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The general purpose of this paper is to build up on our understanding of the basic

mathematical principles that underlie the emergence of synchronous biological rhythms,

in particular, the circadian clock. To do so, we study the role that the coupling

strength, coupling type, and noise play in the synchronization of a system of coupled,

non-linear oscillators. First, we study a deterministic model based on Van der Pol

coupled oscillators, modeling a population of diffusively coupled cells, to find regions

in the parameter space for which synchronous oscillations emerge and to provide

conditions under which diffusive coupling kills the synchronous oscillation. Second, we

study how noise and coupling interact and lead to synchronous oscillations in linearly

coupled oscillators, modeling the interaction between various pacemaker populations,

each having an endogenous circadian clock. To do so, we use the Fokker-Planck

equation associated to the system. We show how coupling can tune the frequency of

the emergent synchronous oscillation, which provides a general mechanism to make

fast (ultradian) pacemakers slow (circadian) and synchronous via coupling. The basic

mechanisms behind the generation of oscillations and the emergence of synchrony

that we describe here can be used to guide further studies of coupled oscillations in

biophysical non-linear models.

Keywords: synchronization, oscillator death, circadian rhythm, coupled non-linear oscillators, Fokker-Planck

1. INTRODUCTION

The study of circadian rhythms has been a subject of great interest for a long time. The majority
of the first studies were mainly based on observations in plants [1–4]. The study of circadian
rhythms from a mathematical perspective reached a milestone with the work of Kalmus and
Wigglesworth, a biologist and a mathematician, respectively, who associated of circadian rhythms
to the existence of a limit cycle, using a hydraulic system as analogy. Kalmus and Wigglesworth
presented their work entitled "Shock excited system as models for biological rhythms" along
with several mathematical models of circadian rhythms at a Symposium on Biological Rhythms
carried out at Cold Spring Harbor in the United States of America in 1960 [5–7]. Lots of
other important works on circadian rhythms were presented in this symposium, but the work
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of Kalmus and Wigglesworth was key in establishing a better
mathematical formalism for the study of circadian rhythms.
Although many researchers followed the theoretical path
proposed by Kalmus and Wigglesworth, the mathematical study
of circadian rhythms was finally established by Arthur Winfree
(biologist and mathematician), who introduced topology for
the description of several aspects of circadian rhythms. An
excellent summary of many of the earlier works can be found
in Arthur Winfree’s master book entitled “The Geometry of
Biological Time” [8]. The number of studies about biological
rhythms at large has increased greatly in the last two decades, in
part due to new technological advances. Particularly related to
circadian rhythms, there is now evidence that there is rhythmic
patterns of activity at the molecular [9, 10], cellular [11, 12],
tissue [13, 14], and systems levels [15–17], and that circadian
regulation is involved in jointly regulating activity in all those
different levels of biological organization [18–20], and also,
taking into account interactions with the environment [21] and
perturbations induced by behavior [22, 23].

Mathematical modeling and experimental characterizations of
different properties of circadian rhythms have been combined
to produce explanations and hypotheses about the rhythmicity
in biological phenomena [24–28]. Of particular interest, the
ontogeny of circadian rhythm in the crayfish has been studied by
Lara-Aparicio et al. [29] combining theoretical and experimental
perspectives, building phenomenological mathematical models
that capture a series of experimental results involving the
synchronization of electro-retinogram activity in crayfish [30–
32]. These models couple two van der Pol oscillators [33]
represented by state vectors, and include parameters representing
the frequency of the oscillators, the radii of the limit cycles, and
the first coordinate of the center of the limit cycle. The system is
setup such that one oscillator is driving the behavior of the other
oscillator, but not vice-versa. One of the main findings with this
model is that the driving oscillator induces an Andronov-Hopf
bifurcation in the driven oscillator and regulates its frequency.

The model by Aparicio et al. simulates, explains, and has
suggested new biological experiments, it is simple enough to
allow analytical approaches, and it has provided useful insights
about questions referring to the ontogeny of the circadian rhythm
in crayfish from the childhood to adult stages. For instance,
a hypothesis about the existence of a hormone, which was
experimentally detected, was generated from the model. The
model also allowed Lara-Aparicio et al. to study synchronization
of circadian rhythms with external signals like day and night
light cycle [34]. By studying basic principles underlying the
generation of oscillations in coupled non-linear systems, these
researchers were able to conjecture that circadian rhythms can
result from coupling systems of cells, each one oscillating with
an ultradian oscillation [35–37]. Synchronization among cells
emerges naturally as a motivating theme that has been studied
through systems of non-linear Equations [38] representing n
oscillators with the classical van der Pol non-linear damping for
the terms responsible for the oscillatory dynamics.

In the present paper, we extend the work in Lara-Aparicio
et al. [29] and Barriga-Montoya et al. [38] by analyzing two
qualitative mathematical models, each capturing a different

level of organization in the ontogeny of circadian rhythms.
Inspired by gap junction coupling between neurons, or similarly,
by chemical coupling in self oscillating networks, we study
the bifurcation structure in a deterministic model assuming
that the coupling between the oscillators is diffusive. The
resulting dynamics resemble neuronal activity at the cellular
level. Then, using graph theoretical methods and center manifold
theory, we show that synchronous oscillations appear via a
Hopf bifurcation in a population of pacemaker oscillators.
In this case, the bifurcation parameter is thought of as a
representative of the developmental stage of the neurons. We
further explore the phenomenon of oscillator death: although the
single neurons are endogenously oscillating for sufficiently large
values of the bifurcation parameter, the population oscillation
dies for sufficiently large coupling, which suggests that the weak
coupling hypothesis must be satisfied for robust synchronous
oscillations to occur. In the case of all-to-all coupling, we
provide necessary conditions for oscillator death to occur
and leave the derivation of sufficient conditions to a future
report.

Frequency modulation is also an important phenomenon
that can be studied with these models. In consideration of
the results from the first analysis, we shift our focus to
the frequency modulations that emerge as a result of the
interconnection of various circadian pacemaker populations.
In doing so, we estimate the synchronization frequency as a
function of the intrinsic frequencies of the oscillators, their
coupling strength, and the topology of the network. To do
so, we construct a second model that can be thought of as a
stochastic, larger-scale extension of the first model we present.
In this case, each population is assumed to be an endogenous
oscillator and the coupling is assumed to be linear. Using
linear stochastic analysis and under the assumption that the
population oscillations are synchronized, we derive a scalar
Fokker-Plank equation. Themodel captures an important feature
of circadian rhythm ontogeny: the emergence of low frequency
(circadian) oscillations from coupled high frequency (ultradian)
oscillators [35–38]. Future work will aim at deriving conditions
on the intrinsic frequencies, the coupling strength, and the
network topology, that ensure synchronization of the population
oscillations.

It is worth noticing that, although the motivation for the
present paper is centered around circadian rhythms, the model
captures more general phenomena. Our findings include that
in diffusively coupled cells resting node dynamics imply global
asymptotic stability, oscillating node dynamics imply global
synchronization for small coupling, and multistability between
oscillator death and global synchronization for large coupling.
In stochastic, linearly coupled populations, we describe the
dynamical mechanisms through which coupling modulates
the frequency of the synchronous oscillation. To the author’s
knowledge, both phenomena are new from a non-linear
collective phenomena perspective. Among other reasons, it is
surprising that passive coupling like diffusive coupling could
kill an oscillation and create multistability. Similarly, we are not
aware of any work providing mechanistic explanations on how
coupling can tune a global oscillation frequency.
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The paper is organized as follows. In section 2, we present
and analyze the model of diffusively coupled oscillators. Two
theorems are proved about global asymptotic stability for resting
cells and global synchronization for oscillating cells and weak
coupling. We then derive sufficient conditions for diffusive
coupling-induced oscillator death. In section 3 we present and
analyze the model of linearly coupled oscillators. In particular,
we derive an explicit formula for the emergent synchronization
frequency as a function of the coupling topology and oscillator
natural frequencies. Finally we discuss the presented results in
section 4.

2. GLOBAL SYNCHRONIZATION AND
OSCILLATOR DEATH IN DIFFUSIVELY
COUPLED OSCILLATORS

We regard a network of N coupled oscillators as a directed graph
G with N vertices, with a network topology codified by a matrix
A = [aij]

N
i,j=1, where aij ≥ 0 represent connection weights. If

oscillator i receives signals from oscillator j, then the graphical
representation of G has an arrow from j to i, and aij > 0. If
aij > 0, the signal received by oscillator i from oscillator j is
aij(xj − xi). Assume that the dynamics for each oscillator satisfies
the following coupled oscillator dynamics

ẋi = yi + µ

N
∑

j=1

aij(xj − xi) (1a)

ẏi =
(

λ − x2i −
y2i
ω2

)

yi − ω2
i xi (1b)

where µ is the global coupling strength, which uniformly scales
the coupling weights aij.

In the absence of coupling the oscillator dynamics reduces to
the modified van der Pol equation

ẍi =
(

λ − x2i −
y2i
ω2

)

ẋi − ω2
i x.

These equations define a simple dynamical system that can
transition between global asymptotic stability and almost global
convergence to a hyperbolic limit cycle through variations of
the control parameter λ ∈ R, providing a simple model for
various biological systems that exhibit the same transition, in
particular neurons and molecular oscillators. For λ < 0 the non-

linear dissipation coefficient −
(

λ − x2 − y2

ω2
i

)

is always positive,

which leads to damped oscillations. For λ > 0 the dissipation
coefficient becomes negative close to the origin, which leads
to sustained oscillations through a Hopf bifurcation. A generic
trajectory belonging to the family of periodic orbits born at the
Hopf bifurcation has the form

√
λ(cos(ωit + θ0), sin(ωit + θ0)), (2)

where the θ0 is the initial phase.
In the presence of coupling, Equations (1) represent a

generic network of diffusively coupled non-linear oscillators. As

mentioned earlier, the diffusive form of the coupling can be
thought of as gap junction coupling in a neuronal population,
or diffusive coupling between non-linear molecular oscillators.
In both interpretations, the graph topology is necessarily
undirected, that is, aij = aji. However, the mathematical results
presented in this section hold under more general assumptions
and we present them in the general form.

2.1. Global Synchronization
We start by recalling some basic graph-theoretical definitions and
facts. The graph G is said to be strongly connected if for each pair
of nodes in G, there exists a directed path between them. G is
balanced if

∑N
j=1 aij =

∑N
j=1 aji for all i.

The Laplacian matrix L =
[

Lij : i, j = 1, ..., n
]

for the graph G

is such that Lij = −aij if i 6= j, and Lii =
∑N

j=1 aij. Note that the

vector of ones is always a right null eigenvector of L and zero is
always an eigenvalue of L (L1N = 0). It can be shown that a graph
is strongly connected if and only if zero is a simple eigenvalue
of the Laplacian matrix [39]. Obviously, symmetric graphs (i.e.,
satisfying aij = aji) are balanced, but the converse is not true.
Consider, for instance, a directed ring.

The global behavior of the system (1) for λ < 0 and µ ≥ 0, for
a network with connectivity represented by a generic balanced
graph is characterized by the next theorem (Figure 1).

Theorem 2.1. Assume that the graph G is balanced and that ωi =
ωj = ω for all i, j = 1, . . . ,N. If λ < 0, then the origin is globally
asymptotically stable and locally exponentially stable for allµ ≥ 0.

Proof.We consider the quadratic Lyapunov function

V(x, y) =
N

∑

i=1

(x2i + y2i /ω
2).

The derivative of V along the trajectories of the system (1) gives

V̇ =
N

∑

i=1

(

2xiẋi + 2yiẏi/ω
2
)

(3)

which after substitution of the derivatives ẋi and ẏi, can be
bounded from above as follows

=
N

∑

i=1



2xiyi − 2yi
ω2xi

ω2
+ 2

yi

ω2

(

λ − x2i −
y2i
ω2

)

yi

−2µxi

N
∑

j=1

aij(xi − xj)





≤ 2
λ

ω2

N
∑

i=1

y2i − 2µ

N
∑

i,j=1

xiaij(xi − xj)

= 2
λ

ω2

N
∑

i=1

y2i − 2µ

N
∑

i,j=1

aij(x
2
i − xjxi)

= 2
λ

ω2

N
∑

i=1

y2i − 2µ

N
∑

i,j=1

aij(x
2
i /2− xjxi + x2i /2)
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FIGURE 1 | Transition between global asymptotic stability and synchronous oscillation via Hopf bifurcation in system (1) for µ = 0.05, N = 20, natural frequencies

uniformly distributed in the interval [0.9, 1.1] and varying λ. The interconnection topology is all-to-all.

To show that the last term is negative definite, we use the
balanced interconnection hypothesis. Let dj =

∑N
i=1 aij =

∑N
i=1 aji. Then,

N
∑

i,j=1

aijxj =
N

∑

j=1

djxj =
N

∑

i=1

dixi =
N

∑

i,j=1

aijxi.

As a consequence,

V̇ ≤
λ

ω2

N
∑

i=1

y2i − µ

N
∑

i,j=1

aij(xi − xj)
2 ≤

λ

ω2

N
∑

i=1

y2i .

Then the global part of statement follows by LaSalle invariance
principle [40]. The local part follows by observing that for λ <

0 the linearization of model (1) at the origin is non-singular
and therefore asymptotic stability of the origin implies that all
eigenvalues have negative real part. �

Remark. Because exponentially stability implies robustness
to small perturbations, Theorem 2.1 remains true for small
heterogeneity in the natural frequencies.

Note that, for λ < 0, the system in Equation (1) exhibits
exponentially damped oscillations toward the origin (Figure 1,
top panels).

Next we show that, at λ = 0 and identical natural frequencies
model (1) undergoes a supercritical Hopf bifurcation inside the
consensus space

C = {(x, y) ∈ R
2N

: xi = xj, yi = yj, ∀i, j = 1, . . . ,N},

provided the graph is strongly connected. The linearization of the
system (1) is given by

J =
[

−µL IN
−ω2IN λIN

]

, (4)

where IN is the N-dimensional identity matrix and L is the
network Laplacian defined in section 2.1. Let 1N be the N-
dimensional vector of ones. Given a (complex) vector ν = (v,w)
in the consensus space C, that is, v = a1N and w = b1N for
some a, b ∈ C, the eigenvalue problem for the Jacobian matrix
Equation (4), restricted to the consensus space, takes the form

Jν = J

[

a1N
b1N

]

=
[

−µLa1N + b1N
−ω2a+ λb1N

]

=
[

b1N
(−ω2a+ λb)1N

]

= ξ

[

a1N
b1N

]

where ξ is a (complex) eigenvalue. In the third equality we used
the fact that 1N is a right null eigenvector of L. The last equality
shows that ν ∈ C is an eigenvector of J with eigenvalue ξ if and
only if its components a and b satisfy

[

0 1
−ω2 λ

] [

a
b

]

= ξ

[

a
b

]

. (5)
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We can now easily solve Equation (5) to obtain the
eigenvalues/eigenvectors pairs

ξ±(λ) =
λ

2
±

1

2

√

λ2 − 4ω2,

[

a±
b±

]

=
[

1
ω2 (λ − ξ±)

1

]

(6)

For λ = 0 we got two purely imaginary eigenvalues which
correspond to a supercritical Hopf bifurcation of model (1) inside
the consensus space, as summarized in the following theorem and
illustrated in (Figure 1, bottom panels).

Theorem 2.2. For almost all balanced, strongly connected
interconnection topologies the following holds. For all µ > 0, the
system (1) undergoes a supercritical Hopf bifurcation at λ = 0
with center manifold given by the consensus space C. Moreover,
the family of periodic solutions born at the Hopf bifurcation are
exponentially asymptotically stable and correspond to synchronous
oscillations of the oscillator network.

Proof. By Theorem 2.1 the origin is locally exponentially stable
for λ < 0. We further observe that, if the interconnection
topology is strongly connected, then zero is a simple eigenvalue
of L and therefore no either eigenvalue of J satisfies the same
eigenvalue problem defined by Equation (5). It then follows by
the center manifold theorem [41] and Equation (6), that the
system (1) possesses a two-dimensional center manifoldWc that
is tangent to the consensus space C, for λ = 0. Moreover,
this center manifold is exponentially attractive. By the Hopf
bifurcation theorem [42], Equation (6) also implies that the
system Equation (1) undergoes a supercritical Hopf bifurcation
inside Wc when λ crosses zero from negative to positive. By
direct substitution inside the model equations, we see that along
a generic member of the family of periodic orbits born at the
Hopf bifurcation, oscillators are synchronously oscillating with
each oscillator orbit given by (2). �

Remark 2.3. Because Hopf bifurcation is codimension-zero (in the
sense of [43]), it is persistent under small perturbations, which
ensures that Theorem 2.2 remains true for small heterogeneity in
the natural frequencies.

2.2. Oscillator Death and Multi-Stability for
Stronger Coupling
We now explore the phenomenon of “oscillator death,” induced
by strong coupling in model (1). We restrict our attention to the
all-to-all coupling case, i.e., aij = 1 for all i 6= j. For λ > 0 and
µ sufficiently small the synchronous oscillations born at Hopf
bifurcation (Theorem 2.2) attract all trajectories. However, the
system ismultistable, as can be noted from the fact that increasing
µ leads to the appearance of a family of steady states that attract
some of the trajectories, but the synchronous periodic orbits
remain locally exponentially stable (Figure 2). Indeed, depending
on the initial conditions, only some trajectories converge to
the synchronous oscillations. In the following we will provide
geometric insights, without formal proof, about the mechanisms
underlying oscillator death and multi-stability in model (1).

We start by observing that the oscillator death state is
characterized by the presence of two dead oscillator clusters.

Inside each cluster, oscillators converge to the same steady state.
To analyze the appearance of oscillator death steady-states, we
can simplify the model by assuming that (xi, yi) = (x1, y1) for all
i = 1, . . . ,N1 and (xi, yi) = (x2, y2) for all i = 1, . . . ,N2, where
N1,N2 < N,N1+N2 = N, are the cluster sizes. The pairs (x1, y1)
and (x2, y2) define the cluster states.

The cluster state dynamics can be easily derived and read

ẋ1 = y1 + µN2(x2 − x1), (7a)

ẏ1 = −ω2x1 +
(

λ − x21 −
y21
ω2

)

y1, (7b)

ẋ2 = y2 + µN1(x1 − x2), (7c)

ẏ2 = −ω2x2 +
(

λ − x22 −
y22
ω2

)

y2. (7d)

Each cluster state dynamics has the form

ẋ = y+ µNj(xj − x), (8a)

ẏ = −ω2x+
(

λ − x2 −
y2

ω2

)

y, (8b)

where Nj is the other cluster size and xj the other cluster state. A
sufficient condition for the appearance of multiple steady states
is that there must exist values of xj for which the model(8) has
multiple steady-states. This condition can easily be verified by
analyzing the dependence of the intersection of the nullclines
of model (8) as a function of xj and the parameters µ and λ

(Figure 3).
If the coupling strength is too small the origin is the only

steady state (Figure 3). This steady state is unstable and all
trajectories are attracted toward the synchronous periodic orbit.
However, new steady states appear for larger values of µ. The
critical value of µ for which the new steady-states appear can
be found by computing the slope of the nullclines at the origin.
The slope of the x-nullcline is evidently µNj. The slope of the x-
nullcline can be computed by implicit differentiation and is given

by ω2

λ
. Multiple steady-states appear if µ > ω2

Njλ
(Figure 2).

3. SYNCHRONIZATION AND FREQUENCY
MODULATION IN LINEARLY COUPLED
OSCILLATORS

In this section we present an alternative approach to study
synchronization under the influence of noise using the Fokker-
Planck equation (FPE). The modeling in this section can be
thought of in the context of interacting populations of oscillators.
Related work in the context of populations of synchronized
neurons can be found in the work by Jiao et al. [44]. Introducing
noise in the equation is natural from the biological perspective.
However, even in the absence of noise, the introduction of
random perturbations allows the extraction of information about
the deterministic system. This is done by letting the perturbation
amplitudes go to zero. To investigate the dependence of the
synchronization frequency on the frequencies of the coupled
oscillators, and the different coupling parameters, we assume
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FIGURE 2 | Emergence of oscillator death in model (1) for λ = 0.5, N = 20, natural frequencies uniformly distributed in the interval [0.9, 1.1] and varying µ. The

interconnection topology is all-to-all. Note that for the same value of µ = 0.25 both oscillatory and oscillator death states are possible.

FIGURE 3 | Nullclines of the cluster state dynamics for incresing values of µ for xj = 0, ω = 1.0, N = 20 and N1 = N2 = N/2, λ = 0.5.

synchronization, which reduces the FPE equation to an equation
in two variables.

We divide this section in two parts. First, we consider a
simple deterministic system in which the effect of coupling
can be understood. In the second part, we randomly perturb a
more general version of the previous model to show that the
FP equation provides an approximation for the syncrhonization
frequency, and obtain some insights on the effect of noise.

Let us then consider a system similar to the one already
studied

ẍi = −ω2xi + ν

[

1−
(

x2i +
ẋ2i
ω2

)]

ẋi

+µ

N
∑

j= 1

aijxj, i = 1, . . . ,N, (9)
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Notice that x(t) = sin(ωt) is still a solution for the uncoupled
system (µ = 0), independently of the value of ν. This system
has the advantage of allowing direct calculations around the limit
cycle, which can be written explicitly.

If we linearize the equation and take ν << 1, we can neglect
the contribution of the disipative term. The resulting linear
system is

ẍi = −(ω2 − µAi)xi,

where Ai =
∑N

j=1 aijxj, for i = 1, . . . ,N. If all the aij = 1,
corresponding to a fully connected network of oscillators, the
previous system can be reduced to the equation

ẍ = −
(

ω2 − µ(N − 1)
)

x,

assuming that a synchronized regime is established. This
assumption may not always be biologically realistic, but it allows
us to obtain the common synchronization frequency in a simple
way. Later on we consider the general case and recover this
formula as a particular case. This provides an estimate for the
synchronization frequency of

�sync =
√

ω2 − µ(N − 1).

Moreover, this reduction suggests that synchronized oscillatory
behavior takes place for sufficiently small µ. That is, when

ω2 − µ(N − 1) > 0,

Otherwise, exponentially large growth can be expected. Notice
that unless the aij are equal, the previous reasoning is not
consistent and no conclusion can be drawn. We claim that
introducing random perturbations and using the FP equation
allows us to circumvent this difficulty and analyze the general
case. This is the content of what follows. First of all, we write the
system in the form

ẋi = yi

ẏi = fi(xi, yi)+ µ

N
∑

j=1

aijxj, i = 1, . . . ,N.

Notice that in the linearized regime, anologous to the reasoning
for small ν in the previous example, we might naturally assume
that

fi(xi, yi) ≈ −ω2
i .

Perturbing the equation with Brownian noise we have

dxi = yi dt +
√
2ε dWi1

dyi =



−ω2
i xi + µ

N
∑

j=1

aijxj



 dt +
√
2ε dWi2, i = 1, . . . ,N,

where the Wij are uncorrelated Brownian motions for i, j ∈
{1, ...,N}. The probability density, u(x1, ..., xn, y1, ..., yn, t) of the

system being in the state x1, ..., xn, y1, ..., yn at time t satisfies the
FP Equation

∂u

∂t
= ε1u+ ∇(F(x, y)u), (10)

where F is the vector field determined by the right hand side
of the stochastic system. Looking for stationary solutions, i.e.,
ut = 0 and explicitly substituting F in terms of x and y, the
equation becomes

ε1u+
∑

i



yiuxi + (−ω2
i xi + µ

∑

j 6=i

aijxj)uyi



 = 0. (11)

If we use the synchronization condition x1 = ... = xn and
y1 = ... = yn, we obtain the equation

ε1 + nyux + (−
∑

i

ω2
i + µ

∑

i,j

aij)xuy = 0.

If we let

b =
∑

i

ω2
i − µ

∑

i,j

aij,

we can write the Equation (11) as

ε1 + nyux − bxuy = 0.

Assuming ε is small, it is reasonable to expect that the probability
u will concentrate around the characteristic curves of the first
order equation

nyux − bxuy = 0,

that are solutions to the system

ẋ = ny,

ẏi = bx.

By taking the scalar product with the vector (x/n, y/b) we obtain
the relation

ẋ
x

n
+ ẏ

y

b
= 0,

or equivalently,

x2

n
+

y2

b
= constant,

which defines the characteristic curves as ellipses. In turn,
interpreting these as curves in the phase portrait, the resulting
solutions would correspond to periodic trajectories with
frequency

�2
sync = −

b

n
=

(
∑

i ω
2
i − µ

∑

i,j aij)

n
, (12)

which provides an estimate for the synchronization frequency
in terms of the original frequencies and the coupling
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FIGURE 4 | Synchronization and modulation of the synchronization frequency via coupling strength in model (9), for N = 10, natural frequencies uniformly distributed

in the interval [0.95, 1.05], all-to-all coupling and varying µ.

parameters. Importantly, it shows that the synchronization
frequency decreases with the coupling strength. In particular,
formula Equation (12) can be used to study how coupled
ultradian oscillations can give rise to circadian oscillations
(Figure 4).

4. DISCUSSION AND SUMMARY

We have described, through basic geometrical analysis, the
relationship between the dissipation coefficient, an intrinsic
property of the oscillators we study, and the coupling strength
µ in a network of diffusively coupled non-linear oscillators.
Our analysis predicts the emergence of sustained oscillations for
increasing values of the parameter λ in the system, only for a
limited range of coupling strengths. It is reasonable to conjecture
from this result, that there is a functional limit in the coupling
strength for oscillating tissues in nature above which the tissue
oscillations dies. To the best of our knowledge, it is the first time
that diffusive coupling has been shown to be able to induce such
oscillator death.

We have also derived an estimation for the synchronization
frequency of a linearly coupled network of non-linear oscillators
in terms of the oscillator natural frequencies and the coupling
parameters [Equation (12)]. The presented results are indeed
local, that is, the synchronous oscillation is only locally
asymptotically stable. The oscillators are not synchronized at
the beginning of the simulations, but their spread in state
space is very small to ensure convergence to the synchronous
oscillation. For a larger spread, a more complex behavior is
observed.

We believe that these results constitute predictions that,
although possibly difficult to test experimentally, would be
worth verifying in light of the existing evidence about the joint
frequency modulation of activity between different tissues during
the day [23, 45].

The results we have presented thus far emphasize the
importance of simple mathematical models in understanding
situations where synchronization of multiple oscillating

populations appears. The results presented here may help to
shed light on both physiological and pathological phenomena
involving synchronization of oscillators in different tissues
(Parkinson’s disease [46, 47], epilepsy [48, 49]). The other
way around, it is also of potential importance to unravel
mechanisms underlying the disappearance of coordinated
oscillatory regimes. In a future publication, we plan to formally
justify our estimations, and further, integrate the analysis of
oscillations in the cellular and network levels of biological
organization, to build up on our understanding of coupling
oscillators at the tissue level. Two important extensions of the
current models that we are studying are, the full characterization
in higher codimension of the bifurcation structures of the
system (1), and also, replacements of the van der Pol dynamics
with biophysical models of excitable cells [50]. This last
extension may prove useful to explain possible compensatory
mechanisms that take place during the beginning of a pathology
[51].
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