Implicit representation priors meet Riemannian geometry for Bayesian robotic grasping

Norman Marlier* Julien Gustin* Olivier Brüls Gilles Louppe University of Liège, Belgium


```
\log r_\phi( S \mid \mathbf{h}, o, \mathbf{P})sigmoid
d_{\phi}(S, \mathbf{h}, o, \mathbf{P})
```
Robotic grasping

We formulate the problem of grasping as the Bayesian inference of the hand configuration \mathbf{h} := (\mathbf{x}, \mathbf{q}) that is a posteriori the most likely given a successful grasp $S = 1$, an occupied point *o* and a point cloud **P**.

 $p(S \mid o, P)$ which can be rewritten as the product of the likelihood-to-evidence ratio *r* and a scenedependent prior

Probabilistic modeling

We solve the grasping problem by computing the maximum a posteriori $h^* = \arg \max p(h|S = 1, o = 1, P)$

h From the Bayes rule, the posterior of the hand configuration is

$$
p(\mathbf{h} \mid S, o, \mathbf{P}) = \frac{p(S \mid \mathbf{h}, o, \mathbf{P})}{p(S \mid \mathbf{h}, \mathbf{D})} p(\mathbf{h} \mid o, \mathbf{P})
$$

$$
p(\mathbf{h}|S, o, \mathbf{P}) = r(S | \mathbf{h}, o, \mathbf{P})p(\mathbf{h} | o, \mathbf{P}).
$$

Neural Ratio Estimation

Neural ratio estimation consists in training a classifier d_{ϕ} to discriminate between samples from the joint density, $p(S, h | o, P)$, and the marginal densities, $p(S | o, P)p(h | o, P)$.

• Our approach directly models variables on their respective manifolds, effectively handling intrinsic constraints.

• Our approach overcomes the simulation-real-world discrepancy without performance degradation.

Manifold sampling

form geodesic.

Approximate posterior

Experimental results

Take-home messages

Our implicit prior captures relevant 3D information about the scene, enabling full Bayesian inference for complex tasks.