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Abstract: This note shows that the oscillations in a network of all-to-all coupled Kuramoto
oscillators can be inhibited by a scalar output feedback. More precisely, by injecting an input
proportional to the oscillators mean-field, a set of isolated equilibria is shown to be almost
globally attractive when natural frequencies are zero. The normal hyperbolicity of all relevant
equilibria let us conjecture that this property persists in the presence of natural frequencies that
are sufficiently small with respect to the coupling gain. This work constitutes a first step in the
direction of testing the possible neuronal inhibition arising in deep brain stimulation treatment
for neurological diseases.
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1. INTRODUCTION

The aim of this paper is to provide preliminary insights on
how the oscillations of a network of nonlinear oscillators
can be inhibited by relying on their average behavior only.
The motivations for this study stand in the development
of Deep Brain Stimulation (DBS), which is a treatment
for neurological diseases such as Parkinson Disease (PD).
DBS consists in permanently stimulating specific cerebral
zones thanks to implanted electrodes. Despite its success
and generalization, little is still known on its functioning.
There are clear evidences (Alberts et al., 1969; Volkmann
et al., 1996) that intense and coherent neuronal activity is
present in the subthalamic nucleus (STN) of PD patients,
which is the zone stimulated by the electrodes. This neu-
ronal synchronization is absent in healthy subjects (Nini
et al., 1995; Sarma et al., 2010). DBS would hence at-
tenuate PD symptoms by somehow alter this pathological
coherent activity. Yet, two main hypotheses still divide
practitioners (McIntyre et al., 2004). One is that electrical
stimulation restores the STN non-pathological activity,
either by desynchronizing the interested neurons, or by
modulating the network output activity (Carlson et al.,
2010). Many attempts to formally support this hypothesis,
based on simplified models, were recently made in the
literature of dynamical systems (Rosenblum and Pikovsky,
2004; Tukhlina et al., 2007; Hauptmann et al., 2005;
Pyragas et al., 2007; Popovych et al., 2006; Franci et al.,
2010). The other hypothesis is that DBS inactivates STN
neurons, by producing a functional lesion, meaning that
the stimulation acts by impeding the pathological bursting
and spiking (Filali et al., 2004). This hypothesis is also sup-
ported by the fact that, before the invention of DBS, the
surgical PD treatment consisted in an ablation of the cere-
bral zone under concern (Benabid et al., 1996), which cor-

responds to a radical neuronal inhibition. Recently, some
work has been devoted to the development of feedback
approaches to DBS: by exploiting real-time information on
the cerebral activity, a more adequate and parsimonious
stimulation is expected (cf. (Tass, 2003; Hammond et al.,
2008; Tarsy et al., 2008) and references therein). A strong
constraint on these closed-loop approaches is due to the
number and size of implanted electrodes, which impose
to measure only collective information (i.e. the mean-
field, that is the mean membrane voltages of the STN
neuronal population) and to generate a limited number
of stimulation signals.

In this note, we rely on a simplified model of the neuronal
population of the STN to provide preliminary theoretical
justifications on how mean-field feedback DBS may yield
neuronal inhibition in the STN. We exploit the model re-
cently introduced in (Franci et al., 2010) in which the effect
of proportional mean-field feedback is explicitly taken into
account. Despite its simplistic nature, this model owns the
advantage to share similarities with Kuramoto oscillators
(Kuramoto, 1984; Winfree, 1980) for which a wide litera-
ture exists (Sepulchre et al., 2007; Aeyels and Rogge, 2004;
Dörfler and Bullo, 2010; Jadbabaie et al., 2004; Sarlette,
2009). We show that, assuming all-to-all coupling and
neglecting the natural frequencies of the agents, Kuramoto
oscillators can be inhibited by proportional mean-field
feedback. More precisely we show that, with a proper
choice of the feedback gain, the closed-loop system boils
down to a gradient system. The corresponding potential
function is shown to have isolated global extrema, and all
other isolated fixed points are shown to be saddles. The
main result then follows by showing that all non-isolated
fixed points constitute an unstable manifold.

We are fully aware that the assumptions of this paper
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are strong and of little neurological relevance: Kuramoto
oscillators constitute an over-simplified neuron model, ne-
glecting natural frequencies means neglecting the neurons
internal behavior, and all-to-all coupling is far from being
biologically realistic. While some arguments may partly
justify these assumptions (e.g. Kuramoto oscillators still
model the neurons rhythm), we see the present work as
a first step for future studies. In particular, due to the
hyperbolicity of all relevant equilibria, we conjecture that
inhibition persists in the presence of sufficiently small
natural frequencies.

The paper is organized as follows. In Section 2, we recall
the Kuramoto model under mean-field feedback and illus-
trate it through numerical simulations. In Section 3 we
derive the main results of the paper. A discussion on the
influence of natural frequencies is provided in Section 4.
Proofs are given in Section 5.

Notations. For all x, y ∈ R, z = x mod y if z = x+ky for
some k ∈ Z. 1n×m ∈ Rn×m denotes the n × m matrix
with all unitary entries, and 1n := 1n×1. In denotes
the identity matrix in dimension n. For x ∈ Rn and
ε > 0, B(x, ε) denotes the closed ball centered at x of
radius ε in the Euclidean norm, that is B(x, ε) := {y ∈
Rn :

√∑n
i=1(yi − xi)2 ≤ ε}. µ denotes the Lebesgue

measure in the space of interest. If I ⊂ Z, #I denotes
the number of its elements. Given a set A ⊂ RN , we
define its stable set with respect to a given dynamics
ẋ = f(x) as As := {x0 ∈ R : limt→∞ |x(t;x0)|A = 0},
where |x|A := infz∈A |x− z|.

2. THE KURAMOTO SYSTEM UNDER
MEAN-FIELD FEEDBACK

The complexity of neuronal cells dynamics impedes an
analytical treatment of their behavior when intercon-
nected. However, some neuronal behaviors can be ana-
lyzed based on much simpler models. In particular, their
spiking rhythm and the synchronization of their behavior
can be modeled by phase dynamics oscillators. Instead of
using celebrated biology inspired models, such as (Hodgkin
and Huxley, 1952), we therefore focus on interconnected
Landau-Stuart oscillators. These possess the combined
advantages to be analytically tractable and to provide a
natural modeling of the effect of exogenous inputs. More
precisely, we have recently shown in (Franci et al., 2010)
that the spiking rhythm of N interconnected neurons un-
der the influence of a proportional mean-field 1 feedback
representing the closed-loop DBS can be modeled as

θ̇i = ωi+
N∑
j=1

(kij+γij) sin(θj−θi)−
N∑
j=1

γij sin(θi+θj), (1)

for all i = 1, . . . , N , where ωi ∈ R denotes the natural
frequency of the i-th neuron, kij ∈ R is the coupling
strength from neuron j to neuron i, and γij ∈ R is
the feedback gain from neuron j to neuron i. The above
model results from the interconnection of Landau-Stuart
oscillators under simplifying assumptions: we refer the
reader to (Franci et al., 2010) for details. Note that (1)
encompasses the standard Kuramoto model (Kuramoto,
1984) in the case of zero feedback gains γij .

In order to drive the synchronous STN activity to a
non-pathological state, the feedback gain γij , can be

1 The mean-field of a neurons population is the weighted mean of
their membrane voltages.

tuned to reduce or eliminate the effective closed-loop
diffusive coupling kij+γij . In the following, we consider the
particular case of the all-to-all coupling, that is kij = k0
and γij = γ0 for all i, j = 1, . . . , N where k0 > 0 and
γ0 ∈ R. In this case (1), boils down to

θ̇i = ωi+(k0+γ0)
N∑
j=1

sin(θj−θi)−γ0
N∑
j=1

sin(θi+θj) . (2)

In this particular situation, one intuitively expects that, if
the resulting diffusing coupling k0 + γ0 is canceled, then
synchronization of the network of oscillators is compro-
mised, yielding either an oscillating desynchronized state
or the end of oscillations. Numerical simulations support
these expectations. They reveal that, when the natural
frequencies ωi are large with respect to the coupling
strength k0, the use of a mean-field feedback with gain
γ0 = −k0 desynchronizes the network (cf. Fig. 1, in which
the feedback is activated at t = 20).
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Fig. 1. Large natural frequencies: desynchronization.

On the contrary, when natural frequencies ωi are small
compared to the coupling strength k0, mean-field feedback
inhibits oscillations when γ0 is picked as −k0. The phase
of each oscillator goes to a fixed point (Fig. 2), thus
eventually stopping oscillations.
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Fig. 2. Small natural frequencies: oscillations death.

The desynchronizing effect of mean-field feedback is cur-
rently under investigation, cf. (Franci et al., 2010). This
note rather aims at providing theoretical justifications to
the oscillators death (neuronal inhibition) described in Fig.
2. More precisely, in Section 3, we show that with the
choice γ0 = −k0 and considering zero natural frequencies
(i.e. ωi = 0 for all i = 1, . . . , N) the presence of mean-field
feedback almost globally asymptotically stabilizes a set of
equilibria for (2). In Section 4, we conjecture the extension
of this result to the case of non-zero natural frequencies
and the non-full compensation of the diffusive coupling.
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3. THE UNPERTURBED CASE

In the case of zero natural frequencies and with the choice
γ0 = −k0, (2) boils down to

θ̇i = k0

N∑
j=1

sin(θi + θj), ∀i = 1, . . . , N . (3)

We note that (3) can be equivalently written as the
gradient system

θ̇i = −∂W
∂θi

(θ), ∀i = 1, . . . , N ,

where the function W is given, for all θ ∈ RN , by

W (θ) := −k0
N∑

i,j=1

sin2

(
θi + θj

2

)
. (4)

3.1 Fixed points identification

We start by computing the fixed points of (3) or, equiva-
lently, the critical points of its potential function (4). To
that aim, we define the following set:

A0 :=
{
θ ∈ RN : θi =

π

2
mod 2π ∀i ∈ Iπ

2
,

θi =
3π

2
mod 2π ∀i ∈ I 3π

2
,

Iπ
2
∪ I 3π

2
= {1, . . . , N}, #Iπ

2
6= #I 3π

2

}
. (5)

That is, A0 is made of all the vectors θ ∈ RN whose
components are either π/2 or 3π/2 (modulo 2π), and for
which the number of π/2 entries is different from the
number of 3π/2 entries. In the same way, we define

B0 :=
{
θ ∈ RN : θi = 0 mod 2π ∀i ∈ I0 ,
θi = π mod 2π ∀i ∈ Iπ,
I0 ∪ Iπ = {1, . . . , N}, #I0 6= #Iπ} . (6)

In other words, all the vectors of B0 are made only with
0 and π elements, and the number of their π’s differ from
the number of their 0’s. Finally, we introduce

N :=

{
θ ∈ RN :

N∑
i=1

sin(θi) =
N∑
i=1

cos(θi) = 0

}
. (7)

The following lemma, whose proof is given in Section 5.1,
shows that A0, B0 and N completely characterize the fixed
points of (3).

Lemma 1. (Fixed points identification). Given any k0 >
0, the set F0 of fixed points of (3) is given by F0 = A0 ∪
B0 ∪N , where A0, B0,N are given in (5)-(7).

We stress that, since A0, B0,N are disjoint, they form a
partition of F0. Lemma 1 states in particular that the
critical points of W can be divided into two families. The
critical points contained in the sets A0 and B0 are isolated
by their definitions (5)-(6). Their stability can then be eas-
ily studied by analyzing the sign definiteness of the Hessian
of W at these points. This will be achieved by Lemma 2.
On the contrary, as we show in the sequel, fixed points
belonging toN are not isolated. Noticing thatN is defined

as a level set of the function (
∑N
i=1 sin(θi),

∑N
i=1 cos(θi))

T ,
we argue that, at least locally, it defines an embedded
submanifold. Its stability can then be analyzed through
the linearization of (3) on the orthogonal subspace of this
submanifold. This will be achieved by Lemma 3.

3.2 Analysis of isolated equilibria

In the following lemma, proved in Section 5.2 we address
the stability of the fixed points of (3) belonging to A0∪B0.

Lemma 2. (Stability of the isolated fixed points). Let W
be the function defined in (4), let

Wm :=
{
θ ∈ RN : θ =

(π
2

mod π
)
1N
}

(8)

WM :=
{
θ ∈ RN : θ = (0 mod π)1N

}
,

and let k0 be any given positive constant. Then the
following holds true:

a) Wm contains all global minima of W and its points
are hyperbolically asymptotically stable for (3).

b) WM contains all global maxima of and all its points
are hyperbolically unstable for (3).

c) All the critical points of W , which are not global
extrema, that is all the points in (A0 ∪ B0) \ (Wm ∪
WM ) where A0 and B0 are defined in (5)-(6), are
non-degenerate saddles for (3).

3.3 Analysis of non-isolated equilibria

The following lemma, whose proof is given in Section 5.3,
characterizes that the non-isolated critical points of the
gradient function W contained in N .

Lemma 3. (Normal hyperbolicity of non-isolated fixed
points) Let k0 be any positive constant and let N be
defined as in (7). Then, the following holds true:

a) If N is odd, N is an embedded submanifold of
codimension 2 that is normally hyperbolic for (3). In
particular, for all θ ∈ N , the eigenvalues λ−(θ), λ+(θ)
of the linearization of (3) restricted to the orthogonal
directions to N are such that λ−(θ) < 0 < λ+(θ).

b) If N is even, there exists a normally hyperbolic sub-

manifold Ñ of codimension 2, and 2N 1-dimensional
submanifolds N0i, i = 1, . . . , 2N , such that N = Ñ ∪⋃2N

i=1N0i. Moreover, for all θ ∈ Ñ , the eigenvalues
λ−(θ), λ+(θ) of the linearization of (3) restricted to

the orthogonal directions to Ñ are such that λ−(θ) <
0 < λ+(θ), and, for all i = 1, . . . , 2N , the stable set of
N0i is contained in a submanifold of dimension 2.

Lemma 3 states in particular that locally around almost
all points θ in N , the dynamics (3) can be decomposed
in three behaviors: the null behavior tangent to N ; the
convergent behavior toward N along the eigenvector as-
sociated to λ−(θ); and the divergent behavior away from
N along the eigenvector associated to λ+(θ). In the even
case, the set N cannot be globally described as a nor-
mally hyperbolic submanifold, due to the presence of

the singularities N0i, where the equation
∑N
i=1 sin(θi) =∑N

i=1 cos(θi) = 0 loses rank. The same phenomenon hap-
pens for the unstable set of standard all-to-all Kuramoto
system, as shown in details in Sepulchre et al. (2007).
The two sets are indeed described by the same algebraic
relationships.

3.4 Main result

We have all the ingredients to prove the main result of this
paper.

Proposition 4. (Almost global oscillations inhibition) Given
any k0 > 0, the set Wm defined in (8) is almost globally
asymptotically stable for the dynamics (3).
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We stress that the effect of oscillations inhibition is pecu-
liar to the presence of mean-field feedback. Indeed, in the
standard Kuramoto system this phenomenon is avoided
by the T 1 symmetry of the coupled dynamics that let
the system be invariant with respect to global phase-shifts
((Sarlette, 2009)).

Proof Let N be as in (7), let Ñ be defined as in Lemma

3, and let Ñ s denote the stable manifold of Ñ . Since, by
Lemma 3, Ñ is normally hyperbolic with one unstable
direction, it follows from (Hirsh et al., 1977, Theorem 4.1)

that Ñ s has zero Lebesgue measure. Moreover, by Lemma
3, all the points of N which are not in Ñ forms a finite
set of 1-dimensional manifolds N0i, i = 1, . . . , 2N . The
stable set of each of the N0i is contained in a 2-dimensional

submanifoldMus
i . Define the set C0 = N∪N s∪

⋃2N

i=1Mus
i .

It follows that µ(C0) = 0. Consider the domain D = RN \
C0. By definition D is open, forward invariant for (3), and
contains only isolated critical points. Hence by (Hirsch
and Smale, 1974, Theorems 1 and 4 and Corrollary), the
restriction of (3) to D is a well defined gradient dynamics
that contains only isolated critical points, and, for almost
all θ0 ∈ D, the trajectory starting in θ0 converges to
the minima Wm of the potential function. Recalling that
µ(C0) = 0, we conclude that, for almost all θ0 ∈ RN , the
trajectory starting at θ0 converges to Wm. �

4. CONJECTURE FOR THE PERTURBED CASE

Although Proposition 4 is stated in the ideal case of zero
natural frequencies, the almost global stability and the
local hyperbolicity of all the relevant equilibria let us con-
jecture the global robustness of the oscillations inhibition
to small natural frequencies and diffusive coupling.
The idea behind this conjecture is mainly based on the
fact that all the global extrema of W are hyperbolic for
(3) hence they persist under small perturbations. The non-
isolated fixed points define a normally hyperbolic invariant
manifold that persists under small perturbations (possibly
with non-zero dynamics on it) along with its stable and un-
stable manifolds (Hirsh et al., 1977, Theorem 4.1). Further
work will aim at proving this conjecture.

5. PROOFS

5.1 Proof of Lemma 1

The fixed points θ∗ ∈ RN of (3) satisfy
N∑
j=1

sin(θ∗i + θ∗j ) = 0 , ∀i = 1, . . . , N. (9)

Using the trigonometric identity sin(α+β) = sinα cosβ+
sinβ cosα, this condition can be rewritten as

sin(θ∗i )a(θ∗) + cos(θ∗i )b(θ∗) = 0, ∀i = 1, . . . , N, (10)

where, for all θ ∈ RN ,

a(θ) :=
N∑
j=1

cos(θj), b(θ) :=
N∑
j=1

sin(θj). (11)

By contradiction, it easy to show that the equation (10)
admits no solution whenever a(θ∗) 6= 0 and b(θ∗) 6= 0.
Recalling (10)-(11), all solutions of (9) then necessarily
belong to one of the following three sets:

Ã0 := {θ ∈ RN : a(θ) = 0, b(θ) 6= 0,

cos(θi) = 0, ∀i = 1, . . . , N},

B̃0 := {θ ∈ RN : b(θ) = 0, a(θ) 6= 0,

sin(θi) = 0, ∀i = 1, . . . , N},
N = {θ ∈ R : a(θ) = b(θ) = 0}

as defined as in (7). Through elementary computation, it

can be shown that Ã0 = A0 and B̃0 = B0, where A0 and
B0 are defined in (5) and (6) respectively, which proves
the lemma.

5.2 Proof of Lemma 2

We start by computing the Hessian of W , H(θ) := ∂2W
∂θ2 (θ).

Basic computations reveal that H = [Hij ]i,j=1,...,N with,
for all i, j = 1, . . . , N ,

Hii(θ) =−k0(cos(2θi) + si(θ))

Hij(θ) =−k0 cos(θi + θj), ∀ i 6= j, (12)

where

si(θ) :=
N∑
j=1

cos(θi + θj) ∀i = 1, . . . , N. (13)

Item a): Global minima. Noticing that W (θ) ≥ −k0n2
for all θ ∈ RN , the global minimum of W is attained

when sin2
(
θ∗i+θ

∗
j

2

)
= 1, for all i, j = 1, . . . , N , that is,

θ∗ =
(
π
2 mod π

)
1N . This leads to cos(θ∗j + θ∗i ) = −1 for

all i, j = 1, . . . , N . Recalling the expression of the Hessian
of W , given in (12), at the global minima we have

H|Wm = NIN + 1N×N
Since H|Wm is symmetric diagonally dominant with
strictly positive diagonal entries, all its eigenvalues are
strictly positive (Horn and Johnson, 1985, Theorem
6.1.10), that is all the points of Wm are hyperbolically
asymptotically stable.
Item b): Global maxima. The proof of this item is omitted
here as it follows along the same lines as for Item 2.
Item c): Saddles.In view of Lemma 1, the points θ∗ ∈
B0 \ WM can be picked such that θi = 0 mod 2π, for
i = 1, . . . ,m0, and θi = π mod 2π, for i = m0 + 1, . . . , N .
m0 ∈ (0, N), after a reordering the phase indexes, where
m0 := #I0 ∈ {1, . . . , N}. Let mπ := N −m0 = #Iπ and
consider i0, i

′
0 ∈ {1, . . . ,m0} and iπ, i

′
π ∈ {m0 + 1, . . . , N}.

Since cos(2θi0) = cos(θi0 + θi′0) = cos(2θiπ ) = cos(θiπ +
θi′π ) = 1, and cos(θi0 + θi0π) = −1, basic computations
from (12) reveal that, for all θ∗ ∈ B0 \ WM , the Hessian
of W has the form

H(θ∗) = −k0
[

A C
CT B

]
. (14)

where A ∈ Rm0×m0 and B ∈ Rmπ×mπ are defined as

A:= (m0 −mπ)Im0
+ 1m0×m0

(15)

B:= (mπ −m0)Imπ + 1mπ×mπ (16)

and
C := −1m0×mπ . (17)

Consider the two vectors e1 := (1, 1, 0, . . . , 0)T and e2 :=
(0, . . . , 0, 1, 1)T . Since eT1H(θ∗)e1 = −2k0(m0 − mπ) and
eT2H(θ∗)e2 = 2k0(m0 −mπ), and recalling that m0 6= mπ

in view of Lemma 1, H(θ∗) is sign indefinite. In particular,
small variations δê1 and δê2 at this critical points change
the values of W by δW1 and δW2 with δW1δW2 < 0.
Hence, all the points θ∗ ∈ B0 \ Wm are non degenerate
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saddles. Through similar computations, the same result
holds for the points θ∗ ∈ A0 \WM .

5.3 Proof of Lemma 3

The set N of fixed points, defined in (7), is the zero level
set of the function

F (·) :=

(
a(·)
b(·)

)
: RN → R2. (18)

The level set of a function defines a submanifold of
codimension m if the function has constant rank m. In
order to check this condition on F , we have to compute its
Jacobian’s rank in each point θ ∈ N . In view of (11) and
(18), basic computations reveal that

JF (θ) :=
∂F

∂θ
(θ) =

(
− sin θ1 . . . − sin θN
cos θ1 . . . cos θN

)
. (19)

This matrix has rank 2 if and only if it contains two
independent columns. A necessary and sufficient condition
is then that there exists i, j ∈ {1, . . . , N}, i 6= j, such that

det

(
− sin θi − sin θj
cos θi cos θj

)
= sin(θj − θi) 6= 0.

In other words, the rank of F is strictly smaller than 2 at
some point θ ∈ N if and only if

sin
(
θj − θi

)
= 0, ∀i, j = 1, . . . , N. (20)

This implies 2 θi − θj = 0 or θi − θj = π, for all i, j =

1, . . . , N . That is, reordering the phase index, θi = θ0,
i = 1, . . . , q0, for some θ0 ∈ [0, 2π), and θi = θ0 + π,
i = q0 + 1, . . . , N , where 0 ≤ q0 ≤ N .
Case 1: N is odd.
In the case N is an odd number (20) is not compatible
with the condition a(θ) = b(θ) = 0 imposed in N .
Indeed, for any 0 ≤ q0 ≤ N , a(θ) = q0 cos(θ0) − (N −
q0) cos(θ0) 6= 0, for all θ0 6∈

{
π
2 ,

3π
2

}
. If θ0 ∈

{
π
2 ,

3π
2

}
, then

b(θ) = q0 sin(θ0)− (N−q0) sin(θ0) 6= 0, for all 0 ≤ q0 ≤ N .
Hence (20) is not satisfied for all θ̄ ∈ N . We conclude that,
in the case when N is odd, the Jacobian of F (19) has rank
2 on N . Hence, N is a submanifold of codimension 2.
Since N is a submanifold of codimension 2, we can develop
a stability analysis on its orthogonal subspace N⊥. In view
of (7), a base for this subspace at θ ∈ N is given by
(∇a(θ)T ,∇b(θ)T ).
We start by computing the expression of the Hessian of W
restricted to N that we denote as H(θ) := H|N (θ), for all
θ ∈ N . Basic computations show that, for all θ ∈ N ,

H(θ)∇a(θ)T = (21)

k0
2

∇a(θ)T
n∑
j=1

sin2 θj+∇b(θ)T
n∑
j=1

sin θj cos θj


H(θ)∇bT (θ) = (22)

k0
2

∇aT (θ)
n∑
j=1

sin θj cos θj +∇bT (θ)
n∑
j=1

cos2 θj

 .

Defining H⊥(θ) = H|N⊥(θ), for all θ ∈ N , it follows from
(21) and (22), that, in the basis (∇a(θ)T ,∇b(θ)T ), H⊥(θ)
is given by

H⊥(θ) =
k0
2

(
α(θ) −γ(θ)
γ(θ) −β(θ)

)
, (23)

2 All this reasoning holds modulo 2π. We omit to write the modulo
operator for clarity.

where α(θ) :=
∑N
j=1 sin2 θj , β(θ) :=

∑N
j=1 cos2 θj , and

γ(θ) :=
∑N
j=1 sin θj cos θj . The eigenvalues of H⊥ are then

given by

λ±(θ) =

 N∑
j=1

sin2 θj

−N
2
±

√√√√√N2

4
−

 N∑
j=1

sin θj cos θj

2

.

(24)
The following claim ends the proof the lemma in the case
N is odd. Its proof is omitted due to lack of space but
follows from basic computations.

Claim 5. The functions λ− and λ+ defined in (24) satisfy
λ−(θ) < 0 < λ+(θ) for all θ ∈ N .

Case 2: N is even.
In the case N is an even number, given the grouping
of indexes I0 = {i1, . . . , iN

2
}, Iπ = {iN

2 +1, . . . , iN}, ij ∈
{1, . . . , N} for all j = 1, . . . , N , such that I0 ∩ Iπ = ∅, let

N0 :=
{
θ ∈ RN : θi = θ0,∀i ∈ I0,
θi = θ0 + π,∀i ∈ Iπ, θ0 ∈ R} . (25)

N0 is a 1-dimensional manifold parametrized by θ0. Con-
dition (20) is satisfied for all point in N0. Moreover, since
a(θ) = b(θ) = 0, for all θ ∈ N0, it holds that N0 ⊂ N . Note
that there exists exactly 2N different groupings {I0, Iπ}.
Let N0i be the set of the form (25) relative to the i-th
grouping. With the same reasoning as in Case 1, no other

sets than
⋃2N

i=1N0i in which (20) is satisfied are contained

in N . Define Ñ := N \ N0. With the same computation

as in Case 1, Ñ is a normally hyperbolic submanifold of
codimension 2 with normal eigenvalues λ± as defined in
(24).
It remains to show that, for each i = 1, . . . , 2N , the stable
set of N0i is contained in a submanifold of dimension 2. In
the following, if no confusion can arise we omit the index i.
Let ei ∈ RN/2 be the vector with all zero entries apart 1 in
the i-th position, that is {ei}i=1,...,N2

forms the canonical

base of RN/2. Recalling (12) and (25), the Jacobian of the
dynamics (3) on N0 can be written, after a reordering of
the indexes, as

H0(θ0) = −k0 sin(2θ0)

[
1N/2×N/2 −1N/2×N/2
−1N/2×N/2 1N/2×N/2

]
. (26)

Clearly, for all θ0 ∈ R, H0(θ0)1N = 0. Moreover, for all

i, j = 1, . . . , N/2 and all θ0 ∈ R, H0(θ0)

(
ei
ej

)
= 0. Hence,

for all θ ∈ N0 the tangent space to N0 at θ contains an
N − 1-dimensional center space Ec, which is spanned by{(

e1
e1

)
,. . . ,

(
e1
eN/2

)
,

(
e2
e1

)
,. . . ,

(
eN/2
e1

)}
.

This center space is tangent to the N − 1-dimensional
submanifold (center manifold) Mc, which can be locally
described asMc := θ+Ec. Noticing that, by construction,
Mc ⊂ N , all the points in the center submanifoldMc are
fixed point of (3), and, thus, they do not belong to the
stable set of N0. From (Sijbrand, 1985, Theorem 3.2’ -
Case (ii)) this central manifold is unique. By the central
manifold theorem (Guckenheimer and Holmes, 1983, The-
orem 3.2.1), for all θ ∈ N0, the only other invariant set
that contains θ is given by a 1-dimensional submanifold
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Mu,s that is tangent to E⊥c := span

(
−1N/2
1N/2

)
. Since the

stable set of N0 is an invariant set, it is contained in the
two dimensional submanifold Mus ×N0.
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