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Abstract—When used by autonomous vehicles for trajectory
planning or obstacle avoidance, depth estimation methods need
to be reliable. Therefore, estimating the quality of the depth
outputs is critical. In this paper, we show how M4Depth, a state-
of-the-art depth estimation method designed for unmanned aerial
vehicle (UAV) applications, can be enhanced to perform joint
depth and uncertainty estimation. For that, we present a solution
to convert the uncertainty estimates related to parallax generated
by M4Depth into uncertainty estimates related to depth, and
show that it outperforms the standard probabilistic approach.
Our experiments on various public datasets demonstrate that our
method performs consistently, even in zero-shot transfer. Besides,
our method offers a compelling value when compared to existing
multi-view depth estimation methods as it performs similarly
on a multi-view depth estimation benchmark despite being 2.5
times faster and causal, as opposed to other methods. The code
of our method is publicly available at the following URL: https:
//github.com/michael-fonder/M4DepthU.

Index Terms—Depth estimation, uncertainty estimation, au-
tonomous aerial vehicles, parallax

I. INTRODUCTION

One of the many applications of depth estimation is to
replace depth sensors in autonomous vehicles for path plan-
ning [1] or obstacle avoidance [2], [3]. Such practice is
common for small unmanned aerial vehicles (UAVs) as their
size, weight and power constraints prevent the use of dedicated
depth sensors. For such applications, being able to predict the
quality of the estimates is essential to anticipate potentially
erroneous data and take action accordingly. However, to the
best of our knowledge, the task of joint depth and uncertainty
estimation for drone-specific constraints, such as being robust
to a wide variety of conditions and environments while being
computationally lightweight enough to run in real-time on
limited hardware, has not been addressed yet.

In a previous work [4], we introduced M4Depth, a depth
estimation method specifically designed for unstructured en-
vironments and UAV applications that shows state-of-the-art
performance for depth estimation in such environments and in
generalization. In this work, we detail how it is possible to
adapt the architecture of M4Depth to jointly estimate depth
and its uncertainty for a negligible additional computational
cost. Section II discusses the related works about uncertainty
estimation. In Section III, we explain how M4Depth can
be adapted for joint depth and uncertainty estimation. Our
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Figure 1. Illustration of depth and uncertainty estimates produced by the
method presented in this work for two setups. Row 1: trained and tested on
the Mid-Air [5] dataset. Row 2: tested in zero-shot transfer on the KITTI [6]
dataset. Lighter colors correspond to higher uncertainty values.

experiments, presented in Section IV, test our proposal in var-
ious conditions including zero-shot transfer on public datasets
and on an existing benchmark for multi-view depth (MVD)
estimation methods. Section V concludes this work.

Our main contributions are as follows. (i) Our method is
the first to address joint monocular depth and uncertainty esti-
mation for the specific constraints of autonomous drones. (ii)
We show that our method for uncertainty estimation performs
consistently in zero-shot transfer in different environments.
(iii) On a benchmark for MVD, we show that our method
performs on par with existing MVD methods for joint depth
and uncertainty estimation despite being 2.5 times faster and
causal, as opposed to MVD methods.

II. RELATED WORKS

Our M4Depth paper [4] already covers related works in
depth estimation, and uncertainty in neural networks is well
covered in the survey of Gawlikowski et al. [7]. Therefore,
we focus on uncertainty estimation for pixel-wise computer
vision regression tasks in this section.

Kendall and Gal [8] showed that a part of the uncertainty in
a deep neural network, called the aleatoric uncertainty, is due
to the noise in the input data. They also showed that this part of
the uncertainty can be estimated by training a network to learn
the parameters of a probabilistic distribution that represents the
noise in the output. The output noise for a method trained with
a L1 loss is assumed to follow a Laplace distribution [9]–[12]
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as it allows learning its parameters, the location and the scale,
with a Maximum Log-Likelihood loss function [8], [10], [13].

Estimating the aleatoric uncertainty can be done either by
creating a new architecture designed around uncertainty, such
as done by Ke et al. [9] and Su et al. [14], or by modifying an
existing architecture for the desired task. In the latter case, the
simplest way to proceed consists of adding a channel for the
uncertainty at the output of the network [12], [13], [15]–[17].
However, some methods create a distinct head for the uncer-
tainty by duplicating the last layers of their network [18]–[20],
which provides more trainable parameters to avoid potentially
sub-optimal performances due to the shared weights.

III. UNCERTAINTY ESTIMATION USING M4DEPTH

In this section, we briefly remind the working principles of
M4Depth [4] and explain how the network architecture can
be modified to jointly estimate the parallax and its aleatoric
uncertainty. We then detail how to get the uncertainty on depth
from the uncertainty on the parallax.

A. M4Depth working principles

M4Depth is a multi-level pyramidal architecture where each
level has the same structure and outputs a parallax estimate.
The parallax ρ > 0 is linked to the depth z of a point P by
the motion of the camera between two poses:

z =

√
(fxtx − tziV )

2
+ (fyty − tzjV )

2

ρ zV
− tz

zV
, (1)

where fx and fy are the respective focal lengths along the
x and y camera axes,

[
tx ty tz

]
expresses the known

translation of the camera between the two poses, and where iV ,
jV and zV are solely functions of the projection coordinates
(i, j) of P and the rotation of the camera between the two
poses [4].
The network starts with a first rough low-resolution parallax
estimate and then refines it progressively at higher resolutions
to get the final estimate. Each intermediate parallax map can
be converted into a depth map using Eq. (1) for each pixel. The
only architectural modification required for joint uncertainty
inference is to add an output for uncertainty at each level of
the architecture. As for the parallax, the additional outputs are
refined progressively to get the final estimate. Details on the
architecture modifications can be found in our code.
As mentioned in [4], M4Depth is trained for depth estimation
on a weighted sum of the L1 distance of the logarithm of the
depth for each architecture level l:

Lt =
1

HW

M∑
l=1

∑
zij∈dlt

2−l |log(zij)− log(ẑij)| . (2)

B. Correspondence between depth and parallax uncertainties

Since M4Depth works with parallax instead of depth values,
we need to make some adaptations to get the uncertainty on
depth. We first detail the baseline approach, which relies on
the standard probabilistic framework, to get depth uncertainties
from M4Depth. We then present a new and more elaborate

method to get depth uncertainty estimates from the parallax
ones. As confirmed by experiments, our new method better
evaluates the depth uncertainty.

To simplify the notations in the following, we rewrite Eq.
(1) for a given pixel and a given camera motion as:

z = Z(ρ) =
a

ρ
+ c , (3)

where

a =

√
(fxtx − tziV )

2
+ (fyty − tzjV )

2

zV
≥ 0 , (4)

and c = − tz
zV

are independent from the depth of the considered
point.

1) Baseline: the probabilistic framework
As the aleatoric uncertainty is assumed to be proportional

to the variance of the estimated output distribution, the natural
solution to get the uncertainty on depth is to find the relation
between the variance of the parallax output distribution and
the one of depth. From the literature, we know that training a
network as the log-likelihood of the L1 distance on the depth
z makes the assumption that its outputs follow a Laplace dis-
tribution whose mean and standard deviation are respectively
equal to µ̂ (z) and σ̂ (z). Unfortunately, the inverse relation
linking depth and parallax (see Eq. (3)) means that a direct
conversion between the variances, and therefore the standard
deviations, is impossible as they may not be finite in both
domains at the same time. However, training the network to
infer the inverse parallax solves this issue since injecting the
variable change ζ = 1/ρ in Eq. (3) gives:

z = aζ + c⇒ σ (z) = σ (aζ + c) = |a|σ (ζ) = aσ (ζ) . (5)

In practice, we can train M4Depth to infer the uncertainty
σ̂ (z) jointly to depth, from the inverse parallax by adding this
term to its loss function:

Lz,t =
1

HW

M∑
l=1

∑
zij∈dlt

2−l
[
� (|zij − ẑij |)
aσ̂ (ζij)

+ β log (aσ̂ (ζij))

]
, (6)

where gradients are not propagated to the variables enclosed
in the � () expression to avoid interference with the gradients
generated by the Lt term of the loss, and where β is an
arbitrary weighting factor for the uncertainty (we use β = 0.02
in our experiments). Note that this loss is only computed
for pixels whose depth is lower than 400m to avoid any
convergence issues.

In the following, we will refer to our modified version of
M4Depth trained with this loss term as M4Depth+Uz.

2) Elaborate conversion of the uncertainty
One of the strengths of M4Depth is the direct link that

exists between the parallax and the disparity sweeping cost
volumes, which are the main sources of information available
to infer the parallax. We assume that, as the cost volumes
provide valuable information on the parallax, they should also
provide valuable information on the related uncertainty. This
information is best used if there is a trivial relation between
the distribution to learn and the cost volumes. However, such a
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Figure 2. Illustration of the correspondence between a Laplace distribution
(blue curve) and its inverse (orange curve) when applied to the relation linking
parallax to depth for different standard deviations of the Laplace distribution.
We propose to use ∆ρ as an uncertainty measure on the parallax, whose
correspondence for depth is ∆z.

trivial relation does not exist when learning the distribution of
the inverse parallax because of the inverse relation. As a result,
the probabilistic approach is not well suited for M4Depth,
and we propose another approach to get depth uncertainty
estimates from the parallax domain.

Substituting the loss term Lz,t defined in Eq. (6) by the
following Lρ,t term in the training loss of M4Depth allows
to train the network to produce uncertainty estimates σ̂ (ρ)
directly related to parallax estimates ρ̂:

Lρ,t =
1

HW

M∑
l=1

∑
ρij∈ρlt

2−l
[
� (|ρij − ρ̂ij |)

σ̂ (ρij)
+ β log (σ̂ (ρij))

]
. (7)

In the following, we will refer to our modified version of
M4Depth trained with this loss term as M4Depth+Uρ.

We want to find a value ∆z > 0 in the depth domain that
represents the uncertainty carried by σ̂ (ρ). Stated otherwise,
for any corresponding pair (σ (ρ) ,∆z) and with everything
else being equal, we want:

σ1 (ρ) < σ2 (ρ) ⇔ ∆z1 < ∆z2 . (8)

Assuming that σ̂ (ρ) is a valid indicator for the uncertainty,
we derive a notion of relative uncertainty ∆ρ on the parallax
defined as follows:

∆ρ =
σ̂ (ρ)

ρ̂
> 0 . (9)

This allows us to derive a range of values
[

ρ̂
1+∆ρ

, ρ̂
]

that is
representative of the uncertainty as it monotonously increases
with uncertainty. As shown in Fig. 2, the equivalent of this
range in the depth domain can be defined as [ẑ, (1 + ∆z) ẑ]
where ẑ = Z (ρ̂). With this definition, ∆z has properties
similar to that of ∆ρ, and it is also representative of the
uncertainty on the parallax since Eq. (8) is verified.

To find the relation between ∆z and ∆ρ, we use Eq. (3) as
follows:

(1 + ∆z) ẑ = Z

(
ρ̂

1 + ∆ρ

)
⇔ ∆z =

c

ẑ
+ (1 + ∆ρ)

(
1− c

ẑ

)
− 1 > 0 .

(10)
Since ∆ρ > 0 and ẑ > 0, the inequality is verified if zV ẑ +
tz > 0 which is the same condition of existence than for the

parallax itself [4]. Therefore, the ∆z quantity is defined for
any possible value of the parallax.

In a nutshell, getting joint depth and uncertainty estimates
with M4Depth+Uρ amounts to training the network to infer
the parallax and its related uncertainty, then to convert them
into depth z and its related uncertainty ∆z by using Eq. (3)
and (10) respectively.

IV. EXPERIMENTS

In the experiments, we compare our elaborate approach
for uncertainty estimation to (1) the probabilistic baseline in
various conditions, and (2) existing methods on a benchmark
for MVD methods. Before presenting the results, let us first
describe the experimental setup.

A. Experimental setup

Datasets. We base our experiments on three datasets, namely
Mid-Air [5], KITTI [6], and TartanAir [21]: we use Mid-Air to
train and test the method in unstructured environments, KITTI
for zero-shot transfer tests on real data in urban environments,
and TartanAir for further tests either in urban or unstructured
environments. We use the same splits and image resolution as
for the original experiments for M4Depth [4].

Performance evaluation. The performance analysis is based
on a subset of metrics proposed by Eigen et al. [22] for depth
estimation, that is “Abs rel”, “RMSE log”, and δ < 1.25.
We also report the quality of uncertainty estimates with the
Area under the Sparsification Error (AuSE) proposed Ilg et
al. [10]. This value, derived from so-called sparsification
plots [23]–[26], has to be minimized for each performance
metric for depth estimation. Similar to related works, distant
points (ground-truth depth > 80m) are excluded from the
performance metric computations.

Network training. All the performance reported and analyzed
in this section are based on networks with six levels trained on
the training set of the Mid-Air dataset. We use the same hyper-
parameters and the same data augmentation steps as the ones
used for M4Depth [4]. However, we let the network train on
more iterations (250 k steps). We compute the performance
of the network in validation after each epoch and use the
set of weights that performed the best in validation for our
performance analysis.

B. Results

M4Depth+Uρ vs M4Depth+Uz. In Section III, we explain
how the probabilistic framework can be used as a baseline,
referred as M4Depth+Uz, to get the uncertainty on depth
estimates for M4Depth. We also propose a more elaborate
method to get this uncertainty with M4Depth+Uρ. We trained
our network with both methods on the Mid-Air dataset,
and tested the performances in zero-shot transfer on various
datasets. Some output results for M4Depth+Uρ are shown in
Fig. 1.

The results given in Table I and the sparsification error
curves displayed in Fig. 3 show that estimating depth and un-
certainty jointly with M4Depth works well. As hypothesized,



Table I
PERFORMANCE OF M4DEPTH+Uρ COMPARED TO M4DEPTH+UZ .

Set Method Abs Rel RMSE log δ < 1.25
Perf. ↓ AuSE ↓ Perf. ↓ AuSE ↓ Perf. ↑ AuSE ↓

M
id

-A
ir M4Depth 0.127 − 0.185 − 0.907 −

M4Depth+Uz 0.145 0.028 0.190 0.084 0.906 0.009
M4Depth+Uρ 0.134 0.007 0.188 0.020 0.906 0.006

K
IT

T
I M4Depth 0.193 − 0.224 − 0.849 −

M4Depth+Uz 0.140 0.025 0.195 0.046 0.858 0.021
M4Depth+Uρ 0.147 0.021 0.195 0.041 0.858 0.019

T
tA

-W

M4Depth 0.614 − 0.593 − 0.652 −
M4Depth+Uz 0.618 0.176 0.597 0.217 0.636 0.031
M4Depth+Uρ 0.478 0.058 0.592 0.157 0.646 0.028

T
tA

-O

M4Depth 0.446 − 0.355 − 0.793 −
M4Depth+Uz 0.468 0.077 0.410 0.155 0.776 0.020
M4Depth+Uρ 0.268 0.032 0.382 0.122 0.789 0.020

The network was trained and tested with the two loss functions on the Mid-
Air dataset, and tested in zero shot transfer on the other datasets. We used
the seasons forest winter (TtA-W) and neighborhood (TtA-N) environments
of the TartanAir dataset. The best AuSEs for each set are highlighted in bold.
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Figure 3. Sparsification error (S.E.) curves on the absolute relative error for
M4Depth+Uz and M4Depth+Uρ on the KITTI dataset, and on the “Old Town”
set of TartanAir (TtA-O).

the probabilistic framework underpinning the M4Depth+Uz
baseline is sub-optimal while our elaborate uncertainty con-
version method, M4Depth+Uρ, consistently performs better.
Also, the AuSE score for M4Depth+Uρ varies less between
datasets when compared to M4Depth+Uz, therefore hinting
at more consistent generalization performances. Finally, it is
worth noting that both approaches for estimating depth and its
uncertainty preserve the raw performance for depth estimation
of M4Depth.

The sparsification error curves show that the uncertainty
produced by our network is better at discriminating low errors
than higher ones, since the sparsification error is higher for
lower sparsification values. The upward trend at the very
end of the sparsification error curve for M4Depth+Uz on the
TartanAir set hints that the network is very confident in some
areas with higher errors, which is not desired. This behavior
is not observed with M4Depth+Uρ which further motivates its
interest over the baseline.

Robust MVD benchmark. As our method targets autonomous
UAV applications, it has to produce estimates for the latest
available frame. Therefore, it cannot use future information
as opposed to generic multi-view depth estimation methods
which can use all the past and upcoming frames of the
sequence. Since we are the first to target this specific use case,
there is no existing baseline to compare to directly. Nonethe-

Table II
PERFORMANCE OF M4DEPTH+Uρ ON THE UNCERTAINTY BENCHMARK

PROPOSED BY SCHRÖPPEL et al. [11] FOR MVS METHODS.

Method Causal Abs. Rel. (↓) AuSE Time [ms]
MVSNet [27] % 0.140 0.025 150
Fast-MVSNet [28] % 0.121 0.034 350
Vis-MVSNet [12] % 0.103 0.028 820
Robust MVD [11] % 0.071 0.017 60
M4Depth+Uρ ! 0.086 0.020 26

Performances are reported in zero-shot transfer on the 93-images test set for
the KITTI dataset used for this benchmark. Inference timings are reported
for full-size KITTI images. Note that M4Depth+Uρ is causal and only uses
a sequence of frames that precedes the frame considered for depth inference,
while MVD methods are anti-causal as they also use upcoming frames.

less, we assess the value proposition of M4Depth+Uρ over
some other existing methods on the benchmark proposed by
Schröppel et al. [11] for joint multi-view depth and uncertainty
estimation. Results on the KITTI set of the benchmark are
reported in Table II. Despite working with fewer data than
other methods, M4Depth+Uρ outperforms most of the baseline
and comes close to the state of the art on this benchmark.
This, combined with the fact that M4Depth+Uρ is at least
2.5 times faster than other methods, leads us to conclude that
our method performs on par with existing methods tested on
this benchmark, and that M4Depth+Uρ has a real benefit for
practical use.

Inference statistics. In the configuration used in our experi-
ments, our method has 5.7 M parameters, and requires up to
840 Mo of VRAM to run. On a NVidia V100 GPU and for
input samples with a size of 384× 384 pixels, M4Depth+Uρ
jointly estimates depth and uncertainty in 18 ms. This is
1 ms more than M4Depth, which means that estimating the
uncertainty requires a negligible additional computational time
when compared to depth estimation alone.

V. CONCLUSION

In this paper, we showed that it is possible to adapt
M4Depth, an efficient depth estimation network designed
for autonomous vehicles applications, for joint depth and
uncertainty estimation at minimal cost. We also demonstrated
that converting the uncertainty values produced by the network
into uncertainty values related to depth is better done with an
elaborate conversion method, referred as M4Depth+Uρ, than
with the standard probabilistic approach. The performance on
the Mid-Air dataset and our tests in zero-shot transfer on the
KITTI and TartanAir datasets show that our method emerges
as an excellent joint depth and uncertainty estimator. In addi-
tion, testing M4Depth+Uρ on the Robust MVD benchmark in
zero-shot transfer confirm that our method performs similarly
to other multi-view stereo methods, while being 2.5 times
faster and causal, as opposed to these methods.
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