analytic results in [6] are independent of

the number of agents or options. Analysis in [8] suggests

that emergence of agreement and disagreement, through

bifurcations, persists across different network topologies.

This makes our model flexible and adaptable to different

contexts and applications. The spectral properties of the

network adjacency matrix are key to the agreement and

disagreement bifurcation structure. The bifurcation kernel

is generated by the dominant eigenvector in the agreement

regime and by the eigenvector associated to the smallest

eigenvalue in the disagreement regime. The entries of these

eigenvectors define agreement and disagreement centrality

indices for the nodes of the network in symmetric graphs [9].

For digraphs, node centrality is defined by the left adjacency

matrix eigenvectors associated to the largest (agreement case)

or smallest (disagreement case) eigenvalues.

We exploit the connection between the spectral proper-

ties of the network adjacency matrix and the agreement

and disagreement bifurcation behavior to derive criteria for

designing distributed inputs to control opinion formation

and opinion cascades. Using Lyapunov-Schmidt reduction

methods [10, Chapter VII], we show that the agreement

(disagreement) centrality of a node determines how an in-

put to it affects the agreement (disagreement) bifurcation

behavior. Our results rigorously justify the agreement and

disagreement centralities introduced in [9]. When the opinion

dynamics are coupled with the feedback attention dynamics

introduced in [6], sufficiently large inputs can trigger an

opinion cascade at which the network state transitions from

a weakly opinionated state to a strongly opinionated state.

Agreement and disagreement centrality indices predict sen-

sitivity of opinion cascades to distributed inputs. The more

aligned the input vector is with the centrality vector, the

smaller the inputs need to be to trigger a cascade.

We present the model Section II and review Lyapunov-

Schmidt reduction in Section III. We prove the role of

distributed input on opinion formation behavior for constant

attention in Section IV and for dynamic feedback controlled

attention in Section V.

II. OPINION DYNAMICS MODEL

We study a model of Na agents communicating over a

network and forming opinions on two options through a

nonlinear process specialized from the multi-option general

model in [6],[7]. As in [8], we specialize to agents that are

homogeneous with respect to three fixed parameters in the

dynamics: the rate of forgetting (damping coefficient d > 0),

the edge weight in the communication network (γ ∈ R), and

http://arxiv.org/abs/2103.14764v1


the strength of self-reinforcement of opinion (α ≥ 0). In [8],

we focused on the zero-input setting, i.e., the case in which

there is no stimulus, evidence or bias that informs the agents

about the relative merits of the options. Instead, here, we

consider an input bi ∈ R, for each agent i = 1, . . . , Na, and

allow the inputs to be heterogeneously distributed over the

network of agents. We further model heterogeneity over the

agents in their attention to network exchange.

The topology of agent interactions is encoded in a graph

G = (V,E) where V = {1, . . . , Na} is an index set

of vertices. Each vertex i ∈ V represents an agent, and

E ⊆ V ×V is the set of edges, which represent interactions

between agents. We define the unweighted graph adjacency

matrix A = (aik), i, k ∈ V , with elements satisfying aik = 1
if and only if eik ∈ E, and aik = 0 otherwise. We consider

this matrix without self-loops, aii = 0 for all i ∈ V . G
is an undirected graph if aik = aki for all i, k ∈ V . Let

λi, i = 1, . . . , Na, be the eigenvalues of A and W (λi) the

generalized eigenspace associated to λi. We define λmax

and λmin to be the λi with largest and smallest real parts,

respectively, and vmax and vmin to be the corresponding

unit left eigenvectors.

In the two-option setting, we represent the opinion of each

agent i by a real-valued xi ∈ R. The sign of xi corresponds

to agent i favoring option 1 (xi > 0) or favoring option 2

(xi < 0). The magnitude of the opinion variable xi describes

the strength of agent i’s commitment to an option. We say an

agent is opinionated when |xi| > ϑ > 0 for some threshold

ϑ, and it is unopinionated otherwise. Note that we introduce

the threshold ϑ in order to distinguish a small opinion from

a large opinion in our discussion of the results, and the

threshold value itself will not play a role in the analysis

(and can be made appropriately small in each case). The

vector of agents’ opinions x = (x1, . . . , xNa
) ∈ RNa is the

network opinion state. When all agents are unopinionated

the group is in an unopinionated state; a special case is the

neutral state x = 0. We distinguish between key opinionated

network states:

• Any pair of agents i, k ∈ V agree when they are

opinionated and favor the same option, i.e. sign(xi) =
sign(xk). The group is in an agreement state when this

property holds for all i, k ∈ V .

• Any pair of agents i, k ∈ V disagree when they are

opinionated and favor different options, i.e. sign(xi) 6=
sign(xk). The group is in a disagreement state when this

property holds for at least one pair of agents i, k ∈ V .

Each agent updates its own opinion state in continuous

time according to the nonlinear update rule:

ẋi = −dxi + uiS






αxi + γ

Na
∑

k=1
k 6=i

aikxk






+ bi. (1)

The rule has four parts: a damping term with coefficient

d > 0, a nonlinear interaction term that includes inter-agent

exchanges with weight γ ∈ R, an opinion self-reinforcement

term with weight α ≥ 0, and an additive input bi ∈ R.

The nonlinearity applied to the inter-agent exchanges and

self-reinforcement is defined by an odd sigmoidal saturating

function S which satisfies S(0) = 0, S′(0) = 1, and

sign(S′′(z)) = − sign(z). This is motivated from the liter-

ature and means that agent i is more influenced by opinion

fluctuations in its neighbors when their average opinion is

close to neutral, and as neighbors’ opinions grow large on

average their influence levels off. In simulations and analysis

throughout this paper we use S = tanh. We purposely leave

the sigmoid more general in the definition of the opinion

dynamics (1) because the results in this paper generalize to

arbitrary odd sigmoidal functions with minor modifications

in the algebraic details of the proofs.

In the following proposition we specialize a result from

[8] which serves as a starting point for our analysis.

Proposition II.1 ([8], Theorem 1). The following hold true

for (1) with ui := u ≥ 0 and bi = 0 for all i = 1, . . . , Na:

A. Cooperation leads to agreement: Let G be a connected

undirected graph. If γ > 0, the neutral state x = 0 is a

locally exponentially stable equilibrium for 0 < u < ua and

unstable for u > ua, with

ua =
d

α+ γλmax

. (2)

At u = ua, branches of agreement equilibria, xi 6= 0,

sign(xi) = sign(xk) for all i, k ∈ V , emerge in a steady-

state bifurcation off of x = 0 along W (λmax);
B. Competition leads to disagreement: Let G be a connected

undirected graph. If γ < 0 the neutral state x = 0 is a

locally exponentially stable equilibrium for 0 < u < ud and

unstable for u > ud, with

ud =
d

α+ γλmin

. (3)

At u = ud, branches of disagreement equilibria, sign(xi) =
− sign(xk) for at least one pair i, k ∈ V , i 6= k, emerge in

a steady-state bifurcation off of x = 0 along W (λmin).

III. LYAPUNOV-SCHMIDT REDUCTION

To systematically characterize the equilibria of the opinion

dynamics model as a function of parameters, we leverage

the Lyapunov-Schmidt reduction and its use in computing

bifurcation diagrams. Consider the n−dimensional dynami-

cal system ẏ = Φ(y,p), where Φ : Rn × Rm → R
n is a

smooth parameterized vector field, y ∈ Rn is a state vector,

and p ∈ Rm is a vector of parameters. Let the kth order

derivative of Φ at (y,p) be

(dkΦ)y,p(v1, . . . ,vk)

=
∂

∂t1
. . .

∂

∂tk
Φ

(

y +

k
∑

i=1

tivi,p

)∣

∣

∣

∣

∣

t1=···=tk=0

. (4)

The equilibria of ẏ = Φ(y,p) are the level sets Φ(y,p) = 0,

which defines the bifurcation diagram of the system.

The Jacobian of the system is the matrix J with elements

Jij = ∂Φ(y,p)
∂yij

. When J evaluated at an equilibrium point

(y∗,p∗) is degenerate (i.e. has rank n−m where 0 < m <



n), the local bifurcation diagram can be described using m
variables and the point is a singular point. The Lyapunov-

Schmidt reduction of Φ(y,p) is an m-dimensional system of

equations that captures the structure of the local bifurcation

diagram of the system near (y∗,p∗). The procedure for

deriving the Lyapunov-Schmidt reduction involves projecting

the Taylor expansion of Φ(y,p) onto the kernel of its

Jacobian at the singularity. The Implicit Function Theorem is

used to solve for n−m variables as function of the remaining

m, thus approximating the local vector field in the directions

orthogonal to the kernel. For details on Lyapunov-Schmidt

reduction see [10, Chapter VII].

The normal form for a bifurcation is the simplest equa-

tion that captures all qualitative features of the bifurcation

diagram. Dynamical systems with an odd state symmetry

Φ(−y,p) = −Φ(y,p) often exhibit a pitchfork bifurcation.

A normal form for a pitchfork bifurcation universal unfolding

is

ẏ = p1y ± y3 + p2 + p3y
2 (5)

where y ∈ R is the reduced state, p1 is a bifurcation

parameter and p2, p3 are unfolding parameters. When p2 =
p3 = 0, the symmetric pitchfork normal form is recovered

in (5). When one of the unfolding parameters is nonzero,

it follows from unfolding theory [10, Chapter III] that the

bifurcation diagram changes locally to one of four possible

topologically distinct configurations (see Fig. 1). We use

the tools outlined in this section to rigorously study how

solutions of the distributed dynamics (1) depend on each

agent’s attention and input.

IV. CONSTANT ATTENTION: SENSITIVITY TO INPUT

NEAR CRITICAL POINT

In this section, we investigate how a vector of constant

inputs b informs the outcome of the opinion formation

process (1) when attention is constant and ui := u ∈ R for

all i = 1, . . . , Na. The Jacobian of (1) evaluated at x = 0 is

Jx = (uα− d)I + uγA (6)

with identity matrix I. The dynamics (1) in vector form are

ẋ = −dx+ uS ((αI + γA)x) + b := F (x, u,b) (7)

where S(y) = (S(y1), . . . , S(yn)), y ∈ R
n, and b =

(b1, . . . , bNa
). The following theorem generalizes results in

[11, Theorem 1] to describe bifurcations of the opinion

dynamics of homogeneous agents. The theorem shows that

any bifurcation of x = 0 of (1) that is generated by a simple

eigenvalue of the adjacency matrix A must be a pitchfork

bifurcation.

Theorem IV.1 (Pitchfork Bifurcation). Consider (1) and

define u∗ = d
α+λγ

, where λ is a simple real eigenvalue of

the adjacency matrix A for a strongly connected graph G
with corresponding right unit eigenvector v = (v1, . . . , vNa

)
and corresponding left unit eigenvector w = (w1, . . . , wNa

).
Assume that (i) for all eigenvalues ξ 6= λ of A, Re[ξ] 6= λ;

(ii) α + λγ 6= 0. Let f(z, u,b) be the Lyapunov-Schmidt

reduction of F (x, u,b) at (0, u∗, 0) and assume 〈w,v3〉 6=

0.

A. The bifurcation problem f(z, u, 0) = 0 has a symmetric

pitchfork singularity at (z, u,b) = (0, u∗, 0). For values of

u > u∗ and sufficiently small |u−u∗|, two branches of equi-

libria branch off from x = 0 in a pitchfork bifurcation along

a manifold which is tangent at x = 0 to span{v}. When

sign{〈w,v3〉/〈w,v〉}(α + λγ) > 0 (< 0) the bifurcation

happens supercritically (subcritically) with respect to u.

B. The bifurcation problem f(z, u,b) = 0 is an

Na-parameter unfolding of the symmetric pitchfork, and
∂f
∂bi

(z, u,b) = wi.

Proof. The eigenvalues of Jx (6) are µ = uα − d + uγλ,

and so at u = u∗ Jx has a single zero eigenvalue. Observe

that the left and right null eigenvectors of Jx are precisely

w and v. Following the procedure outlined in [10, Chapter

I, 3.(e)] we derive f(z, u,b). In particular we derive the

coefficients of the polynomial expansion of f(z, u,b) [10,

Chapter I, Equations 3.23(a)-(e)] through third order in the

state variable. Note that (d2F )0,u∗,0(v1,v2,v3) = 0 for any

vi because S′′(0) = 0, which implies that fzz = 0 by [10,

Chapter I, Equation 3.23(b)]. Additionally, fz(0, u
∗, 0) = 0

by [10, Chapter I, Equation 3.23(a)]. The nonzero coeffi-

cients in the expansion read

fxxx = 〈w, (d3F )0,u∗,0(v,v,v)〉 = −2d(α+ λγ)2〈w,v3〉

fbi =

〈

w,
∂F

∂bi
(0, u∗, 0)

〉

= wi

fûx =

〈

w,

(

d
∂F

∂û

)

0,u∗,0

(v,v)

〉

= (α+ λγ)〈w,v〉

where û = u − u∗ and 〈·, ·〉 denotes the standard vector

inner product. Additionally, observe that we can align the

left and right eigenvectors to satisfy 〈w,v〉 = k1 > 0 (the

inner product is nonzero by duality). Then 〈w,v3〉 := k2 =
∑Na

i=1 wiv
3
i . The Lyapunov-Scmidt reduction of (1) about

(0, u∗, 0) is thus

ż = k1(α+λγ)ûz−2k2d(α+λγ)2z3+〈w,b〉+h.o.t. (8)

Part A of the lemma follows by (8), by the recognition prob-

lem for the pitchfork bifurcation [10, Chapter II, Proposition

9.2], as well as by the definition of a center manifold. Part

B follows by the definition of an unfolding and by (8).

As a direct consequence of Theorem IV.1 we can describe

many of the bifurcations of x = 0 of (7) from the spectrum

of A. In particular, if A has n ≤ Na simple eigenvalues λi,

we expect x = 0 to exhibit n distinct pitchfork bifurcations

at critical values of the parameter u∗
i = d/(α+λiγ). Locally

near the bifurcation point the corresponding left eigenvector

vi informs the sign structure of the emergent equilibria, as

explored in [8]. For undirected graphs we can deduce the

direction in which the bifurcation branches appear.

Corollary IV.1.1. Suppose G is an undirected graph. When

u∗
i = d/(α + λiγ) > 0(< 0) the pitchfork bifurcation at u∗

i

happens supercritically (subcritically).



Proof. Let vi be the right eigenvector of A corresponding to

λi and observe that for an undirected graph, the left eigenvec-

tor of λi wi = vi by symmetry. Then 〈wi,vi〉 = 〈vi,vi〉 >
0 and 〈wi,v

3
i 〉 = 〈vi,v

3
i 〉 =

∑Na

k=1(vi)
4
k > 0. Therefore

the criticality condition from Theorem IV.1 simplifies to

(α + λiγ) > 0(< 0) for supercritical (subcritical) pitchfork

bifurcation. Since d > 0 the corollary directly follows.

Using these general results on the bifurcation behavior of

the opinion dynamics, the next theorem establishes that the

agreement and disagreement bifurcations in Proposition II.1

are supercritical pitchfork bifurcations in which x = 0 loses

stability and new branches of locally stable solutions appear.

Theorem IV.2 (Agreement and Disagreement Pitchforks).

Consider (1) and let ui := u ≥ 0. The agreement and

disagreement bifurcations in Proposition II.1 are supercriti-

cal pitchfork bifurcations. Additionally, the two steady state

solutions which appear for u > ua(ud) and |u−ua|(|u−ud|)
sufficiently small are locally exponentially stable.

Proof. The supercriticality of the bifurcating branches of

equilibria follows for the undirected case from Corollary

IV.1.1. For a directed graph and γ > 0 it follows from

the Perron-Frobenius theorem that vmax and wmax have

strictly positive components, i.e., 〈wmax,vmax〉 > 0 and

〈wmax,v
3
max〉 > 0. Supercriticality then follows from the

conditions in Theorem (IV.1). The two nontrivial fixed points

are locally exponentially stable by analytic continuity of

eigenvalues: Na−1 negative eigenvalues are shared with x =
0 and the bifurcating eigenvalue is negative by [10, Chapter I,

Theorem 4.1] because ∂f/∂z > 0 for the Lyapunov-Schmidt

reduction (8).

One major takeaway of the results presented in this section

are rigorous predictions of the effect of inputs on the opinion

formation bifurcation behavior. It follows by Theorem IV.1B

and Theorem IV.2 that the gain with which an input bi
on node i affects the network opinion formation behavior

is exactly the node agreement or disagreement centrality

wi. In particular, this results allows us to predict in which

direction the agreement or disagreement pitchfork unfold as a

function of the input pattern. If 〈b,wmax〉 = 0 the pitchfork

does not unfold. If 〈b,wmax〉 < 0 (〈b,wmax〉 > 0) the

pitchfork unfolds in a such a way that it exhibits a lower

(upper) smooth branch of equilibria. For example, in Fig.

1 the diagram on the left receives a nonzero input which

is orthogonal to wmax, and the symmetry of the pitchfork

bifurcation is unbroken. On the right, 〈b,wmax〉 = 0.1
and near the singular point of the symmetric diagram, the

unfolded diagram favors the positive solution branch which

corresponds to agents agreeing on the positive option.

V. DYNAMIC ATTENTION: CASCADES AND TUNABLE

SENSITIVITY TO INPUT

In this section we illustrate how distributed state feedback

dynamics in the attention parameters of the opinion dynamics

(1) gives rise to agreement and disagreement cascades with

tunable sensitivity to distributed input. We show that the
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Fig. 1: Symmetric pitchfork bifurcation and its unfolding for opin-
ion dynamics (1) in the agreement regime with three agents commu-
nicating over an undirected line graph. Blue (red) curves correspond
to stable (unstable) equilibria. Vertical axis is the projection of the
system equilibria onto W (λmax). Parameters: d = α = γ = 1.
Left: b = (0.05, 0,−0.05); right: b = 0.1vmax+(0.05, 0,−0.05).
Bifurcation diagrams generated with help of MatCont [12].

magnitude of the distributed input vector, and its orientation

relative to the centrality eigenvector vmax (vmin) when

γ > 0 (< 0) can both be used as control parameters to trigger

cascades on the network. We prove that a single design

parameter in the attention feedback dynamics can be used

to tune the threshold above which inputs trigger a cascade.

As in [6] we define state feedback dynamics for the

attention parameter ui of each agent i to track the saturated

norm of the system opinion state observed by agent i:

τuu̇i = −ui + Su

(

x2
i +

Na
∑

k=1

(aikxk)
2

)

. (9)

Su takes the form of the Hill activation function:

Su(y) =
¯
u+ (ū−

¯
u)

yn

(yth)n + yn
, (10)

where threshold yth > 0. In (10) we constrain ū and
¯
u such

that ū > uc ≥
¯
u > 0, with uc = ua (ud) when γ > 0

(< 0). As in [9], we define an opinion cascade as a network

transition from a weakly opinionated (|xi| ≪ ϑ, for all i),
weakly attentive (|ui| ≪ ϑ, for all i = 1) system state to

a strongly opinionated (|xi| ≫ ϑ, for all i) and strongly

attentive (|ui| ≫ ϑ, for all i) system state. See Fig. 2 for

an example of an opinion cascade in an agreement (γ > 0)

and disagreement (γ < 0) regime. In this section we restrict

our attention to undirected graph, which largely simplify the

relevant algebraic computations.

Assumption. G is undirected.

In vector form, coupled dynamics (1),(9) read
(

ẋ

u̇

)

= −

(

dx
u

)

+

(

u⊙ S ((αI + γA)x) + b

Su((I +A)x2)

)

(11)

where Su(y) = (Su(y1), . . . , Su(yn)), y ∈ R
n, x2 =

(x2
1, . . . , x

2
Na

), and ⊙ is the element-wise product of vectors.

The Jacobian of (11) at equilibrium point (xs,us) is

J(x,u) =

(

−dI + (diag{us}(αI + γA))⊙K1 K2

(I +A) diag{xs} ⊙K3 −I

)

(12)

where K1 = S′ ((αI + γA)xs)1
T , K2 =

diag{S ((αI + γA)xs)}, K3 = 2S′
u

(

(I +A)x2
s

)

1T ,
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and 1 = (1, . . . , 1) ∈ RNa . Let G(y,b) be the right hand

side of (11) with y = (x,u).

Lemma V.1 (Stability of x = 0). Consider (11) with b = 0.

The point (xs,us) = (0,
¯
u1) is an equilibrium point of the

coupled dynamics. When either γ > 0 and
¯
u < ua or γ < 0

and
¯
u < ud, it is locally exponentially stable.

Proof. Plugging the state values into the coupled dynamics

(11) easily verifies that (ẋ, u̇) = 0 at (xs,us). Evaluated at

this point, (12) simplifies to the block diagonal matrix

J(0,
¯
u) =

(

−dI +
¯
u(αI + γA) 0
0 −I

)

. (13)

When 0 <
¯
u < ua (ud), (13) has 2Na eigenvalues with

negative real part, and the stability conclusion follows.

Lemma V.2 (Small Input Approximates Equilibrium Opin-

ion). Let (xs,us) be an equilibrium of (11) with inputs b.

Let
¯
u < uc where uc = ua if γ > 0 or uc = ud if γ < 0.

Define v = vmax if γ > 0 or v = vmin if γ < 0. Then

∂‖xs‖

∂|〈v,b〉|

∣

∣

∣

∣

b=xs=0

> 0. (14)

Proof. Since x = 0 is an equilibrium of the system with

b = 0, (xs,us) can be approximated by the linearization

J(0,
¯
u)

(

xs

us

)

+

(

b

0

)

= 0. (15)

J(0,
¯
u) is symmetric and invertible so its inverse has the same

eigenvectors. Then, to the first order, it holds that

xs = −J−1
x b = −

Na
∑

i=1

1

µi

〈vi,b〉vi (16)

where Jx is (6) with u =
¯
u, vi is an eigenvector of A

corresponding to eigenvalue λi, and µi = d+
¯
u(α+λiγ). The

eigenvectors are orthogonal, so ‖xs‖ =
∑Na

i=1
1
λ2

i

〈vi,b〉
2

and the lemma follows.

Theorem V.3 (Saddle-Node Bifurcation). Consider (11) with

a nonzero input vector b and define uc = ua if γ > 0 and

uc = ud if γ < 0. Let vc = vmax or vmin respectively.

Suppose uth ≪ 1 and
¯
u < uc with |

¯
u − uc| sufficiently

small. There exists p > 0 such that when |〈vc,b〉| = p there

exists an equilibrium (xp,up) of (11) such that, if

〈vc,up ⊙ vc ⊙ vi ⊙ S′′((αI + γA)xp)〉 < 0 (17)

is verified at (xp,up) with λi 6= λc an eigenvalue of A
with corresponding eigenvector vi : (i) There exists a smooth

curve of equilibria in R2Na ×R passing through (xp,up, p),
tangent to the hyperplane R2Na × {p}; (ii). There are no

equilibria near (xp,up, p) when |〈vc,b〉| > p and two

equilibria near (xp,up, p) for each |〈vc,b〉| < p; (iii).

The two equilibria near (xp,up, p) are hyperbolic and have

stable manifolds of dimensions Na and Na − 1 respectively.

Proof. Observe that (12) depends continuously on the model

parameters and on the state. Then, by [13, Chapter II,

Theorem 5.1] the eigenvalues and eigenvectors of (12)

changes continuously for ‖xs‖ sufficiently small. Due to

space constraints, we leave the full development of the matrix

perturbation theory for future work and instead conjecture

that if ‖xs‖ is sufficiently small then the eigenvectors of

(13) are a good approximation of the eigenvectors of (12).

Since the origin of (11) with b = 0 is stable by Lemma

V.1 and because λmin and λmax are simple eigenvalues, if

an eigenvalue of J(xs,us) crosses zero for some ‖b‖ it must

also be simple. Furthermore this eigenvalue corresponds to a

perturbation of −d+
¯
u(α+ γλc) where λc = λmax or λmin

respectively.

By Lemma V.2, if b 6= 0 then at equilibrium ‖x‖ 6= 0.

Let g(z,b) be the Lyapunov-Schmidt reduction of (11) at an

equilibrium (x,u) for sufficiently small inputs. We have

d2Gyp,bp
(ṽc, ṽc) =

Na
∑

j=1

Na
∑

k=1

∂2(G)i
∂xj∂xk

(vc)j(vc)k

∣

∣

∣

∣

(yp,bp)

= (α+ λcγ)
2

(

up

0

)

⊙

(

S′′((αI + γA)xp)
0

)

. (18)

and the second derivative in the Lyapunov-Schmidt reduction

evaluates to

gzz = 〈ṽc, d
2Gyp,bp

(ṽc, ṽc)〉

= (α+λcγ)
2

Na
∑

i=1

(up)i(vc)iS
′′






α(xp)i + γ

Na
∑

k=1
k 6=i

aik(xp)k






> 0

where we used Lemma V.2 to approximate xp ≈ kvc for

some k ∈ R and we can choose vc for which k > 0 and

such that

sign{(vc)i} = sign











S′′






α(xp)i + γ

Na
∑

k=1
k 6=i

aik(xp)k

















= signS′′ (k(α+ λcγ)(vc)i)



Additionally,

gbi =

〈

ṽc,
∂G

∂bi

〉

= (ṽc)i

which means the term 〈vc,b〉 appears in g(z, p).
Finally, we compute the coefficient of the cross-term

g
zb̂

in the Lyapunov-Schmidt reduction. For computational

convenience, we express the input vector as b =
∑Na

i=1 βivi

where each βi := 〈vi,b〉. Coefficients of the cross-terms zβi

in g(z,b) simplify to

gzβi
=

〈

ṽc,−d2Gyp,bp

(

ṽc, J
−1
(0,u)E

(

∂G

∂βi

))〉

(19)

where E is a projection onto the range of J(0,
¯
u) and

J−1
(0,

¯
u) : v⊥

c 7→ R
Na is the inverse of to restriction of

J(0,
¯
u) to the orthogonal complement to vc. We find that

J−1
(0,u)E

(

∂G
∂βi

)

= 1
µi
(vi,0) and gzβi

= −(α + λcγ)Ki

where each Ki is the quantity in (17). Since gzβi
> 0 for

all i, we conclude that the eigenvalue of the equilibrium is

monotonically increasing with | < vc,b > |. By continuity

of eigenvalues of the pertubred Jacobian, it follows that

the leading eigenvalue necessarily crosses zero as input is

increased. By [14, Theorem 3.4.1] this singularity must be

a saddle-node bifurcation point, with bifurcation parameter

b̂ = 〈vc,b〉 and properties outlined in the statement of the

theorem.

Corollary V.3.1. The input magnitude ‖b‖ and its relative

orientation b∠vc := 〈vc,b〉/‖b‖ can be both used as

controls to trigger a network opinion cascade.

Proof. This follows trivially by factoring out the magnitude

of the input vector from the bifurcation parameter 〈vc,b〉.

Figure 3 illustrates the prediction of Corollary V.3.1.

In particular, the figure shows bifurcation diagrams with

stable and unstable equilibria of the opinion dynamics in the

agreement regime on a small network. The two diagrams

illustrate how with ‖b‖ and b∠v as bifurcation parameters,

the saddle-node bifurcation predicted by Theorem V.3 is ob-

served. Opinion cascades are activated when the bifurcation

parameter passes the critical value. Although the predictions

of the results in this section assume inputs are small, in simu-

lation and through numerical continuation of the dynamics on

different networks we observe that this result is quite robust.

The existence of a saddle-node bifurcation, and therefore a

threshold which differentiates between inputs which trigger

a cascade and ones which do not, persists across network

structures and for large inputs.

A consequence of Theorem V.3 is that also for opinion

cascades the node centrality indices are the key determinant

of the effect of exogenous inputs on the coupled attention-

opinion dynamics (11). More precisely, the smaller the angle

between the input vector and the agreement or disagreement

centrality vector, the smaller the needed input strength to

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x
1

b∠v    max||b||

x
1

no cascade cascade

-0.15 -0.1 -0.05 0 0.05 0.1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.15

cascade cascadeno cascade

Fig. 3: Blue (red) lines track the first coordinate of the stable
(unstable) equilibrium solutions of the coupled dynamics (11) on
a 3-agent undirected line graph. Parameters: uth = 0.1, γ = 1,
n = 3, b = ‖b‖ · |b∠vmax| · vmax; left: |b∠vmax| = 0.1, right:
‖b‖ = 0.1 Bifurcation diagrams generated using MatCont [12].
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Fig. 4: Heatmaps with color corresponding to proportion of simu-
lations within the given parameter range which did not result in a
network cascade by t = 500. Dark red corresponds to no cascades,
white corresponds to there always being a cascade, and grey squares
are bins with no datapoints. Each plot corresponds to 1.5 × 105

distinct simulations on an undirected graph shown in the diagram.
Simulation parameters: τu = 10, uth = 0.2, u = ua − 0.01 for
γ = 1 (left plots) and u = ud − 0.01 for γ = −1 (right plots).
For each simulation, inputs bi were drawn from N (0, 1) and the
input vector b was normalized to a desired magnitude. There were
10000 simulations performed at each constant input magnitude,
with 15 magnitudes sampled uniformly spaced between 0 and 0.1.
The initial conditions for each simulation were xi = 0, ui = 0 for
all i = 1, . . . , Na.



trigger an agreement or a disagreement opinion cascade.

Figure 4 numerically illustrates our theoretical prediction.

The transition line from the red (no cascade) to the white

(cascade) regions correspond to the threshold, i.e., the saddle

node bifurcation predicted by Theorem V.3, at which the

opinion cascade is ignited. For disparate network topologies

and both for agreement and disagreement opinion cascades,

it shows that as the angle between the input vector and the

centrality vector decreases, the norm of the input needed to

trigger a cascade gets smaller.

For the simulations shown in Figure 4, in the cascade

region of the simulations we confirmed numerically that the

centrality eigenvector accurately predicts the sign distribution

among the nodes. Rigorously proving this is subject of

future work. Although we do not explore it in this paper,

we additionally note that the cascade threshold is implicitly

defined by the design parameter yth in the attention satura-

tion function (10). In future work we will explore how the

sensitivity of the group to distributed input can be tuned with

this parameter. Other future directions include expanding the

analysis presented here to multi-option cascades with the

general opinion dynamics model in [6] and to connect it

to other continuous time and state-space models of opinion

cascades such as [15].
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