Implicit representation priors meet Riemannian geometry for Bayesian
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We formulate the problem of grasping as the Bayesian inference of the hand configuration h = /\
(x,q) that is a posteriori the most likely given a successful grasp S = 1, an occupied point o and (P, x)
a point cloud P.
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We solve the grasping problem by computing the maximum a posteriori
h* = argmax p(h|S =1,0=1,P) Freature extractor Occupancy network
h
From the Bayes rule, the posterior of the hand configuration is
p(S|h o P
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Experimental results

which can be rewritten as the product of the likelihood-to-evidence ratio r and a scene-

dependent prior By integrating likelihood-free Hamiltonian Monte Carlo and

geodesic Monte Carlo, we are able to sample from the pos-
terior density defined on a smooth manifold using a closed-
form geodesic.

p(h|S,0,P) =r(5 | h,o,P)p(h |o,P).

Neural Ratio Estimation

Neural ratio estimation consists in training a classifier dy to discriminate between samples from
the joint density, p(S,h | o, P), and the marginal densities, p(S | o, P)p(h |, 0, P).

Method Success rate (%) % cleared
Simulation results
GPD 73.7 72.8
VGN (e = 0.95) 91.5 79
VGN (e = 0.9) 87.6 80.4
VGN (e = 0.85) 80.4 79.9
Ours 91.1 77
Real-world results
QOurs 95.6 88
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= Our implicit prior captures relevant 3D information
about the scene, enabling full Bayesian inference for
complex tasks.

= Our approach directly models variables on their
respective manifolds, effectively handling intrinsic
constraints.

= Our approach overcomes the simulation-real-world
discrepancy without performance degradation.
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