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Abstract— In this paper we analyze the robustness of phase-
locking in the Kuramoto system with arbitrary bidirectional
interconnection topology. We show that the effects of time-
varying natural frequencies encompass the heterogeneity in the
ensemble of oscillators, the presence of exogenous disturbances,
and the influence of unmodeled dynamics. The analysis, based
on a Lyapunov function for the incremental dynamics of the
system, provides a general methodology to build explicit bounds
on the region of attraction, on the size of admissible inputs,
and on the input-to-state gains. As an illustrative application
of this method, we show that, in the particular case of the all-
to-all coupling, the synchronized state is exponentially input-
to-state stable provided that all initial phase differences lie
in the same half circle. The approach provides an explicit
bound on the convergence rate, thus extending recent results
on the exponential synchronization of the finite Kuramoto
model. Furthermore, the proposed Lyapunov function for the
incremental dynamics allows for a new characterization of
the robust asymptotically stable phase-locked states of the
unperturbed dynamics in terms of its isolated local minima.

I. INTRODUCTION

Synchronization has recently found many applications in
the modeling and control of physical [1], [2], [3], chemical
[4], medical [5], biological [6], and engineering problems [7].
Roughly speaking, an ensemble of interacting agents is said
to synchronize when their outputs tend to a common value
[8, Chapter 5]. Examples of such a behavior can be found in
interconnected neurons [6], [9], [10], chemical oscillators [4],
coupled mechanical systems [11] and consensus algorithms
[12], [13], [14]. Phase-locking, or frequency synchronization,
is a particular type of synchronization that describes the ability
of interconnected oscillators to tune themselves to the same
frequency. One of the most widely used mathematical model
to analyze this behavior is the Kuramoto model, which was
first introduced in [4] to describe globally coupled chemical
oscillators, as a generalization of the one originally proposed
by Winfree [15]. Later on, many other works generalized these
pioneer seminal works [12], [16], [17], [18], [19], [20], [21],
[7], [14], [8], [22], [23]. In this paper we consider the Kuramoto
system with time-varying natural frequencies and a general in-
terconnection topology. Letting the signal $i denote the time-
varying natural frequency of the oscillator i ∈ {1, . . . , N}, and
k = [kij ]i,j=1,...,N ∈ RN×N≥0 represent the coupling matrix,
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each agent i is described by its phase θi ruled by:

θ̇i(t) = $i(t) +
N∑
j=1

kij sin(θj(t)− θi(t)), ∀t ≥ 0. (1)

The analysis of robustness with respect to time-varying natu-
ral frequencies encompasses different types of perturbations,
including agents heterogeneity, influence of exogenous inputs
and imprecise modeling (cf. equation (6) below). In particular,
it may include the effects of the feedback signals studied
in the literature for their desynchronizing features [24], [25],
[26], [27], [28], [29], as well as time-varying interconnection
topologies and non-sinusoidal coupling. This issue is partic-
ularly relevant for the study of interconnected neuronal cells
for which little is known on the interconnection topology and
synaptic weights between neurons [30].

The robustness of phase-locking in the Kuramoto model
has already been partially addressed in the literature both in
the case of infinite and finite number of oscillators. On the
one hand, the infinite dimensional Kuramoto model allows for
an easier analytical treatment of the robustness analysis (see
for example [17] for a complete survey). This approach has
been used to analyze the effect of delayed [28] and multisite
[25] mean-field feedback approach to desynchronization. In
the case of stochastic inputs it allows to find the minimum
coupling to guarantee phase-locking in the presence of noise
[31]. However, this approach is feasible only in the case of the
all-to-all interconnection. On the other hand, the finite dimen-
sional case has been the object of both analytical and numerical
studies. In particular, [32] proposes a complete numerical anal-
ysis of robustness to time-varying natural frequencies, time-
varying interconnection topologies and non-sinusoidal cou-
pling. It suggests that phase-locking exhibits some robustness
to all these types of perturbations. Analytical studies on the
robustness of phase-locking in the finite Kuramoto model have
been addressed only for constant natural frequencies [19],
[16], [23]. The existence and explicit expression of the fixed
points describing stable and unstable phase-locked states is
studied in [18], [12]. The Lyapunov approach proposed in
[20] for an all-to-all coupling suggests that an analytical study
of phase-locking robustness can be deepened. To the best of
our knowledge the problem of the robustness of phase-locking
with respect to time-varying natural frequencies has still not
been analytically addressed in the finite Kuramoto model with
arbitrary bidirectional interconnection topologies.

This paper establishes that phase-locking is locally input-to-
state stable (ISS) with respect to small inputs (total stability).
The proof is based on the existence of a local ISS-Lyapunov
function for the incremental dynamics of the system. This anal-
ysis provides a general methodology to build explicit estimates
on the size of the region of convergence, the ISS gain, and the
tolerated input bound. It applies to general symmetric inter-
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connection topologies and to any asymptotically stable phase-
locked state. As an illustrative application of the main theorem,
we extend some results in [16], [23] to the time-varying case,
by proving the exponential ISS of synchronization when all
the initial phase differences lie in the interval

[
−π2 ,

π
2

]
, and

by giving explicit bounds on the convergence rate. The size of
the region of convergence, the sufficient bound on the coupling
strength and the convergence rate are compared to those ob-
tained in [16], [23]. Furthermore, the Lyapunov function for
the incremental dynamics allows for a new characterization of
the phase-locked states of the unperturbed system. In particular,
when restricted to a suitable invariant manifold, it allows to
completely characterize the robust phase-locked states in terms
of its isolated local minima.

Due to space limitations, only the proof of the main result
is included in the present document. The interested reader can
find all technical details in the extended versions [33], [29].

Notation. For a set A ⊂ R and a ∈ R, A≥a denotes the
set {x ∈ A : x ≥ a}. Given a vector x ∈ Rn, |x| denotes
its Euclidean norm, that is |x| :=

√∑n
i=1 x

2
i , while |x|∞

denotes its infinity norm, that is |x|∞ := maxi=1,...,n |xi|.
We adopt the notation |x|2 := |x|, when we want to explicitly
distinguish |x| from |x|∞. For a set A ⊂ Rn and x ∈ Rn,
|x|A = infy∈A |y−x| denotes the point-to-set distance from x
to A. B(x,R) refers to the closed ball of radius R centered
at x in the Euclidean norm, i.e. B(x,R) := {z ∈ Rn :
|x − z| ≤ R}. Tn denotes the n-Torus. ‖u‖ is the L1 norm of
the signal u(·), that is, if u : R≥0 → Rn denotes a measurable
signal, locally essentially bounded, ‖u‖ := esssupt≥0|u(t)|.
A continuous function α : R≥0 → R≥0 is said to be of
class K if it is increasing and α(0) = 0. It is said to be of
class K∞ if it is of class K and α(s) → ∞ as s → ∞. A
function β : R≥0 × R≥0 → R≥0 is said to be of class KL
if β(·, t) ∈ K for any fixed t ≥ 0 and β(s, ·) is continuous
decreasing and tends to zero at infinity for any fixed s ≥ 0.
If x ∈ Rn, ∇x is the gradient vector with respect to x, i.e.
∇x =

(
∂
∂x1

, . . . , ∂
∂xn

)
. Given x ∈ Rn and a ∈ R, (x

mod a) := [xi mod a]i=1,...,n, where mod denotes the
modulo operator. The vector with all unitary components in Rn
is denoted by 1n.

II. ROBUSTNESS OF PHASE-LOCKED SOLUTIONS

A. Robustness analysis
Phase-locking can be formally defined based on the incre-

mental dynamics θ̇i − θ̇j associated to (1). Roughly speaking
a phase-locked solution corresponds to a fixed point of the
incremental dynamics. This formulation is equivalent to the one
given in [8, Definition 5.1],[18], [7].

Definition 1 (Phase-locking / Exact synchronization) A so-
lution θ∗ to system (1) is said to be phase-locked iff

θ̇∗j (t)− θ̇∗i (t) = 0, ∀ i, j = 1, . . . , N, ∀t ≥ 0.

It is said to be exactly synchronized if it is phase-locked with
zero phase differences, that is

θ∗i (t)− θ∗j (t) = 0, ∀ i, j = 1, . . . , N, ∀t ≥ 0.

In view of this definition, the robustness analysis of phase-
locked solutions boils down to the analysis of the fixed points

of the dynamics ruling the phase differences θi − θj . A similar
approach has been exploited in [16], [23] in the case of all-to-
all coupling and constant inputs. In contrast to [19], studying
the incremental dynamics of the system avoids the use of
the grounded Kuramoto model, in which the mean frequency
of the ensemble is “grounded” to zero and synchronization
corresponds to a fixed point. While the latter is a well defined
mathematical object for constant perturbations, its extension to
time-varying inputs, which is the subject of the present study,
is not clear. Hence, we start by defining the common drift ω of
the system (1) as

ω(t) :=
1

N

N∑
j=1

$j(t), ∀t ≥ 0, (2)

and the grounded input ω̃ as ω̃ := [ω̃i]i=1,...,N , where

ω̃i(t) := $i(t)− ω(t), ∀i = 1, . . . , N, ∀t ≥ 0. (3)

Noticing that $i − $j = ω̃i − ω̃j , the evolution equation of
the incremental dynamics ruled by (1) reads

θ̇i(t)− θ̇j(t) = ω̃i(t)− ω̃j(t)+ (4)∑N
l=1 kil sin(θl(t)−θi(t))−

∑N
l=1 kjl sin(θl(t)− θj(t))

for all i, j = 1, . . . , N , i 6= j, and all t ≥ 0. In the sequel we
use θ̃ to denote the incremental variable:

θ̃ := [θi − θj ]i,j=1,...,N,i6=j ∈ T(N−1)2 . (5)

As expected, the incremental dynamics (4) is independent of ω,
meaning that it is invariant to common drifts among the oscilla-
tors. As stressed in the introduction, the system (1), and thus its
incremental dynamics (4), encompasses both the heterogeneity
between agents, the presence of exogenous disturbances and
the uncertainties in the interconnection topology. To see this
clearly, let ωi denote the constant natural frequency of the agent
i, let pi represent its additive external perturbations, and let
∆ij denote the uncertainty on each coupling gain kij . Then
the effects of all these disturbances can be analyzed in a unified
manner by letting, for all t ≥ 0,

$i(t) = ωi + pi(t) +
N∑
j=1

∆ij(t) sin(θj(t)− θi(t)). (6)

When no inputs are applied, i.e. ω̃ = 0, we expect the solutions
of (4) to converge to some asymptotically stable fixed point or,
equivalently, the solution of (1) to converge to some asymptot-
ically stable phase-locked solution at least for some coupling
matrices k. To make this precise, we start by defining the
notion of 0-asymptically stable (0-AS) phase-locked solutions,
which are described by asymptotically stable fixed points of
the incremental dynamics (4) when no inputs are applied. This
concept is related to asymptotic synchronization (cf. [16]).

Definition 2 (0-AS phase-locked solutions) Given a coupling
matrix k ∈ RN×N≥0 , let Ok denote the set of all asymptotically
stable fixed points of the unperturbed (i.e. ω̃ ≡ 0) incremental
dynamics (4). A phase-locked solution θ∗ of (1) is said to be 0-
asymptotically stable if and only if the incremental state θ̃∗ :=[
θ∗i − θ∗j

]
i,j=1,...,N,i6=j belongs to Ok.

A characterization of 0-AS phase-locked solutions of (1) for
general bidirectional interconnection topologies can be found
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in [34] and [14, Chapter 3]. In Section II-C, we characterize
the set Ok in terms of the isolated local minima of a suitable
Lyapunov function. The reason for considering only asymptot-
ically stable fixed points of the incremental dynamics stands in
the fact that only those are expected to provide some robustness
properties (as asymptotic stability implies local robustness with
respect to small inputs [35], [36]). On the contrary, (non 0-AS)
stable fixed points may correspond to non-robust phase-locked
state, as illustrated by the following example.

We next recall the definition of local Input-to-State Stability
with respect to small inputs [37]. This concept is also referred
to as Total Stability [36].

Definition 3 (LISS w.r.t. small inputs) For a system of the
form ẋ = f(x, u), a set A ⊂ Rn is said to be locally input-to-
state stable (LISS) with respect to small inputs iff there exist
some constants δx, δu > 0, a class KL function β and a
class K∞ function ρ, such that, for all |x0|A ≤ δx and all u
satisfying ‖u‖ ≤ δu, its solution satisfies

|x(t)|A ≤ β(|x0|A, t) + ρ(‖u‖), ∀t ≥ 0.

If this estimate holds with β(r, s) = Cre−
s
τ , where C, τ are

positive constants, then A is said to be locally exponentially
Input-to-State Stable with respect to small inputs.

Remark 1 (Local Euclidean metric on the n-Torus)
Definition 3 is given on Rn, which is little adapted to the
context of this article. Its extension to the n-Torus is natural
since Tn is locally isometric to Rn through the identity map I
(i.e. |θ|Tn := |I(θ)| = |θ|). In particular this means that the
n-Torus can be provided with the local Euclidean metric and
its induced norm. Hence, Definition 3 applies locally in the
n-Torus.

The next theorem, whose proof is given in Section III, states
the LISS of Ok with respect to small inputs ω̃.

Theorem 1 (LISS of phase-locking w.r.t. small inputs) Let
k ∈ RN×N≥0 be any symmetric interconnection matrix. Suppose
that the set Ok of Definition 3 is non-empty. Then the system
(4) is locally input-to-state stable with respect to small ω̃. In
other words, there exist δθ̃, δω > 0, β ∈ KL and ρ ∈ K∞,
such that, for all ω̃ satisfying ‖ω̃‖ ≤ δω and all |θ̃0|Ok ≤ δθ̃,
its solution satisfies

|θ̃(t)|Ok ≤ β(|θ̃0|Ok , t) + ρ(‖ω̃‖), ∀t ≥ 0. (7)

Theorem 1 guarantees that, if a given configuration is asymp-
totically stable for the unperturbed system, then solutions start-
ing sufficiently near from that configuration remain near it at all
time, in presence of sufficiently small perturbations ω̃. More-
over, the steady-state distance of the incremental state θ̃ from
Ok is somehow “proportional” to the amplitude of ω̃ through
the nonlinear gain ρ. This means that the phase-locked states
described byOk are robust to time-varying natural frequencies,
provided they are not too heterogeneous. We stress that, while
local ISS with respect to small inputs is a natural consequence
of asymptotic stability [35], the size of the constants δx and
δu in Definition 3, defining the robustness domain in terms
of initial conditions and inputs amplitude, are potentially very
small. As we show explicitly in the next section in the special
case of all-to-all coupling, the Lyapunov analysis used in the

proof of Theorem 1 (cf. Section III) provides a general method-
ology to build these estimates explicitly. We stress in particular
that, while the region of attraction depends on the geometric
properties of the fixed points of the unperturbed system, the
size of admissible inputs can be made arbitrarily large by taking
a sufficiently large coupling strength. This is detailed in the
sequel (cf. (19), (21), (25) and (26)).

Question 1 (Link with algebraic connectivity) In related
works on the existence and robustness of phase-locking [19],
[23] or consensus [13] the algebraic connectivity of the
underlying interconnection graph plays a crucial role. In the
present work the estimate of the region of attraction and of
the tolerated inputs relies on the geometrical properties of
a graph-dependent global Lyapunov function. It is an open
question to characterize the link between the two approaches.

B. Robustness of the synchronized state in the case of all-
to-all coupling

In this section we focus the Lyapunov analysis used in the
proof of Theorem 1 to the case of the all-to-all coupling. In
this case, it is known [34] that the only asymptotically stable
phase-locked solution for the unperturbed dynamics is the exact
synchronization corresponding to a zero phase difference be-
tween each pair of oscillators (cf. Definition 1). The following
proposition states the local exponential input-to-state stability
of the synchronized state with respect to small inputs, and
provides explicit bounds on the region of convergence, the size
of admissible inputs, the ISS gain, and the convergence rate. Its
detailed proof can be found in [33, Section III-B].

Proposition 1 (Exponential LISS of synchronization) Con-
sider the system (1) with the all-to-all interconnection topology,
i.e. kij = K > 0 for all i, j = 1, . . . , N . Then, for all
0 ≤ ε ≤ π

2 , and all ω̃ satisfying

‖ω̃‖ ≤ δεω :=
K
√
N

π2

(π
2
− ε
)
, (8)

the following facts hold:

1) the set Dε :=
{
θ̃ ∈ T(N−1)2 : |θ̃|∞ ≤ π

2 − ε
}

is for-
ward invariant for the system (4);

2) for all θ̃0 ∈ D0, the set Dε is attractive, and the solution
of (4) satisfies

|θ̃(t)| ≤ π

2
|θ̃0|e−

K
π2 t +

π2

K
‖ω̃‖, ∀t ≥ 0.

Proposition 1 establishes the exponential ISS of the synchro-
nized state in the all-to-all Kuramoto model with respect to
time-varying inputs whose amplitudes are smaller than K

√
N

2π .
It holds for any initial condition lying in D0, that is when all
the initial phase differences lie in

[
−π2 ,

π
2

]
. Moreover, if the

inputs amplitude is bounded by δεω , for some 0 ≤ ε ≤ π
2 , then

the set Dε is forward invariant and all the solutions starting in
D0 actually converge to Dε.

Recently, necessary and sufficient conditions for the expo-
nential synchronization of the Kuramoto system with all-to-
all coupling and constant different natural frequencies were
given in [16]. We stress that the estimated region of attrac-
tion provided by Proposition 1 is strictly larger than the one
obtained in [16, Theorem 4.1], which does not allow ε to
be picked as zero. For initial conditions lying in Dε, with a
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strictly positive ε, it is interesting to compare the convergence
rate obtained in Proposition 1, K

π2 , with the one obtained in
[16, Theorem 3.1], NK sin(ε). While the convergence rate of
Proposition 1 is slower than the one obtained in [16, Theorem
3.1] for large ε, it provides a better estimate for small values of
ε. Furthermore, for any fixed amplitude ‖ω̃‖ ≤ δεω , the bound
(8) allows to find the sufficient coupling strength Kε which
ensures the attractivity of Dε. After some computations (see
[33] for details) this bound reads

Kε ≤
π3

2 cos(ε)
max

i,j=1,...,N
‖$i −$j‖.

This bound is of the same order of the one provided in [16,
Proof of Theorem 4.1] Kinv , in the sense that, for ε 6= 0,
Kε
Kinv

< π3. For the same region of attraction, a tighter bound
Ksuff for the sufficient coupling strength has recently been
given in [23], where this bound is inversely proportional to
the number of oscillators, that is Kε

Ksuff
∼ N . Nonetheless,

similarly to [16], their rate of convergence is proportional to
sin(ε), leading to a worse bound than ours for large regions of
attraction.
In conclusion, Proposition 1 partially extends the main results
of [16], [23] to time-varying inputs. On the one hand, it
allows to consider sets of initial conditions larger than those
of [16], and bounds the convergence rate by a strictly positive
value, independently of the region of attraction. On the other
hand the required coupling strength is comparable to the one
given in [16], but more conservative than the lower bound in
[23]. Finally for small regions of attraction, the bound on the
convergence rate obtained in Proposition 1 is not as good as the
one of [16], [23].

C. A Lyapunov function for the incremental dynamics
In this section, we introduce the Lyapunov function for the

incremental dynamics (4) used in the proof of Theorem 1, that
will be referred to as the incremental Lyapunov function in the
sequel. We start by showing that the incremental dynamics (4)
possesses an invariant manifold, that we characterize through
some linear relations. This observation allows us to restrict the
analysis of the critical points of the Lyapunov function to this
manifold. Beyond its technical interest, this analysis shows that
phase-locked solutions correspond to these critical points. In
particular, it provides an analytic way of computing the set
Ok of Definition 2, completely characterizing the set of robust
asymptotically stable phase-locked solutions. Furthermore, we
give some partial extensions on existing results on the robust-
ness of phase-locking in the finite Kuramoto model.

The incremental Lyapunov function: We start by introduc-
ing the normalized interconnection matrix associated to k

E = [Eij ]i,j=1,...,N :=
1

K
[kij ]i,j=1,...,N , (9)

where the scalar K is defined as

K = max
i,j=1,...,N

kij . (10)

Inspired by [14, Chapter 3], we consider the incremental Lya-
punov function VI : T(N−1)2 → R≥0 defined by

VI(θ̃) = 2
N∑
i=1

N∑
j=1

Eij sin2

(
θi − θj

2

)
, (11)

where the incremental variable θ̃ is defined in (5). We stress
that VI is independent of the coupling strength K.

The invariant manifold: Before analyzing the behavior
of the function VI along the solutions of (4), we stress the
existence and identify an invariant manifold for the dynamics of
interest. The presence of an invariant manifold results from the
fact that the components of the incremental variable θ̃ are not
linearly independent. Indeed, we can express (N − 1)(N − 2)
of them in terms of the other N − 1 independent components.
More precisely, by choosing ϕi := θi − θN , i = 1, . . . , N − 1
as the independent variables, it is possible to write, for all
i = 1, . . . , N ,

θi − θN = ϕi, (12a)
θi − θj = ϕi − ϕj , ∀j = 1, . . . , N − 1. (12b)

These relations can be expressed in a compact form as

θ̃ = B̃(ϕ) := Bϕ mod 2π, ϕ ∈M, (13)

where ϕ := [ϕi]i=1,...,N−1, B ∈ R(N−1)2×(N−1), rankB =
N − 1, B̃ is continuous and continuously differentiable, and
M ⊂ T(N−1)2 is the submanifold defined by the embed-
ding (13). The continuous differentiability of B̃ : M →
T(N−1)2 comes from the fact that ϕi ∈ T1, for all i =
1, . . . , N , and the components of B̃(ϕ) are linear functions of
the form (12). Formally, this means that the system is evolving
in the invariant submanifold M ⊂ T(N−1)2 of dimension
N − 1. In particularM is diffeomorphic to TN−1.

Restriction to the invariant manifold: In order to conduct
a Lyapunov analysis based on VI it is important to identify its
critical points. Since the system is evolving on the invariant
manifoldM, only the critical points of the Lyapuonov function
VI restricted to this manifold are of interest. Hence we restrict
our attention to the critical points of the restriction of VI toM,
which is defined by the function VI |M : TN−1 → R as

VI |M(ϕ) := VI(Bϕ), ∀ϕ ∈M. (14)

The analysis of the critical points of VI |M is not trivial. To
simplify this problem, we exploit the fact that the variableϕ can
be expressed in terms of θ by means of a linear transformation
A ∈ R(N−1)×N , with rankA = N − 1, in such a way that

ϕ = Ã(θ) = Aθ mod 2π. (15)

Based on this, we define the function V : TN → R as

V (θ) = VI |M(Aθ). (16)

In contrast with VI |M, the critical points of V are already
widely studied in the synchronization literature, see for in-
stance [7, Section III] and [14, Chapter 3]. The following
lemma allows to reduce the analysis of the critical points of
VI onM to that of the critical points of V on TN . Its proof is
given in [33, Section IV-E].

Lemma 1 (Computation of the critical points on the invari-
ant manifold) LetM, VI |M,A and V be defined by (13)-(16).
Then θ∗ ∈ TN is a critical point of V (i.e. ∇θV (θ∗) = 0) if
and only if ϕ∗ = Aθ∗ ∈ M is a critical point of VI |M (i.e.
∇ϕVI |M(ϕ∗) = 0). Moreover if θ∗ is a local maximum (resp.
minimum) of V then ϕ∗ is a local maximum (resp. minimum)
of VI |M. Finally the origin ofM is a local minimum of VI |M.
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Lyapunov characterization of robust phase-locking: The
above development allows to characterize phase-locked states
through the incremental Lyapunov function VI . The following
lemma, whose proof is given in [33, Section IV-F], states that
the fixed points of the unperturbed incremental dynamics are
the critical points of VI |M, modulo the linear relations (12).
That is, recalling Definition 1, the critical points of VI |M
completely characterize phase-locked solutions.

Lemma 2 (Incremental Lyapunov characterization
of phase-locking) Let k ∈ RN×N≥0 be a symmetric
interconnection matrix. Let B and VI |M be defined as in
(13) and (14). Then ϕ∗ ∈ M is a critical point of VI |M (i.e.
∇ϕVI |M(ϕ∗) = 0) if and only if Bϕ∗ is a fixed point of the
unperturbed (i.e. ω̃ = 0) incremental dynamics (4).

Remark 2 (Incremental Lyapunov characterization of ro-
bust 0-AS phase-locked solutions) The Lyapunov function VI
is strictly decreasing along the trajectories of (4) if and only if
the state does not belong to the set of critical points of VI |M
(this will be rigorously shown by Claim 1 below for ω̃ = 0). It
then follows directly from Lemma 2 that isolated local minima
of VI |M correspond to asymptotically stable fixed points of (4).
By and Theorem 1, we conclude that the robust asymptotically
stable phase-locked states are completely characterized by the
set of isolated local minima of VI |M. The computation of this
set is simplified through Lemma 1.

Consequence for the system without inputs: At the light of
Lemma 2, we can state the following corollary, which recovers,
and partially extends, the result of [14, Proposition 3.3.2] in
terms of the incremental dynamics of the system. It states that,
for a symmetric interconnection topology, any disturbance with
zero grounded input (3) preserves the almost global asymptotic
stability of phase-locking for (1).

Corollary 1 (Almost global asymptotic phase-locking) Let
$ : R≥0 → RN be any signal satisfying ω̃(t) = 0, for all
t ≥ 0, where ω̃ is defined in (3). If the interconnection matrix
k ∈ RN×N≥0 is symmetric, then almost all trajectories of (1)
converge to a stable phase-locked solution.

We stress that Corollary 1 is an almost global result. It
follows from the fact that almost all trajectories converge to
the set of local minima of VI |M. From Lemma 2, this set
corresponds to stable fixed points of the incremental dynamics,
that is to stable phase-locked solutions. The precise proof is
omitted here for lack of space.

III. PROOF OF THEOREM 1

In order to develop our robustness analysis we consider
the Lyapunov function defined in (11), where the incremental
variable θ̃ is defined in (5), and the normalized interconnection
matrix E is defined in (9). The derivative of VI along the
trajectories of the incremental dynamics (4) yields V̇I(θ̃) =

(∇θ̃VI)T
˙̃
θ. The following claim, whose proof is given in [33,

Section IV-A], provides an alternative expression for V̇I .

Claim 1 If k is symmetric, then V̇I = −2(KχTχ + χT ω̃),

where χ(θ̃) := ∇θV
(
θ̃) =

[∑N
j=1Eij sin(θj − θi)

]
i=1,...,N

.

From Claim 1, we see that if the inputs are small, there are
regions of the phase space where the derivative of VI is negative
even in the presence of perturbations. More precisely, it holds
that:

|χ| ≥ 2|ω̃|
K

⇒ V̇I ≤ −KχTχ.

However, LISS does not follow yet as these regions are
given in terms of χ instead of the phase differences θ̃. In
order to estimate these region in terms of θ̃, we define F as
the set of critical points of VI |M (i.e. F := {ϕ∗ ∈ M :
∇ϕVI |M(ϕ∗) = 0}), whereM and VI |M are defined in (13)
and (11), respectively. Then, from Lemma 1 and recalling that
χ = ∇θV , it holds that |χ| = 0 if and only if θ̃ ∈ F . Since
|χ| is a positive definite function of θ̃ defined on a compact set,
[38, Lemma 4.3], guarantees the existence of a K∞ function σ
such that, for all θ̃ ∈ T(N−1)2 ,

|χ| ≥ σ(|θ̃|F ). (17)

Let U := F \ Ok. In view of Lemma 2, U denotes the set
of all the critical points of VI |M which are not asymptotically
stable fixed points of the incremental dynamics. Since∇VI |M
is a Lipschitz function defined on a compact space, it can be
different from zero only on a finite collection of open sets. That
is U and Ok can be expressed as the disjoint union of a finite
family of closed sets:

U =
⋃
i∈IU

νi, Ok =
⋃

i∈IOk

{φi}, (18)

where IU , IOk ⊂ N are finite sets, {νi, i ∈ IU} is a family
of closed subsets ofM, and

{
{φi}, i ∈ IOk

}
is a family of

singletons ofM. We stress that a 6= b implies a ∩ b = ∅ for
any a, b ∈ {νi, i ∈ IU}

⋃{
{φi}, i ∈ IOk

}
=: FS . Define

δ := min
a,b∈FS ,a6=b

inf
θ̃∈a
|θ̃|b, (19)

which represents the minimum distance between two critical
sets, and, at the light of Lemma 2, between two fixed points of
the unpertubed incremental dynamics (1). Note that, since FS
is finite, δ > 0. Define

δ′ω =
K

2
σ

(
δ

2

)
, (20)

and let

δθ̃ :=
δ

2
, (21)

which gives an estimate of the size of the region of attraction,
modulo the shape of the level sets of the Lyapunov function VI .
Then the following claim holds true. Its proof is given in [33,
Lemma IV-B].

Claim 2 For all i ∈ IOk , all θ̃ ∈ B(φi, δθ̃), and all |ω̃| ≤ δ′ω ,
it holds that

|θ̃ − φi| ≥ σ−1
(

2|ω̃|
K

)
⇒ V̇I ≤ −Kσ2(|θ̃ − φi|).

For all i ∈ IOk , the function VI(θ̃) − VI(φi) is zero for
θ̃ = φi, and strictly positive for all θ ∈ B(φi, δθ̃) \ φi. Hence
it is positive definite on B(φi, δθ̃). Noticing that B(φi, δθ̃) is
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compact, [38, Lemma 4.3] guarantees the existence of K func-
tions αi, αi defined on [0, δθ̃] such that, for all θ̃ ∈ B(φi, δθ̃),

αi(|θ̃ − φi|) ≤ VI(θ̃)− VI(φi) ≤ αi(|θ̃ − φi|). (22)

The two functions can then be picked as K∞ by choosing a
suitable prolongation on R≥0 Define the following two K∞
functions

α(s) := min
i∈IOk

αi(s), α(s) := max
i∈IOk

αi(s), ∀s ≥ 0. (23)

It then holds that, for all i ∈ IOk , and all θ̃ ∈ B(φi, δθ̃)

α(|θ̃ − φi|) ≤ VI(θ̃)− VI(φi) ≤ α(|θ̃ − φi|). (24)

In view of Claim 2 and (24), an estimates of the ISS gain is then
given by

ρ(s) := α−1 ◦ α ◦ σ−1
(

2

K
s

)
, ∀s ≥ 0 (25)

where σ is defined in (17). In the same way, the tolerated input
bound is given by

δω := ρ−1(δθ̃) ≤ δ
′
ω. (26)

From [39, Section 10.4] and Claim 2, it follows that, for all
‖ω̃‖ ≤ δω , the set |θ̃0|Ok ≤ δθ̃ is forward invariant for
the system (4) . Furthermore, invoking [40] and [39, Section
10.4], Claim 2 thus implies LISS with respect to small inputs
satisfying ‖ω̃‖ ≤ δω , meaning that there exists a class KL
function β such that, for all ‖ω̃‖ ≤ δω , and all |θ̃0|Ok ≤ δθ̃,
the trajectory of (4) satisfies |θ̃(t)| ≤ β(|θ̃0|, t) + ρ(‖ω̃‖), for
all t ≥ 0. �
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