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Abstract 
To develop a breed assignment model, three main steps are generally followed: 1) The selection of breed informative single nucleotide poly-
morphism (SNP); 2) The training of a model, based on a reference population, that allows to classify animals to their breed of origin; and 3) 
The validation of the developed model on external animals i.e., that were not used in previous steps. However, there is no consensus in the 
literature about which methodology to follow for the first step, nor about the number of SNP to be selected. This can raise many questions 
when developing the model and lead to the use of sophisticated methodologies for selecting SNP (e.g., with iterative algorithms, partitions 
of SNP, or combination of several methods). Therefore, it may be of interest to avoid the first step by the use of all the available SNP. For this 
purpose, we propose the use of a genomic relationship matrix (GRM), combined or not with a machine learning method, for breed assignment. 
We compared it with a previously developed model based on selected informative SNP. Four methodologies were investigated: 1) The PLS_NSC 
methodology: selection of SNP based on a partial least square-discriminant analysis (PLS-DA) and breed assignment by classification based on 
the nearest shrunken centroids (NSC) method; 2) Breed assignment based on the highest mean relatedness of an animal to the reference pop-
ulations of each breed (referred to mean_GRM); 3) Breed assignment based on the highest SD of the relatedness of an animal to the reference 
populations of each breed (referred to SD_GRM) and 4) The GRM_SVM methodology: the use of means and SD of the relatedness defined in 
mean_GRM and SD_GRM methodologies combined with the linear support vector machine (SVM), a machine learning method used for classi-
fication. Regarding mean global accuracies, results showed that the use of mean_GRM or GRM_SVM was not significantly different (Bonferroni 
corrected P > 0.0083) than the model based on a reduced SNP panel (PLS_NSC). Moreover, the mean_GRM and GRM_SVM methodology were 
more efficient than PLS_NSC as it was faster to compute. Therefore, it is possible to bypass the selection of SNP and, by the use of a GRM, to 
develop an efficient breed assignment model. In routine, we recommend the use of GRM_SVM over mean_GRM as it gave a slightly increased 
global accuracy, which can help endangered breeds to be maintained. The script to execute the different methodologies can be accessed on: 
https://github.com/hwilmot675/Breed_assignment.

Lay Summary 
Breed assignment models generally rely on three main steps: 1) Selection of markers that allow to distinguish the breeds under study; 2) 
Development of a classification model that assigns each animal to its breed of origin; and 3) Validation of the developed model with new ani-
mals, to verify that the developed model is not overfitted. The first step often raises several questions about the methodology to select the best 
markers or about the number of markers to select. That is why it can be interesting to avoid this first step and to use an appropriate methodology 
that performs similarly without the need for single nucleotide polymorphism (SNP) selection. In this study, we developed different methodol-
ogies based on the genomic relationship matrix (GRM), combined or not with a machine learning method, to assign animals to their breed of 
origin. The results showed that the model based on a GRM combined with a machine learning method showed equivalent percentage of correct 
assignment to a previously developed model relying on SNP selection while being substantially faster to compute. It is therefore possible to 
assign animals to their breed by the use of a GRM and to bypass the first step of selection of SNP.
Key words: breed assignment, genomic relationship matrix, local breeds, machine learning, single nucleotide polymorphism, support vector machine
Abbreviations: 10-CV, 10-fold cross-validation; AF, allele frequencies; C, cost of the linear support vector machine; EBRW, East Belgian Red and White; FST, 
fixation index; GRM, genomic relationship matrix; MRY, Meuse-Rhine-Yssel; NSC, nearest shrunken centroids; PCA, principal component analysis; PLS-DA, 
partial least squares-discriminant analysis; RPO, Red-Pied of the Ösling; RS1, reference set 1; RS2, reference set 2; SNP, single nucleotide polymorphism; SVM, 
support vector machine

Introduction
Developing a suitable model for breed assignment is often 
necessary for the management of livestock, e.g., because the 
pedigree is missing (especially in endangered breeds; e.g. 

Wilmot et al., 2022a) or because of breed-derived products 
traceability purposes (e.g., Judge et al., 2017; Wilmot et al., 
2022b). In general, three main steps have to be followed to 
develop a breed assignment model: 1) Selection of breed-in-
formative single nucleotide polymorphism (SNP), 2) Training 
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of a classification model, and 3) Validation of the tuned clas-
sification model on external animals, i.e., that were not used 
for the training steps. The reasons for selecting a breed-in-
formative SNP panel instead of all the SNP provided by the 
SNP chip (or at the overlap of several SNP chips) can be sum-
marized as followed: 1) It increases the global accuracy of 
the model, i.e., its ability to correctly assign animals to their 
breed of origin (Wilkinson et al., 2011; Pasupa et al., 2020; 
Wilmot et al., 2022a), 2) The number of SNP highly exceeds 
the number of samples leading to a risk of overfitting (Pasupa 
et al., 2020), 3) It reduces the time needed for computation 
(Kwak and Choi, 2002) and 4) It can decrease genotyping 
costs. Even if genotyping costs are constantly decreasing, it 
is common to genotype animals at a minimum density (e.g., 
10k or 50k SNP) and, if necessary to impute them to a higher 
density (VanRaden et al., 2011).

However, how to implement the first step is a complex 
issue most of the time. The first question to answer is which 
methodology should be used. In the literature, very different 
methodologies have been applied to select the most breed 
informative SNP, and there is no consensus on a universally 
best method. Examples include the use of fixation index (F

ST), 
absolute allele frequency differences or principal component 
analysis (PCA; Wilkinson et al., 2011; Hulsegge et al., 2013; 
Judge et al., 2017; Bertolini et al., 2018). Recently, some 
studies have even combined several methodologies to select 
breed-informative SNP, which added another level of com-
plexity. For example, Hulsegge et al. (2019) used a PCA in 
combination with a random forest to select SNP and Pasupa 
et al. (2020) used a sophisticated methodology combining 
information gain, a genetic algorithm and frequency feature 
selection for this purpose. This kind of complex methodol-
ogy can also involve iterative algorithms (Pasupa et al., 2020; 
Moradi et al., 2021), which increases computation time to 
train the model. Another issue with this first step is to esti-
mate the optimal number of SNP to allow breed classification. 
Again, there is no consensus in the literature about the pro-
tocol to follow. Various approaches have been used, such as: 
log-likelihood ratio of probabilities to be assigned to a breed 
(Hulsegge et al., 2013), threshold of the needed global accu-
racy (Wilkinson et al., 2011), or threshold of the used mea-
sure of informativeness (Wilmot et al., 2022a). During the 
process of SNP selection, there is also the risk to select SNP 
that are in linkage disequilibrium (Kumar et al., 2019), result-
ing in collinearity of the variables used, which may affect 
the performance of the classification model. Finally, another 
important issue is that the selection of a SNP panel implies it 
is specific to the studied breeds (Judge et al., 2017; Kumar et 
al., 2019), which means that a new SNP panel would have to 
be selected for a new breed to be assigned. Given these issues 
in the selection of the most breed-informative SNP, it may be 
desirable to skip this step and use all the available SNP for 
breed assignment.

To solve this issue, we proposed the use of a genomic 
relationship matrix (GRM) for breed assignment. To our 
knowledge, GRM have never been used directly for breed 
assignment. However, it has already been used indirectly for 
this purpose, e.g., through genomic best linear unbiased pre-
diction (Dodds et al., 2014). Because the GRM is very widely 
used, e.g., for computation of genomic predictions, genetic 
variance within population and genetic correlations between 
populations, it would be interesting to extend its current use 
to breed assignment. The objective of this study was therefore 

to compare the performances of a breed assignment model 
based on a GRM, combined or not with a machine learning 
method, to a previously developed model based on machine 
learning techniques.

Materials and Methods
The SNP data for the animals included in this study were pre-
viously obtained from samples collected by breeder associations 
based on relevant authorization by the different local authori-
ties. Genotypes of Meuse-Rhine-Yssel (MRY) were provided by 
the Centre of Genetic Resources (Wageningen, the Netherlands). 
Genotypes of the East Belgian Red and White (EBRW) breed 
were provided by the Walloon Breeders Association (Ciney, Bel-
gium) while those of the Red-Pied of the Ösling (RPO) breed 
were provided by the Administration of Technical Agricultural 
Services (Luxembourg, Grand Duchy of Luxembourg). More 
details about the breeding management of these two latter 
breeds can be found in Wilmot et al. (2022a).

Dataset
The genotypes of three different red-pied cattle breeds were 
used in this study: those of the EBRW (N = 226), the RPO (N 
= 132), and the MRY (N = 292). All the animals sampled were 
recorded in the Herd Book of their respective breed. The three 
studied breeds are part of a genomic continuum as described 
in previous studies (e.g. Wilmot et al. 2022a, 2023) and can be 
considered as sister breeds, rooting from the same breed group. 
They are also very close geographically as the EBRW is Belgian, 
the RPO is Luxembourgish and the MRY is Dutch. Table 1 
shows, for each breed, the number of samples and the distribu-
tion of the chips used for genotyping. Five different SNP chips 
were used: the BovineSNP50 Beadchip v2 and 3, the BovineHD 
Beadchip v12 and the EuroG MD v9-SI and v2 (Illumina, San 
Diego, CA, USA). The mapped SNP that are included on each 
of the five chips were used in the current study. The same qual-
ity control as in Wilmot et al. (2023) was followed and led to 
a total of 39,967 SNP.

Breed assignment methodologies
Four methodologies were used to predict the breed of origin. 
The available samples were divided in a reference and a val-
idation set, and each of the four methodologies was used to 
predict the breed of origin of the samples in the validation set. 
The validation set was formed by the random selection of half 
of the available samples for each breed. Two modalities were 
tested for the reference set: the first one used the remaining 
half of the samples (hereafter referred to RS1) and the second 
one used 50 randomly selected animals per breed among the 
remaining half (hereafter referred to RS2). The objective of 
testing two reference sets was to determine the effect of the 
size of the reference population and of the balance of sample 
sizes across breeds on the performances of the different meth-
odologies. The random selection of the validation set and the 
two modalities of the reference set were repeated 200 times in 
order to compare the performances of the different method-
ologies. The size of the different validation and reference sets 
are given in Table 1.

The PLS_NSC methodology.
It followed the methodology of the second best breed assign-
ment model detected by Wilmot et al. (2022a), using less SNP 
but with a similar performance than the best model. For this 
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methodology, the genotypes were standardized i.e., they were 
centered by the SNP mean and divided by the SNP SD. The 
reference set was first used to select the best SNP with a par-
tial least squares-discriminant analysis (PLS-DA). For this 
purpose, only SNP with a major genotypic frequency lower 
than 0.95 in the reference set were kept. It allows to get rid of 
(almost) monomorphic SNP as it is first necessary to eliminate 
variables that are (almost) constant for the PLS-DA to work. 
To optimize the PLS-DA, a number of components ranging 
from 1 to 50 was tested in a 10-fold cross-validation (10-CV) 
within the reference set with the trainControl function of the 
caret v.6.0-93 R package (Kuhn, 2008). As the PLS-DA built 
a model for each of the three breeds of interest, the mean of 
absolute values of coefficients of SNP plus three times their 
SD were used as a threshold for selecting SNP. If the abso-
lute value of a SNP coefficient was higher than this threshold 
for at least one of the three breeds, it was included in the 
SNP panel used for classification. Then, the method of the 
nearest shrunken centroid (NSC) was trained (Tibshirani et 
al., 2002), based on this SNP panel, to assign each animal 
of the reference set to its breed of origin. The NSC was also 
optimized in a 10-CV by the use of the trainControl function 
(caret v.6.0-93 R package, Kuhn, 2008) and the following val-
ues of the shrinkage level (delta) were tested: 0.01, 0.05, 0.10, 
0.25, 0.50, 1. Once the model was built and optimized by 
the selected SNP panel and the adequate delta, the validation 
set was used to determine its performance. To assign animals 
to their breed of origin, the criteria of the highest probabil-
ity was used. The different optimization parameters of the 
first methodology (number of SNP with major genotypic fre-
quency lower than 0.95, number of components, number of 
SNP selected by the PLS-DA and delta), for each reference set 
and repetition, are available in Supplementary Table S1.

The mean_GRM methodology
This methodology was based on the use of a GRM. The GRM 
was built with the calc_grm program (Calus and Vandenp-
las, 2016), which can be accessed through the MiXBLUP 
software (ten Napel et al., 2021). Computation of the GRM 
involves first calculating allele frequencies (AF). However, for 
the to-be-assigned animal it is not possible to use the AF of 
the breed of the animal in question since its breed is not yet 
known. We therefore chose to use average AF across breeds. 
In the case of RS1, the reference set is imbalanced and com-
puting average AF across all the genotype data may bias the 
GRM, because the AF used would be dominated by the breed 
with most samples. Therefore, genotypes of the reference set 
were used to compute the AF for each of the three breeds 
separately. These AF were then averaged across the breeds 

and the average AF were used for centring the genotypes 
and scaling the resulting GRM, following the first method of 
VanRaden (2008). It was also important to use only animals 
of the reference set for computing AF as classification results 
for validation animals should only be dependent of the com-
position of the reference set (and not of validation animals 
themselves). For each animal of the validation set, the mean 
relationship with the reference set of each breed was com-
puted. Animals were assigned to the breed with which they 
had the highest mean relationship. The rationale behind the 
mean_GRM methodology was simple: on average, genomic 
relationships of an animal to members of its own breed are 
expected to be higher than to members of other breeds.

The SD_GRM methodology
The third methodology was a variation of the second meth-
odology and used the SD of the genomic relationships, as 
computed for the mean_GRM methodology, to each breed of 
the reference set instead of the mean relationships. Animals 
were assigned to the breed with which they had the highest 
SD of the relationships. The rationale behind the SD_GRM 
methodology was that there is more variability of relation-
ships within a breed than between them. For example, if 
we consider the close relatives of an animal (e.g. its parents, 
grandparents, siblings) that belong to the same breed and are 
more related to it than distant cousins that already belong to 
another breed, there is more variability of the relationships 
within the close family than to distant relatives. The relation-
ship of one animal to distant relatives would be rather similar 
and therefore the variation of the relationships would be close 
to 0 in this case.

The GRM_SVM methodolgy
This methodology was a combination of genomic relation-
ships, again as computed for mean_GRM, and a support vec-
tor machine (SVM) with a linear kernel. In SVM, other kernels 
can be used as well (e.g. radial, polynomial, etc). However, 
these other kernels are less intuitive to optimize as the number 
of parameters to be tuned increases. We wanted our tool to be 
available for use by the vast majority of scientists so we chose 
the linear kernel.

For the GRM_SVM, the mean and SD of the genomic rela-
tionships of animals of the reference set to animals of each 
breed of the reference set were computed. In this computa-
tion, self-relationships were excluded. Thus, six variables 
were computed: a mean and SD of the relatedness of the 
animal to each of the three breeds. These six variables were 
standardized (i.e., the mean of each variable was subtracted 

Table 1.  Number of samples per breed (in total, for each of the reference sets and for the validation set) and distribution of samples per chip

Breed N N for 
RS1

N for 
RS2

N for the 
validation set

Chip

BovineSNP50 
Beadchip v2

BovineSNP50 
Beadchip v3

BovineHD 
Beadchip v12

EuroG 
MD v9-SI

EuroG 
MD v2

East Belgian 
Red and White

226 113 50 113 90 65 0 34 37

Meuse-Rhine-
Yssel

292 146 50 146 120 149 23 0 0

Red-Pied of 
Ösling

132 66 50 66 0 107 0 10 15
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and they were divided by their SD) and used as an input for 
training a linear SVM that was optimized, as for PLS_NSC, 
by the use of a 10-CV with the help of the caret v.6.0-93 R 
package (Kuhn, 2008). The following values of cost (C) were 
tested: 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 
0.9. Supplementary Table S2 shows the optimal selected val-
ues for this parameter, based on RS1 and RS2, respectively. 
The mean and SD of the relationships of validation animals 
to the reference set, previously computed for mean_GRM 
and SD_GRM, were used to validate the tuned linear SVM. 
As implemented in the caret v.6.0-93 R package (Kuhn, 
2008), the SVM scores, based on the distances to the deci-
sion boundary, are rescaled through a logistic transformation 
(Platt’s scaling), which allow to estimate probabilities (Lin et 
al., 2007). Therefore, validation animals were assigned to the 
breed for which they had the highest probability.

To allow comparison of the breed assignments, for each 
combination of reference set and methodology, the global 
accuracy, sensitivity and specificity for each breed were 
computed and averaged for the 200 repetitions. The global 
accuracy is defined as the percentage of correct assignment 
for all the validation animals while the sensitivity is defined 
for each breed as the percentage of correct assignment for 
this breed. In contrast, the specificity is defined as the pro-
portion of animals not belonging to a specific breed that 
are not assigned to this breed. The SD, the minimum and 
maximum of global accuracies, sensitivities and specific-
ities were also computed. With the objective to evaluate 
significance of differences of global accuracies, sensitivities 
and specificities between the followed methodologies, an 
adapted paired Student’s T-test for cases with resampling 
was realized within each modality of the reference set (RS1 
or RS2) for each pair of methodology, following the for-
mula of Bouckaert and Frank (2004):

t =
1
n

∑n
j=1 xj√Ä

1
n + n2

n1

ä
σ̂2

with n the number of repetitions, x the difference of global 
accuracies, sensitivities or specificities between two method-
ologies, n1 the number of samples in calibration (total number 
for global accuracy, number of one breed for sensitivities and 
number of the two other breeds for specificities), n2 the num-
ber of samples in validation (total number for global accu-
racy, number of one breed for sensitivities and number of the 
two other breeds for specificities), σ̂2 the estimated variance 
of the differences and t the observed t value. As there were six 
pairwise comparisons, differences were considered significant 
when P < 0.0083, very significant when P < 0.0017, highly 
significant when P < 0.00017, and extremely significant when 
P < 0.000017, using a Bonferroni correction. Following the 
adapted formula of the paired Student’s T-test, there can be 
a lack of power of detection in the case of RS2 because of 
an increase of the variance. That is why a bootstrap confi-
dence interval of 95% (percentiles P2.5 and P97.5) was also 
computed for global accuracy, sensitivities and specificities of 
each methodology.

Finally, computation time was determined to evaluate 
which methodology was the most efficient. Computations 
were performed on the High Performance Computer 
(Anunna) of Wageningen University and Research using 
operating system Linux 4.15 Ubuntu 20.4. The proces-

sors used were Intel Xeon Gold 6130 CPU 64 bits with 
a base frequency of 2.10 GHz. For the computation of 
mean_GRM, SD_GRM, and GRM_SVM, 4 Gb of RAM 
were assigned while, for PLS_NSC, 16 Gb were assigned. 
For each methodology, one core was assigned. All the 
methodologies were implemented in R v.4.1.2 (R Core 
Team, 2021) and Rstudio 2023.03.0 + 386 (R Studio 
Team, 2023), except for the GRM computation that was 
done with the calc_grm program (Calus and Vandenplas, 
2016). Supplementary File S1 is an R script detailing the 
mean_GRM, SD_GRM, and GRM_SVM methodologies 
and can be accessed as well on GitHub: https://github.
com/hwilmot675/Breed_assignment.

Results
Figures 1 and 3 show scatterplots of the SD against the mean 
relatedness of validation animals with the EBRW, MRY, and 
RPO reference animals, for one random repetition of RS1. 
Supplementary Figures S1 and S3 show similar scatterplots 
of the SD against the mean relatedness of reference animals 
of each breed, within the same random repetition of RS1. As 
expected, it can be seen that the mean and SD of the related-
ness of validation animals to their own breed were higher than 
those of validation animals from other breeds. This pattern 
was particularly obvious in Figures 1 and 2. For each breed, 
the correlations, averaged across repetitions, between the 
mean and SD of the relatedness of validation animals to the 
EBRW, MRY, and RPO animals of RS1, are shown in Table 2. 
Similar computations were made within animals of RS1 (Sup-
plementary Table S3). Mean correlations between the mean 
relatedness and the SD of the relatedness ranged from 0.55 
to 0.80 within breeds and from −0.19 to 0.54 across breeds. 
Both these figures and tables are indicating that mean and SD 
of the relationship were related, but included a considerable 
extent of different information as well.

Global accuracies for each combination of methodology 
and reference set, averaged across repetitions are shown in 
Table 3. Supplementary Table S4 shows global accuracies for 
each combination of methodology, reference set, and repe-
tition. It can be observed on Table 3 that the highest mean 
global accuracies were obtained with GRM_SVM for RS1 
and RS2. Moreover, the Student’s T-test did not detect any 
significant difference of mean global accuracies between 
PLS_NSC, mean_GRM, and GRM_SVM neither for RS1 

Figure 1. Scatterplots of the SD of the relatedness against the mean 
relatedness of validation animals to the EBRW breed for one repetition 
of reference set 1. Each dot represents a sampled animal from the 
validation set. Different colors represent different breeds.
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(Figure 4) nor for RS2 (Figure 5). For both reference sets, the 
SD_GRM methodology had the lowest mean global accu-
racy, which showed significant differences from PLS_NSC 
and GRM_SVM for RS1. For the SD_GRM, the SD of the 
global accuracy (Table 3) and the confidence interval  (Figures 
4 and 5) were the highest. Even if, for both reference sets, the 
mean global accuracy of mean_GRM was not significantly 
different from PLS_NSC and GRM_SVM, it can be seen in 
Table 3 and Figures 4 and 5, that the mean and median of 
global accuracy were slightly lower than for PLS_NSC and 
GRM_SVM.

Supplementary Tables S5 to S10 show results for the sen-
sitivities and specificities of EBRW, MRY, and RPO, averaged 
across repetitions for each combination of methodology and 
reference set. Supplementary Table S4 shows these results for 
each combination of methodology, reference set, and repetition. 
Supplementary Figures S4 to S15 show results of the Student’s 
T-test used to detect significant differences in mean sensitivi-
ties and specificities of each breed, for each reference set. Most 
of the time, for both reference sets, there were no significant 
differences of mean sensitivities or specificities between the dif-
ferent methodologies. However, for RS1, a very significant dif-
ference of sensitivity of EBRW as well as a significant difference 
of specificity of MRY were observed between the SD_GRM 
and all other methodologies. For RS2, a significant difference 
of sensitivity of EBRW was shown between SD_GRM and the 
three other methodologies. However, non  significant differ-
ences obtained with RS2 should be interpreted cautiously as 
the estimated variance of the observed t value increased in the 
used formula compared to the RS1 modality, which decreases 
the power of detection of the test. In Table 3, it can also be seen 
that all models had higher mean global accuracies when the 
reference set was larger. For the third methodology, the increase 
of mean global accuracy related to the increase of the size of 
the reference set was the highest (higher than 3%) while it was 
the lowest for mean_GRM (0.10%).

Finally, average computation times for each combination of 
methodology and reference set are presented in Table 4, while 
computation time for each combination of methodology, 
reference set, and repetition are presented in Supplementary 
Table S11. For PLS_NSC and GRM_SVM, it can be observed 
that computations to train the model always took more time 
than computations involved in predicting the breed of origin 
of the validation set. Moreover, PLS_NSC, with the selection 
of SNP, took the longest time to be trained (around 48 min on 
average for RS1 and around 30 min on average for RS2) but 
also to predict the breed of origin for new animals (a bit less 
than 15s for both reference sets). For all methodologies based 
on GRM, the total amount of time was always lower than 
15s, which is very fast. Within each methodology, the total 
time was lower for RS2, with less animals in the reference set 
but the same number of animals to validate than RS1. For 
mean_GRM and SD_GRM, this decrease in total time was 
related to the decrease in time related to the computation of 
the GRM while, for PLS_NSC and GRM_SVM, it was related 
to the decrease in training time.

Figure 3. Scatterplots of the SD of the relatedness against the mean 
relatedness of validation animals to the RPO breed for one repetition 
of reference set 1. Each dot represents a sampled animal from the 
validation set. Different colors represent different breeds.

Figure 2. Scatterplots of the SD of the relatedness against the mean 
relatedness of validation animals to the MRY breed for one repetition 
of reference set 1. Each dot represents a sampled animal from the 
validation set. Different colors represent different breeds.

Table 2.  Correlations between the mean relatedness and the SD of the relatedness of each breed of the validation set to each breed of the reference 
set, averaged across 200 repetitions of RS1

Breed of the 
reference set

Breed of the 
validation set

Mean correlation between mean 
relatedness and the SD of the relatedness

SD of the correlation between mean 
relatedness and the SD of relatedness

EBRW EBRW  0.63 0.083

MRY −0.14 0.094

RPO  0.43 0.108

MRY EBRW  −0.19 0.104

MRY  0.55 0.072

RPO  0.32 0.159

RPO EBRW  0.50 0.083

MRY  0.54 0.085

RPO  0.80 0.048
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Discussion
The objective of this study was to determine the performances 
of the use of a GRM, combined or not with a machine learn-
ing method, for breed assignment purposes. One of the prop-
erties of the GRM, if computed using AF across all individuals 
included in the GRM, is that the average of all relationships is 
expected to be equal to 0. Therefore, the fact that we obtained 
negative relationships, does not really have a meaning per se 
(other than comparing their level to those of the other rela-
tionships), but rather is a consequence of how they were com-
puted. Means and SD of the relatedness contained different 
information as shown in Figures 1 to Figure 3, Supplemen-
tary Figures S1 to S3, Table 2 and Supplementary Table S3. 
Especially, mean correlations within breeds were higher than 
across breeds and SD of the correlations were lower within 
breeds than across breeds, as expected. The higher mean 
within breed correlation obtained for RPO (0.80) can likely 
be explained by the smaller population size, i.e., RPO ani-
mals were probably more related to each other than EBRW/
MRY animals. The mean across-breed correlations of the 
RPO breed were higher than other mean across-breed cor-
relations. This is probably due to the higher mean relation-
ships of RPO animals to EBRW and MRY breeds than those 
between EBRW and MRY animals. The higher variability of 
across-breed relationships of RPO to EBRW and MRY breeds 
compared to the variability of relationships between EBRW 
and MRY is also likely to explain the higher mean across-
breed correlations. Because the mean and SD of the related-
ness included different information, the idea was therefore to 
combine them in a single model by the use of a linear SVM 
(GRM_SVM). This methodology resulted in equivalent global 
accuracies than the use of PLS_NSC. Moreover, no significant 
difference was found between PLS_NSC and GRM_SVM 
regarding mean sensitivities and mean specificities.

When the breed assignment methodology was based on SD_
GRM, the mean global accuracy was significantly lower than 
for PLS_NSC and GRM_SVM for RS1. Even if the difference 
of global accuracies between SD_GRM and other method-
ologies was not significant for RS2, which can be explained 
by the lower power of detection of the adapted Student’s 
T-test in this case, mean of global accuracies obtained was 
still poorer for SD_GRM than other methodologies (Table 3, 

Table 3.  Minimum, mean, maximum, and SD of the global accuracy for each combination of methodology and reference set, across 200 repetitions

Reference set Methodology1

PLS_NSC Mean_GRM  SD_GRM GRM_SVM

RS1

  Minimum global accuracy, % 95.38 95.08 90.15 96.00

  Mean global accuracy, % 97.86a 96.89a,b 93.82b 97.97a

  Maximum global accuracy, % 99.69 99.08 97.23 99.69

  SD of the global accuracy, % 0.799 0.867 1.406 0.798

RS2

  Minimum global accuracy, % 93.85 94.15 85.54 93.23

  Mean global accuracy, % 97.05a 96.79a 90.38a 97.06a

  Maximum global accuracy, % 99.08 99.08 95.08 99.38

  SD of the global accuracy, % 0.935 0.923 1.871 1.107

1Methodologies with the same letter have not significantly different mean global accuracies within a reference set (P < 0.0083 with the Bonferroni 
correction).

Figure 4. Bootstrap confidence interval of 95% and results of the 
pairwise Student’s T-test for the global accuracy for RS1. Non significant 
differences are not represented. *: significant difference.

Figure 5. Bootstrap confidence interval of 95% and results of the 
pairwise Student’s T-test for the global accuracy for RS2. Non significant 
differences are not represented. *: significant difference.
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Figure 5). Moreover, the decrease in mean global accuracy 
from RS1 to RS2 was the highest with SD_GRM. This can 
be partly explained by the fact that, as the reference set was 
smaller for RS2, validation animals had a lower probability 
to be closely related to one of the animals of their breed in 
the reference set, which decreases the SD of the relatedness 
to the breed they actually belong to. Moreover, the SD of the 
global accuracy was the highest for RS2 of SD_GRM, which 
means that, with a smaller reference set, this methodology 
was very sensitive to the animals included in the reference 
set. For the other methodologies, the decrease of mean global 
accuracy and the increase of SD from RS1 to RS2 was more 
marginal. Other studies have already demonstrated that the 
samples included in the reference set should represent their 
breed well to make a correct breed assignment (Funkhouser 
et al., 2017; Gobena et al., 2018; He et al., 2018; Hulsegge 
et al., 2019; Wilmot et al., 2022a). It means that not only 
the number of samples is important but also the representa-
tion of the variability of the population within the reference 
set. One follow-up of the current study might be to test the 
SD_GRM methodology with more samples to determine if it 
has similar performances than other methodologies. Unfor-
tunately, due to limited sample sizes, it was not possible in 
this study.

The mean global accuracy of mean_GRM was not signifi-
cantly different than those of other methodologies. However, 
as shown in Table 3, Figures 4 and 5, the mean and median 
of global accuracy were a bit lower than those of PLS_NSC 
and GRM_SVM. Therefore, in routine, considering the global 
accuracy performances, the PLS_NSC and GRM_SVM meth-
odologies should be preferred to mean_GRM. It is particu-
larly important in the case of endangered breeds like EBRW 
and RPO as animals actually belonging to the breed should 
be correctly detected for the maintenance of the breed and its 
integrity.

The main advantage of using methodologies based on GRM 
(mean_GRM, SD_GRM, and GRM_SVM) was to bypass 
the step of selection of SNP that can raise many questions 

about which methodology to use or how many SNP to select. 
Another drawback of the selection of SNP is that it is specific 
to the studied breeds (Judge et al., 2017; Kumar et al., 2019) 
and a new SNP panel would have to be selected if another 
breed is included. One reason advocated for a reduced SNP 
panel is the cost of genotyping, especially for local breeds. To 
reduce these costs, a SNP chip could be designed based on the 
selected SNP panel (Kumar et al., 2019). However, the design 
of a specific SNP chip is also expensive and animals are not 
only genotyped for breed assignment but also for other pur-
poses as genomic diversity analysis, genomic predictions, or 
parentage verification. Moreover, the gap of genotyping costs 
between a 50k chip and a lower density chip is nowadays 
relatively small.

Another argument to use a reduced SNP panel is that 
reducing the number of features for classification problems 
would reduce computation time (Kwak and Choi, 2002). 
In our study, the total computation time was substantially 
lower with mean_GRM, SD_GRM, and GRM_SVM that all 
used all SNP, compared to PLS_NSC that used a reduced SNP 
panel. Comparing only the training or only the validation 
computation time showed that GRM_SVM was more effi-
cient than PLS_NSC for both reference sets. A reduced vali-
dation computation time is more important in practice than 
a reduced training computation time because animals are 
assigned to their breeds in routine while training the model 
is performed once in a while. The problem of overfitting due 
to the use of a high number of SNP (Pasupa et al., 2020) was 
also overcome by the fact that the information found in the 
GRM is summarized in three variables for mean_SVM and 
SD_SVM and to six variables for GRM_SVM. Compared to 
PLS_NSC and GRM_SVM, the mean_GRM and SD_GRM 
had the advantage to not need any training, which allowed 
a relatively straightforward and therefore efficient breed 
assignment.

The GRM used in the different methodologies was scaled by 
AF of the reference set averaged across breeds. This ensures that 
the estimated relationships, both within the reference set and 

Table 4.  Average computation time for each combination of methodology and reference set

Methodology Reference set Part of the computation Average computation time, s

PLS_NSC RS1 Training 2891.44

Validation 14.97

Total 2906.41

RS2 Training 1786.95

Validation 16.41

Total 1803.36

Mean_GRM1 RS1 Total 6.68

RS2 Total 4.19

SD_GRM1 RS1 Total 6.68

RS2 Total 4.20

GRM_SVM RS1 Training 11.11

Validation 0.03

Total 11.14

RS2 Training 8.10

Validation 0.03

Total 8.13

1For this methodology, there is no training of the model.
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between the reference set and the new animal to be assigned, 
and thus the resulting breed assignment of a particular valida-
tion animal, will not be affected by the addition of other vali-
dation animals to the GRM. The scaling based on the reference 
set is also very practical as animals to be assigned to a breed do 
not have to be added and removed one by one from the GRM, 
but can all be included at once simultaneously with the refer-
ence animals. Thus, computation of a single GRM is sufficient 
for the breed assignment of all validation animals, which is not 
necessarily the case for other methods. For instance, Varga et 
al. (2022) defined a “central animal” that was the most related 
to the other animals of the reference population, based on an 
identity by state similarity matrix. However, the definition 
of this “central animal” was not stable as they allowed it to 
change with the addition of validation animals or with new 
animals to be assigned to a breed. Similarly, when using dis-
tances of the genotype of the animal to be assigned based on 
a PCA (Varga et al., 2022), the authors encountered the same 
problem as they computed again the principal components and 
the coordinates of animals when they wanted to assign a new 
animal to its breed. This means that the breed assignment of an 
animal in routine applications may be affected by the compo-
sition of the set of animals to be assigned and not only of the 
animals found in the reference set. This could be easily over-
come by the definition of a “central animal” based only on the 
reference population or the projection of a new animal on the 
already computed components of the PCA.

Conclusions
In this study, we demonstrated the use of a GRM-based meth-
odology for accurate breed assignment. The methodologies 
based on the highest mean relationship, as defined by a GRM, 
and the GRM combined with a linear SVM gave similar 
global accuracies than the methodology based on a reduced 
SNP panel and the NSC method. In practice, the methodol-
ogy based on a GRM combined with a linear SVM should 
be preferred over the one based on the highest mean rela-
tionship because it gave a slightly better percentage of correct 
assignment, which can be crucial for the survival of endan-
gered breeds. The benefit of using the methodology based on 
a GRM and a linear SVM for breed assignment went beyond 
a high global accuracy; it bypassed the step of selection of 
SNP and required far less computation time than the NSC 
model based on a reduced SNP panel.

Supplementary Data
Supplementary data are available at Journal of Animal Science 
online.
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