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Positive dynamical networks in neuronal regulation:
how tunable variability coexists with robustness.

Alessio Franci, Timothy O’Leary and Jorge Golowasch

Abstract—Neuronal systems exhibit highly stable and tunable
behaviors in spite of huge variability at the molecular component
level and in spite of persistent physiological and pathological
perturbations. How is this robust flexibility achieved? Homeo-
static integral control has been shown to be key in reconciling
variability with stability, but the explanatory model used lacks
basic robustness properties to perturbations. We suggest that
positive molecular regulatory networks may play a major role
in reconciling stability, variability and robustness. The idea we
propose is that integral control happens along the dominant
direction of the network. This slow direction generates a strongly
attractive, and thus robust, subspace along which almost perfect
homeostatic regulation can be achieved. Fluctuations of relevant
molecular variables along this positive dominant subspace explain
how big, positively-correlated variations of biophysical parame-
ters (as measured in experiments) are compatible with robust
regulation, thus explaining flexibility. Because of robustness, the
properties of the positive network can be subject to slower tuning
processes (like the circadian rhythm), which provides a biolog-
ically plausible basis for tunable variability to be compatible
with robust regulation. The relevance of the proposed regulation
model for control-theoretical approaches to neurological diseases
is also discussed.

I. INTRODUCTION

Neurons must continuously adapt their electrical activity to
shape information transmission through the central nervous
system in a task and state-dependent fashion. For instance,
during sleep, the electrical activity of neurons in the sensory
thalamus and all across the cortex exhibits a specific type
of pattern, called bursting, that blocks incoming sensory
information and allows for crucial sleep-related plasticity
processes [13]. During arousal, the electrical activity is sharply
different and characterized by a slow tonic-spiking pattern that
allows faithful and almost linear encoding of sensory inputs.
The switch between the two modes can and should happen
reliably, for instance, during transitions between wakefulness
and sleep. At the same time, the biophysical parameters de-
termining neuronal activity exhibit huge degrees of variability
even between cells of the same type [11], [8] and, as any
other biological system, neurons must maintain a suitable
homeostatic activity level to avoid runaway excitation, lack
of activity, or other neuronal dysfunctions [18]. How is robust
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homeostatic regulation achieved in spite of ongoing modula-
tion and parameter variability remains a debated topic [12],
[9].

The model derived in [17] shows that a biologically plau-
sible integral control scheme (described in some details in
Section II) can reconcile homeostatic regulations with variabil-
ity and modulation. It also provides a mechanism to explain
the key experimental observation that biophysical parameter
variations in a same neuronal type are big but positively
correlated [19]. Despite its success in explaining key features
of neuronal regulation, the model proposed in [17] lacks
basic robustness properties, which clash with recent findings
in molecular and circadian biology. The molecular basis of
the proposed control scheme involves the regulation of gene
transcription rates. Transcription rates are highly noisy for a
large part of the genome and robust expression of transcription
products (including mRNA) is mainly achieved at the post-
trascriptional level by molecular regulatory networks [14],
[2]. The integral model proposed in [17] leads to unbounded
molecular and biophysical parameters as soon as noisy tran-
scription is considered, as proved in this paper. Secondly,
it has recently been shown [21] that the positive linear set
along which biophysical parameter vary can undergo dramatic
changes during the circadian period. Because of its sensitivity
to initial conditions, the neuronal regulator model in [17]
cannot reproduce these results.

Motivated by these observations, we propose to extend the
model in [17] with a generic positive1 molecular regulatory
network, modeling post-transcription regulation of mRNA
expression. The main idea we propose is that the network dom-
inant (slow) direction provides a tunable space along which
regulation is possible, robustly to all kind of disturbances and
to initial conditions.

The paper is organized as follows. In Section II we review
the model in [17] from a control theoretical perspective and use
transfer function analysis to highlight its key features and limi-
tations. In Section III we introduce the revised extended model
and use singular perturbations and transfer function analysis
to analyze its robust behavior from both a mathematical and
a biological perspective. In Section IV we reproduce the
results of numerical simulations on a detailed computational
model to further illustrate the biological plausibility of the
proposed control scheme. Finally, we discuss the relevance
of the proposed ideas for control theoretical approaches to
neurological diseases in Section V.

1Positivity is intended here in the sense of cooperative or mostly cooperative
interactions between the nodes of the network, which ensures the existence
of a positive dominant eigenvector. See Section III for details.
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Fig. 1. Molecular regulation of ion channel expression. A. Block diagram
representation of neuronal regulation via a molecular feedback loop. P
is the neuronal plant, which maps maximal conductances g1, . . . , gN into
electrical activity. On the molecular timescale, electrical activity is reported
by the output 〈[Ca2+]〉T , which is regulated by a molecular controller C.
dgi , dy , dmi , are the plant, output, and control disturbances, respectively. B.
Experimentally measured correlations between channel mRNA levels in five
distinct neuron types of the crab stomatogastric nervous system (color coded,
each point is a different cell). Each neuron type is characterized by a distinct
linear subspace in the space of ion channel expression. Neurons of the same
type (and activity) can possess very different biophysical parameters as long
as correlations between them are preserved. B is adapted from [19, Figure 5]

II. A SIMPLE NEURONAL REGULATOR AND ITS
LIMITATIONS

A. A simple model of neuronal activity

From a regulation viewpoint, the electrical activity of a
neuron can be modeled as a plant P that maps maximal
conductances gi to the intracellular calcium concentration
(Figure 1A). Maximal conductances are biophysical param-
eters that determine the neuron electrical behavior by fixing
the strength of ionic currents flowing through the neuron mem-
brane. They are the key parameters in determining the neuronal
excitable behavior [8] and are subject both to molecular
and neuromodulatory regulation [12]. Considering intracellular
calcium as the output of a neuron is natural because: i) it is a
good reporter of the amount of ionic current flowing through
the membrane; and ii) it couples the neuronal electrical activity
to the cell molecular machinery by activating a variety of
second messenger pathways and transcription regulators [5].

The resulting plant I/O relationships are in general dynami-
cal and highly nonlinear, because of the complicated electrical
neuronal dynamics (spiking, bursting, etc.) [8]. However, be-
cause the electrical dynamics are much faster than the cell
molecular dynamics they are coupled to2, one can make two
simplifications when studying neuronal regulation mediated
by molecular pathways. First, the electrical dynamics can be
treated as infinitely fast, i.e., instantaneous. Second, electrical
dynamics can be averaged over long time windows to get rid

2The time scales of neuronal electrical dynamics are in the order of a
fraction of millisecond to a few second. Molecular dynamics evolve on
timescales of minutes to hours.

of intrinsic fast electrical oscillations like spikes and bursts.
In summary, from a regulation viewpoint, a neuron can be
modeled as a static map 〈[Ca2+]〉T (t) = C(g(t)), where
〈[Ca2+]〉T is the average intracellular calcium concentration
over a sufficiently long (minutes, for instance) time interval
[t − T, t]. Linearizing around a desired set point, we can
approximate this map as the linear relationship 〈[Ca2+]〉T =
cT g, where g = (g1, . . . , gN ) is the vector of maximal
conductances, c = (c1, . . . , cN ), and ci > 0 (resp. ci < 0)
signifies that the ionic conductance i tends to increase (resp.
decrease) 〈[Ca2+]〉T .

B. A simple model of neuronal regulation

Each ionic current type flows through a specific type of
ion channel carrying specific types of ions across the cell
membrane. Ion channels are proteins embedded in the cell
membrane. The maximal conductance of a given ionic current
is proportional to the number of membrane ion channels
carrying that current. How many ion channels of a given
type are available in the membrane, and thus how large is
the resulting ionic current maximal conductance, is largely
regulated by the rates of expression of the genes coding
for each ion channel protein. In turn, gene expression rates
are dependent on intracellular calcium levels [5]. A major
biological hypothesis in [17] is that gene expression rates
are regulated in such a way that 〈[Ca2+]〉T is maintained
around a desired set point Catgt, coded in the cell’s physiology
(see [17, Figure 1A]). The main modeling proposal in [17] is
then that ion channel expression is regulated by an integral
controller C that achieves perfect regulation of 〈[Ca2+]〉T
(see Figure 1A and [17, Figure 1B]). The resulting closed-
loop integral controller equations can be simplified as

τiṁgi = Catgt − 〈[Ca2+]〉T + dy + dmi

= Catgt − cT g + dy + dmi (1a)
τg ġi = −gi +mgi + dgi . (1b)

where mgi is the concentration of a generic channel protein
precursor (including messenger RNA (mRNA)) associated
to ionic current of type i, gi is the associated maximal
conductance, and dy, dmi , dgi are disturbances. With a small
biological abuse of notation, we will refer to the mgi simply
as the mRNA concentrations or expression levels associated to
the maximal conductances gi. There can be an arbitrary large
number (N ∈ N) of ionic current types, so i = 1, . . . , N .
The positive constants τi, τg fix the time scales of mRNA
transcription from genes and translation to proteins, respec-
tively. In model (1), we consider output disturbances dy and
two types of state disturbances: dgi , i.e., maximal conductance
disturbances, and dmi , i.e., mRNA disturbances.

Let Gz→w(s) denote the transfer function from z to w
associated to model (1), where z and w are two signals. Then
we have the following proposition, whose proof follows by
straightforward computations and is omitted.

Proposition 1. Let q =
∑N
i=1 ci/τi and T (s) = s(τgs+ 1).

• Gr→e(s) = T (s)
q+T (s) ;
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• Gdgi→e(s) = −ci s
q+T (s) ;

• Gdy→e(s) = − q
q+T (s) ;

• Gdmi→e(s) = − ci/τi
q+T (s) .

Observing that T (0) = 0, it follows that if q > 0 and
dy = dmi = 0 the control scheme proposed in [17] achieves
perfect regulation of 〈[Ca2+]〉T that is robust to constant
maximal conductance disturbances. It also achieves robust
compensation of all disturbance types, in the sense that all
transfer functions from disturbances to output errors have only
poles with negative real parts. The condition q > 0 constraints
the values of the τi’s to be smaller, i.e., mRNA expression
faster, for conductances that tend to increase 〈[Ca2+]〉T . This
observation suggests an experimentally testable connection
between homeostatic regulation and channel expression rate.

In the absence of maximal conductance and mRNA dis-
turbances, the closed-loop neuronal regulation model (1) also
provides a mechanism to “develop” a neuronal type. Various
experimental observations [19], [22] revealed that a given
neuronal type is defined by linear relationships between
its maximal conductances, rather than by a single point in
the maximal conductance space, as illustrated in Figure 1B
(adapted from [19, Figure 5]). Formally, a neuronal type
corresponds to a bounded subset of the linear subspace
{gi = αijgj}. We say that two conductances i, j are positively
correlated in a given neuronal type if αij > 0, negatively
correlated if αij < 0, uncorrelated if αij = 0. The insight
from localized nonlinear sensitivity analysis [3] is that con-
ductance correlations correspond to a balance of distinct ionic
currents [6]. Experimentally, αij ≥ 0 for all i = 1, . . . , N and
all j = 1, . . . , k, i.e., all conductance pairs are either positively
correlated or uncorrelated in biological systems. Starting at
time t = 0 from an non-differentiated neuronal cell, i.e., one
with mgi(0) ≈ gi(0) ≈ 0, the homeostatic controller (1) with
dgi = dmi = dy = 0 develops the neuronal type associated to
the positive linear correlations

gi
gj
≈ τj
τi
. (2)

Indeed, in the absence of disturbances, mgi(t) =
1
τi

∫ t
0
e(τ)dτ + mgi(0). Thus, once the integral controller

has converged, (2) is satisfied provided initial conditions are
sufficiently small.

C. Limitations of the simple regulation model

The first, crucial limitation of model (1) is that, although
the neuronal output 〈[Ca2+]〉T can be robustly regulated, the
presence of disturbances leads to unbounded molecular and
biophysical parameters. The simple computations needed to
prove the following proposition are omitted.

Proposition 2. Let q =
∑N
i=1 ci/τi and T (s) = s(τgs+ 1).

• Gdmi→gi(s) = 1
T (s)

(
1− ci/τi

q+T (s)

)
;

• Gdmj→gi(s) = − 1
T (s)

cj/τj
q+T (s) .

Because T (s) = 0, any mRNA disturbance with non-zero
zero-frequency component (for instance, any colored noise)

Fig. 2. Post-transcriptional neuronal regulation. This homeostatic controller
is similar to the one proposed in [17] but includes a network of molecular
interactions that controls ion channel expression, rather than simple gene-to-
channel regulation.

generically leads to unbounded maximal conductances, which
is meaningless biologically.

Remark 1. Observe that if dm1
= · · · = dmN = dm, then

Gdm→gi(s) =
∑N
j=1Gdmj→gi(s) = 1

q+T (s) have only poles
with negative real part and thus the controller is robust (i.e.,
it does not lead to unbounded states) to this specific type of
disturbances. In [17] a discussion of this fact is provided in
terms of homogeneous versus heterogeneous calcium targets
for the various mRNA expression rates.

The second limitation of model (1) is its sensitivity to
initial conditions. Indeed, the model develops conductance
correlations as defined by (2) only for very small initial
conditions. Starting from generic initial conditions the model
will let conductances converge to a completely different set
as a function of the specific initial condition values. In other
words, the linear correlation set defined by (2) is not attractive
in model (2). This clashes with the recent observations in [21],
which show that, along the circadian cycle, conductances
robustly and periodically move between different correlation
sets, or get uncorrelated at a given time of day and converge
back to a correlation set at another time of the day. To repro-
duce these experimental observations, the linear correlation set
should be attractive.

III. A SIMPLE AND ROBUST NEURONAL
REGULATOR

A key biological feature that is missing in the integral
control model developed in [17] is that once transcribed, the
channel mRNAs mgi enter complicated post-transcriptional
regulatory networks that can drastically change the amount
of translated channel proteins as compared to the amount
of transcribed mRNA [14]. The results in [14] reveal that
a post-transcriptional process coherently orchestrates mRNA
expression and that mRNA transcription is highly noisy for
the larger part of the genome. We thus introduce a generic
post-trascriptional molecular regulatory network between the
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transcribed channel precursors mgi as follows3

ṁgi =
(
Catgt − 〈[Ca2+]〉T

)
+

N∑
j=1

Aijmj + dy + dmi (3a)

τg ġi = −gi +mgi + dgi . (3b)

See Figure 2 for a graphical representation of the extended
controller.

Assumption 1. The network dynamics (3) are stable (i.e., A
has all eigenvalues with non-positive real part). Moreover,
A possesses a dominant positive eigenvector. That is, A
possesses a real (dominant) eigenvalue λ1 such that: i) the
other eigenvalues λ2, . . . , λN of A satisfy Re(λi) < λ1; ii) λ1
has algebraic multiplicity one; iii) the associated eigenvector
v1 is positive.

The key idea we propose is that the subspace generated by
the positive dominant eigenvector of the network determines
an attractive, robust, slow direction along which conductances
are positively correlated and along which (almost) perfect
integral control is possible. The following remark clarifies the
connection between Assumption 1 and positive dynamics.

Remark 2. Assumption 1 is satisfied in the following impor-
tant cases:
1) the linear dynamics (3) are positive, in the sense that
positive inputs leave the positive orthant invariant, that is, if
and only if A is Metzler [1, Lemma 8.1];
2) there exists δ ∈ R such that A+ δI is eventually positive,
that is, there exists n ∈ N such that (A + δI)n is positive.
Eventual positivity is equivalent to eventual exponential posi-
tivity [7, Theorem 5].
From a biological viewpoint, both case 1) and 2) occur when
most of the molecular interactions underlying the neuronal
homeostatic regulator are cooperative. In case 1), A possesses
a positive dominant eigenvector because all Metzler matrices
do. To prove that the same is true in case 2), we invoke [16,
Theorem 2.2], which implies that A+ δI possesses a positive
dominant eigenvector and so does A.

Let v2, . . . , vN be a basis for the generalized eigenspace
associated to the eigenvalues λ2, . . . , λN , Re(λi) < λ1 ≤ 0.
Then, there exists a change of coordinate U , with columns
U·i = vi, such that [mgi ]

N
i=1 = Um̃ and m̃ is ruled by a

block-diagonal dynamics4

˙̃m1 = λ1m̃1 + b1(e+ dy) +
〈
U−11· , [dmi ]

N
i=1

〉
(4a)

[ ˙̃mi]
N
i=2 = Ã[m̃i]

N
i=2 + [bi]

N
i=2(e+ dy)+

+
〈
U−1i· , [dmj ]

N
j=1

〉N
i=2

, (4b)

e = r − y = Catgt − 〈[Ca2+]〉T , (4c)

with bi =
∑N
j=1 U

−1
ij and Ã and (N−1)×(N−1)-dimensional

matrix with spectrum λ2, . . . , λN . In particular, Ã and all
transfer functions associated to (4) are Hurwitz.

3For simplicity and to reduce the number of parameters, all the τi’s were set
to one. The analysis below can easily be generalized to the case of different
τi’s by suitably scaling the rows of the matrix A.

4〈·, ·〉 denotes the Euclidean scalar product.

The behavior of the closed-loop dynamics (3) can be
understood in the limit in which the fast eigenmodes associated
to the eigenvalues λ2, . . . , λN are much faster than the slow
mode associated to dominant eigenvalue λ1. Let

ε =
1

minj=2,...,N |Re(λj)|
.

Theorem 1. The slow dynamics associated to the singular
limit ε→ 0 of model (3) is

τg ġi = −gi + [v1]im̃1 + dgi (5a)
˙̃m1 = λ1m̃1 + b1(e+ dy) +

〈
U−11· , [dmi ]

N
i=1

〉
. (5b)

Moreover the critical manifoldMc = {m̃i = 0, i = 2 . . . , N}
is exponentially attractive

Proof. Let Ã1 := εÃ. Then Ã1 has spectrum ελ2, . . . , ελN ,
with Re(λi) < 0 and εminj=2,...,N |Re(λj)| = 1. The closed-
loop dynamics (3) then reads

τg ġi = −gi + [Um̃]i + dgi (6a)
˙̃m1 = λ1m̃1 + b1(e+ dy) +

〈
U−11· , [dmi ]

N
i=1

〉
(6b)

ε[ ˙̃mi]
N
i=2 = Ã1[m̃i]

N
i=2 + ε

(
[bi]

N
i=2(e+ dy)+

+
〈
U−1i· , [dmj ]

N
j=1

〉N
i=2

)
. (6c)

Because Ã1 is Hurwitz, in the singular limit ε → 0, the
model reduces to the slow dynamics (5) defined on the critical
manifold Mc = {m̃i = 0, i = 2 . . . , N}, which is also
exponentially attractive.

We will now show that the reduced dynamics (5) realizes an
almost perfect integral controller along the dominant eigen-
vector associated to the positive molecular regulatory network
dynamics defined by A. Behavior away from the singular limit
is discussed afterward. The following proposition follows by
straightforward computations (omitted).

Proposition 3. Let Tλ1(s) = (τgs + 1)(s − λ1) and c̃1 =∑N
i=1 ci[v1]i. The transfer output-error functions associated

to the reduced model (5) are:
• Gr→e(s) =

Tλ1 (s)

Tλ1 (s)+b1c̃1
;

• Gdgi→e(s) = ci(s−λ1)
Tλ1 (s)+b1c̃1

;

• Gdy→e(s) = b1c̃1
Tλ1 (s)+b1c̃1

;

• Gdmi→e(s) =
c̃1U

−1
1i

Tλ1 (s)+b1c̃1
.

Observing that T0(0) = 0, it follows that if b1c̃1 > 0 and
dy = dmi = 0, then for λ1 = 0 the positive regulatory network
dynamics achieve perfect regulation of 〈[Ca2+]〉T , robustly
to maximal conductance disturbances, by modulating mRNA
expression along the dominant eigenvector of the positive
dynamics. This regulation is robust both to output and mRNA
disturbances, in the sense that the associated transfer functions
have only poles with negative real parts. If λ1 < 0, then
regulation is almost perfect, with output error of order O(λ1).

The condition b1c̃1 > 0 imposes constraints on the dom-
inant and non-dominant eigenvector structure such that the
regulation goal is achievable. In particular, if U happens to
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be unitary, then b1 =
∑N
i=1[v1]i > 0 because the dominant

eigenvector is positive. The same is true if U is not far from
being unitary. Then, the condition c̃1 =

∑N
i=1 ci[v1]i > 0

imposes that the dominant eigenvector components, to which
the related mRNA variables converge, are compatible with
the effect that the associated ionic conductances have on
〈[Ca2+]〉T . In particular, eigenvector components associated to
variables that increase 〈[Ca2+]〉T should be large as compared
to components that decrease it.

The following proposition shows that the neuronal homeo-
static controller extended with a positive molecular regulatory
network robustly regulates the ionic channel conductances in
order to maintain stable linear relationships between them, in
spite of disturbances and, independently of initial conditions.
The proof is omitted for space constraint, but follows from
elementary computations.

Proposition 4. Let g̃j =
∑N
i=1 P

−1
ji gi.

• g̃1 = 1
τgs+1

(
m̃1 +

〈
P−11· , [dgi ]

N
i=1

〉)
;

• g̃j = 1
τgs+1

〈
P−1j· , [dgi ]

N
i=1

〉
, j = 2, . . . , N ;

• Gdmi→m̃1
(s) =

τgs+1
Tλ1 (s)+b1c̃1

P−11i ;

• Gdgi→m̃1
(s) = −ci

Tλ1 (s)+b1c̃1
.

Observe that g̃1 is the projection of the maximal conduc-
tance vector along the dominant eigenvector v1, whereas g̃j ,
j = 2, . . . , N are the projection in the N − 1 orthogonal
directions to v1. Proposition 4 shows that, modulo disturbances
and robustly to them, the vector of maximal conductances con-
verges to the subspace generated by the dominant eigenvector
v1, corresponding to the linear relationships

gi
gj

=
[v1]i
[v1]j

(7)

Along this subspace, the vector of maximal conductances be-
haves as a lagged version of the variable m̃1, which is expected
to exhibit large fluctuations in order to achieve (almost) perfect
regulation of 〈[Ca2+]〉T and compensate for disturbances.
How much m̃1 fluctuates in response to disturbances, and thus
how much maximal conductances vary along the correlation
subspace depends on λ1. Because both the direction v1 and the
associated slow eigenvalue λ1 can be modulated (e.g., during
the circadian period), our model provides a simple way to
explain how both the linear relationships between maximal
conductances and the associated degree of variability can be
tuned, while remaining robust to disturbances and insensitive
to initial conditions.

Away from the singular limit considered until now, in
which the fast eigenvalues are infinitely fast, the unperturbed
(dy = dgi = dmi = 0) behavior follows from standard results
in singularly perturbed system [4]. In particular, because the
critical manifold is normally hyperbolic (i.e., the fast dynamics
is exponentially asymptotically stable - see Theorem 1) for
ε > 0 and sufficiently small, trajectories of the closed loop
dynamics (3) are expected to lie in a O(ε)-neighborhood
of the critical manifold {m̃j = 0, j = 2, . . . , N} and thus
maximal conductance to lie in a O(ε)-neighborhood of the
linear correlation subspace {gi/gj = [v1]i/[v1]j}. The effect

of disturbances away from the singular limit, in particular,
how far from the critical manifold and the linear correlation
subspace trajectories spread, can be studied by computing
transfer functions of the fast variables m̃j , j = 2, . . . , N . The
proof of the following proposition is elementary (omitted).

Proposition 5. The following holds.
• Gdmi→m̃j (s) = O(ε)Ḡdmi→m̃j (s), j = 2, . . . , N,
• Gdgi→m̃j (s) = O(ε)Ḡdgi→m̃j (s), j = 2, . . . , N,

where Ḡdmi→m̃j (s), Ḡdgi→m̃j (s) are Hurwitz.

Thus, for ε sufficiently small, the fast variable are weakly
(i.e., O(ε)) sensitive to disturbances. This implies that the
correlation set, lying in an O(ε) neighborhood of the critical
manifold and to which the conductances converge for dy =
dgi = dmi = 0, slightly fattens in the presence of disturbances.
In particular, there exists an open set of width O(ε) around
the unperturbed correlation set that attracts all trajectories.
How fat this set is along each of the orthogonal directions
to v1 depends on the precise non-dominant eigenvalue and
eigenvector structure of the molecular regulatory network, a
feature that can also be modulated (i.e., during the circadian
cycle) to further tune the variability of the model.

Remark 3. Adding leaky terms to the original integral homeo-
static controller (1) would solve its robustness issues by avoid-
ing unbounded states but, as opposed to the positive network
homeostatic controller, the correlation subspace would not be
strongly attractive for this leaky integral controller. Thus, the
presence of disturbances would again lead to the disruption of
conductance correlation.

IV. SIMULATIONS ON A DETAILED BIOLOGICAL MODEL

To test the performance of the proposed neuronal regulator,
we couple equation (3) with the detailed electrophysiological
neuron model described in [10]. This model has six voltage
and calcium gated currents, eleven state variables, and it
can reproduce a variety of electrical behaviors. The maximal
conductances of the model are regulated accordingly to (3).
Maximal conductances and mRNA variables are initialized
at small (close to zero) initial conditions. To simulate the
effect of a circadian modulation, the Metzler matrix A, deter-
mining the homeostatic controller positive network structure
and its dominant direction, is supposed to vary periodically
on a slower timescale than mRNA and maximal conductance
dynamics. In particular, we pick A(t) = sin(t/(2Tc))

2A1 +
(1 − sin(t/(2Tc))

2)A2, where A1 and A2 are two Metzler
matrix and Tc is the simulated circadian period. The dominant
eigenvectors of the two matrices A1, A2 define conductance
correlations corresponding to bursting and tonic spiking type,
respectively. White noise was added to all mRNAs and max-
imal conductances dynamics.

Figure 3 shows the outcome of the resulting simulations.
Conductances grow exponentially until the 〈[Ca2+]〉T ≈
Catgt and then roughly stabilize. The presence of strong
disturbances makes the subsequent time course highly variable
but, because of the controller positive network, conductances
vary in a correlated fashion. Embedded in the noisy trajecto-
ries, the presence of a slow circadian modulation is respon-
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Fig. 3. Output of the proposed positive molecular homeostatic controller.
A. Simulated maximal conductance time course. The two arrows indicate
the locations of the two time windows of length 2000ms used to draw
the plots in B and C. Blue arrow corresponds to A(t) ≈ A2. Red arrow
corresponds to A(t) ≈ A1. B. Time course of the membrane potential during
2s time windows centered at the arrows in A (color-coded). In the top plot
the cell is regulated to exhibit tonic spiking activity. In the bottom plot the
cell is regulated to exhibit bursting activity. C. Three pairs of conductance
correlations during the time windows indicated by the arrows in A. Full code
and parameters used in the simulations available upon email request to the
first author.

sible for changing the correlation direction, thus modulating
the regulated neuronal activity, i.e., the cell is periodically
regulated between a tonic spiking type and a bursting type.
Correlations are drawn by sampling the conductance evolution
in the indicated short time window, which simulates the exper-
imental procedure of measuring different cells’ conductances
at roughly the same circadian time.

V. DISCUSSION

We derived a revised model of neuronal regulation that
maintains the biological plausibility and simplicity of the
original model proposed in [17] but also captures robust-
ness and tuneability properties of neuronal regulation in a
more biologically sound way. The development of control-
theoretical models of neuronal homeostasis is also valuable
for biologically-grounded control-theoretical approaches to
neuronal diseases. The model in [17] already provided insights
into how homeostatic compensation can lead to pathological
neuronal behaviors. Extending this model with a biologically
substantiated molecular regulatory network allows to study
from a control-theoretical perspective other types of interac-
tions between neuronal homeostasis and disease, in particular
those associated with the disregulation of specific molecular
pathways [15], [20].
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