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Abstract—Network functions such as firewalls, NAT, DPI,
content-aware optimizers, and load-balancers are increasingly
realized as software to reduce costs and enable outsourcing. To
meet performance requirements these virtual network functions
(VNFs) often bypass the kernel and use their own user-space
networking stack. A naïve realization of a chain of VNFs will
exchange raw packets, leading to many redundant operations,
wasting resources.

In this work, we design a system to execute a pipeline of
VNFs. We provide the user facilities to define (i) a traffic class of
interest for the VNF, (ii) a session to group the packets (such as
the TCP 4-tuple), and (iii) the amount of space per session. The
system synthesizes a classifier and builds an efficient flow table
that when possible will automatically be partially offloaded and
accelerated by the network interface. We utilize an abstract view
of flows to support seamless inspection and modification of the
content of any flow (such as TCP or HTTP). By applying only
surgical modifications to the protocol headers, we avoid the need
for a complex, hard-to-maintain user-space TCP stack and can
chain multiple VNFs without re-constructing the stream multiple
times, allowing up to 5x improvement over standard approaches.

This paper is the accepted version published by IEEE/ACM
Transactions on Networking. The final version is avail-
able at https://ieeexplore.ieee.org/document/9503101, DOI:
10.1109/TNET.2021.3099240

I. INTRODUCTION

According to J. Sherry, et al. [1] and V. Sekar, et al.
[2], there are roughly as many middleboxes as routers in
enterprise networks. Additionally, a myriad of middleboxes
are deployed in mobile networks[3]. These network functions
provide network security and performance enhancements. This
middlebox functionality can be implemented in software on
commodity hardware using Network Functions Virtualization
(NFV), rendering these middleboxes less opaque and support-
ing the outsourcing of middlebox functionality to the cloud.
In NFV settings, as in traditional networks, packets often pass
through several middleboxes, leading to the need to chain
several Virtual Network Functions (VNFs) together.

Unfortunately, these VNFs perform redundant tasks, such as
session identification or other network stack processing, thus
wasting cycles & memory and increasing latency. However,
avoiding these redundant operations is difficult, as each VNF
has its own requirements, such as inspecting specific traffic
classes, be stateless, tracking statistics at different level of
aggregations (e.g. group packets per IP pair, 4-tuples, . . . ),
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or modifying a TCP or QUIC bytestream. The proposed
unification must preserve isolation and the ability to identify
& shut off a misbehaving VNF.

Previous work such as SNF[4] and OpenBox[5] synthesize
traffic classifiers. At best, systems such as µNF[6] remove
redundant and identical processing modules, but an HTTP
classification module cannot benefit from, e.g. a prior NAT
classification. E2[7] and microboxes[8] allow some VNFs to
pass a bytestream of TCP payload between VNFs, therefore
avoiding redundant TCP management, but cannot modify the
stream without terminating the connection.

In this paper, we present the design, implementation, and
evaluation of a system prototype where packets begin their
journey via a unified flow manager responsible for classifica-
tion. This classification is reused by all subsequent VNFs.

The unified flow manager combines the traffic class classifi-
cation from all VNF components. When the Network Interface
Controller (NIC) has flow classification capabilities this classi-
fication isoffloaded to the NIC. In contrast, traditional service
chains involve software routing between VNFs, preventing
such offloading. Additionally, the flow manager handles the
sessions for each VNF component, avoiding the need for
multiple, often identical, hash tables along the way to find each
packet’s session. By unifying the traffic class classification
and session mapping of all VNFs of a service chain: (i) each
field of a packet is only looked at once for the a given value
and (ii) the classification and session mapping are reused
across the entire chain. To our knowledge, we are the first to
propose an algorithm to automatically combine redundant
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Figure 1: Impact of re-doing classification on a chain of
stateful Network Functions (NFs), and TCP-based NFs. State
management has a high performance cost, which is better paid
only once. Our light in-the-middle stack built on top of the
session manager has a very low overhead.
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and overlapping session mapping, in a single flow table
that accommodates every VNF in a chain. The orange and
continuous lines in Figure 1 show the advantage of combining
the state of a series of stateful NFs (requiring a few bytes per 5-
tuple) and accelerating the (unique) session classification using
the NIC (more details about the experiment can be found in
Section V-D). Combining the session classification of the NFs
improves performance by 5.2×. While previous work (such
as [7] and [8]) only combined TCP state, in this work, we do
not differentiate based on what is done on top of the session
management. As a result, our proposal combines and manages
sessions of stateful firewalls, NATs, or full TCP applications
– as will be demonstrated.

The framework provides a zero-copy stream abstraction and
easily supports new protocols on top of other protocols, thus
enabling modification of packets of a given session without
knowledge of the underlying protocols. For example, when
an HTTP payload is modified, the content-length must be
corrected. A layered approach must propagate the effect of
stream modification across the relevant lower layers; therefore,
we provide a TCP-in-the-middle stack which can on-the-fly
modify the sequence and acknowledgement numbers on both
sides of the stream when the upper layer makes changes. This
enables modification of the number of bytes in the stream
without terminating the connection and without requiring
a full TCP stack. In contrast, other proposals still need a full
TCP stack - even for small modifications of the stream. Figure
1 shows the cost of our in-the-middle TCP stack is very low,
and like the session classification, can be shared by multiple
VNFs to accelerate the processing by 7X compared to using
individual copies of our stack.

Moreover, our approach enables future innovations, such
as new TCP extensions since the protocol stack only needs
to understand how to modify the flow and implement only
a limited amount of TCP semantics, as the stack behaves
as transparently as possible, being agnostic to changes in
congestion or flow control algorithms and retransmission tech-
niques. Support for greater semantic changes (such as TCP
FastOpen[9]), only require a few lines of code. In contrast, all
components written to modify streams, such as TCP/HTTP
payload would directly work on a new QUIC[10] component.

Our system combines the advantages of efficient, end-to-end
& non-cooperative systems, such as DPDK[11], Netmap[12],
Arrakis[13], IX[14], and specific user-level stacks [15], [16],
[17], [18], with contrasting approaches that build upon reusing
components, such as CoMb[2], OpenBox[5] and µNF[6].
Therefore, our design combines efficient consolidation with
tailored services. If no TCP reconstruction needs to occur
along the service chain of the VNFs, then reconstruction does
not happen; while if multiple VNFs need it, it is done only
once. In contrast to prior work, we offer a practical, low-level
approach to build a high-speed NFV dataplane.

Section II explains how we unify classification and combine
the VNFs along the service chain. Section III discusses imple-
mentations details, such as how, in practice, a VNF can expose
classification details together with possible execution models.
This induces a highly parallel and non-redundant stream
architecture that can be used to support multiple protocols, as

explained in Section IV. Finally, we evaluate the performance
of the prototype in Section V. Section VI reviews the state of
the art and states our specific contributions.

II. TRAFFIC CLASS AND SESSION UNIFICATION

Figure 2 shows an example of a simple service chain of
three VNFs. It realizes a per-session (stateful) load-balancer
for both UDP and TCP traffic, but passes HTTP traffic (i.e.
TCP packets with destination port=80) through a HTTP filter
(e.g. a parental filter or ad-remover), while dropping other TCP
traffic. UDP traffic to 10.0.0.27 with destination port 6970
goes through a NetFlow monitor (i.e. a per-flow tracker that
count bytes, packets, etc.) that allows operator to monitor that
specific traffic class (i.e. RTP flows).

In this paper, we decouple flow management from the
VNFs – as shown in Figure 3. Each VNF declares the kind
of packets it accepts (HTTP packets, all TCP packets, . . . )
and, if needed, the definition of the session it requires (e.g.
packets grouped by IP pair, by TCP 4 tuples, . . . ) and a
number of bytes per-session (shown in the hexagons in Figure
3), i.e. the per-session scratchpad. In our example, the flow
monitor, the load-balancer, and the HTTP filter need a per
5-tuple scratchpad to write some per-session metadata. The
flow manager assigns (for each session), a Flow Control Block
(FCB) containing a sufficient number of bytes for each of the
VNFs (potentially laid out as shown at the bottom of Figure 3.
Traffic class information given by all VNFs is used to reduce
the overhead of session classification and remove static values
from the tuples. Static classification can be offloaded to a
modern NIC, thus accelerating session classification.

HTTP Content Filter
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Load Balancer

NetFlow

Figure 2: A small NFV chain monitors some UDP traffic,
filters HTTP content, and then load-balances all packets.
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Figure 3: Computation of the size and offsets needed for the
FCBs. Nodes contain the size they require in the FCB.
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A. Traffic classes

In Figure 2, each flag is a classification step usually handled
by reading the corresponding packet field(s) to determine the
next VNF for the packet. Following the various paths of the
graph (as proposed by OpenBox[5] and SNF[4]), one can
build a flow table encoding each encountered traffic class as
a rule. Table I, shows such a flow table for the example in
Figure 2. As in prior work, the classifier can be minimized by
removing redundant classification operations. However, these
earlier systems either return the packet to the controller after
each VNF (inducing extra latency) or duplicate VNFs for
each possible traversal (which is not always suitable for state
reconciliation.) In contrast, each of our rules corresponds to
a FCB. Instead of classifying packets at each step of the
processing chain all the necessary information will be included
in the FCB, as a list of next hops that describe the paths
between the VNFs. Note that traffic classes are not limited
to being defined based upon packet fields. E.g., an ISP could
define a traffic class as packets from one ingress to a specified
egress, the combination determining the processing to apply.

Table I: Rules for each possible path in Figure 2 and their
corresponding FCBs after receiving some packets.

Rules Flow Control Block

Ethertype ARP Type Proto Dport Sport Dst Src Next hops Session space

IP * UDP 6970 21567 172.16.29.47 10.0.0.27 1 0x9edcc200, 1
IP * UDP 6970 PFP PFP 10.0.0.27 1 NetFlowState, int
IP * UDP * * * * DROP(1) -
IP * TCP 80 52100 10.0.0.1 89.18.17.216 2 0x1a234579, 0
IP * TCP 80 52100 10.0.0.17 120.12.17.12 2 0xab38977d, 1
IP * TCP 80 PFP PFP PFP 2 HTTPSession, int
IP * TCP * * * * DROP(2) -

B. Sessions

In addition to the traffic class, we allow each component
to describe the sessions they require and an amount of space
they need per-session for their metadata (to be stored in the
scratchpad). To define sessions, Populate From Packet (PFP)
rules allow special header wildcards. These entries require
that when the rule is matched the rule be duplicated with
the exact values of the fields. For example, an HTTP content
filter will define its session as proto = TCP ; dstport =
80; srcipaddr = PFP ; dstipaddr = PFP ; dstipport =
PFP ;. In this example, the space per session required by the
HTTP content filter is 36 bytes and this will be allocated in
the FCB’s session space (its placement is described in Section
II-C). When a rule containing a PFP field is matched, the
rule is duplicated and the PFP fields are replaced with their
actual values from the packet. The FCB will be duplicated
along the way, with the pre-allocated space that each VNF
asked for (as showcased by highlighted lines in Table I). As
our example only considers HTTP packets with the destination
port 80 while dropping others, the session mapping will only
be based on the last 3 tuples. For the flow monitor, as the
destination is known the session is only based on the 2 tuples.

C. FCB size

All components of the service chain expose the size of
the per-session scratchpad they require. Figure 3 showed an
example of those bytes needed for each component of the

earlier NFV chain as an ordered layout for some of the FCBs.
As packets of the same flow usually take a unique path through
the components, the same amount of space can be assigned
to parallel paths thus optimizing the allocation of space. To
avoid indirection, we waste some space by using an offset
independent of the input path, thus each component has one
and only one offset within all potential FCBs assigned to
packets passing by, hence leading to some unused space along
some path.

The offset in the FCB for each component is the amount
of bytes needed for the greediest path that leads to it, i.e. the
maximum number of bytes needed for every encountered com-
ponent for any path. We call this the maximal offset. Simply
setting the maximal offset as each component’s allocation in
the FCB is sufficient - if packets cannot follow parallel paths
- as in the case in Figure 3, where a packet cannot be both
a TCP and UDP packet at the same time. In Figure 3, one
needs 1 byte to reach the flow monitor or the HTTP filter.
Therefore, the maximal offset to the load balancer would be
1+37 = 37, as the path through the HTTP filter requires more
bytes than the flow monitor (1+24 = 25). When packets from
the same flow can only take one path, the algorithm achieves
the best possible ordered placement, as the maximal offset is
the first position that accommodates enough bytes for each
prior component in any path and does not lead to collision
(as by construction each downstream component accounts for
each upstream component).

However, to take advantage of parallelism or when packets
of the same flow can take different paths (e.g. counters that
count different events), some components cannot share the
same scratchpad space. To account for this case, before setting
the maximal offset as the final position of the component
in the FCB, we compute the set of reachable components
from the component and build a bitvector with a bit set to
1 for each corresponding byte that is already assigned in the
reachable components. Then, starting at the maximal offset,
we search for sufficient place in the bitvector to accommodate
the component’s required space.

To create compact layouts while allowing non-ordered ac-
cess, we implemented a variant of the algorithm which places
the most frequent components (in terms of the number of
appearances across paths) first, by trying placements starting
from the beginning of the FCB and increasing the offset when
a collision occurs, therefore filling holes when possible while
placing the most-seen element first. Thus, in Figure 3, keeping
the Load Balancer data for the UDP traffic at the beginning
of the block minimizes the space needed for UDP FCBs. As
FCBs are pool-allocated (see Section II-D) and offsets must
be unique, non-ordered access would only occur for HTTP
flows. We leave the performance assessment of non-ordered
compact placement for further study.

D. Classification tree

The classification algorithm we propose in this section is
an example of how to implement a flow table that allows
dynamic duplication of some rules. Traffic class and session
classification are both implemented using the same tree. Each
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level of the tree corresponds to one field. Figure 4 shows the
classifier for the example shown in Figure 2.

In the tree of Figure 4, each node (shown as a rounded
square) is linked to a “level” object (shown as a call-out) that
defines the programmable field’s implementation, i.e. how to
extract data from the packet for header fields. The pseudo-
code for matching is given in figure 5. Most levels are header
classifiers that will read a field of the packet, apply a mask,
and then return the value so the node’s implementation can
access a child based on this value.

Matching consists of descending the tree until a leaf is
reached. Leaves are FCBs, i.e. not node objects. All nodes
also have a default branch. Level objects indicate whether
the field is a PFP field, in which case the default node and
the child FCB are duplicated upon a miss, producing a per-
session FCB. An FCB can be marked to apply early drop
directly in the flow manager (if the VNF operator allows it).
This is also useful for debugging purposes as it can identify
which VNFs drop a certain class of traffic. However, this is
not always desirable as an operator may want to keep statistics
about dropped packets.

After the tree is synthesized, it undergoes an optimization
to tailor the implementation for each level according to the
number of children. Depending on the associated field or user-
provided hints about the best underlying implementation, each
level can have different implementations: a condition - if there
are two possible outcomes, a heap - if there is only a few
static cases, a table - if the range of possible values is small
(such as with VLAN numbers or 1-byte fields), or a hash
table in all other cases. The tree creation process warns the
user when a path is impossible, such as placing a UDP-based
VNF after a TCP-based VNF. Potential future improvements
would be to replace the implementation of connected static
levels of the tree (without PFP fields) by an efficient static
classification algorithm (i.e. with fast lookup time, but slow
update time), such as EffiCuts[19] or HyperCuts[20]. With our
tree design, one only needs to register a new implementation
for a given level. In practice, we preferred to offload all static
classification to the NIC, making the software implementation

DEFAULT

ELSE

IP PROTO IP

HEAP

UDPTCPICMP

        FCB PFP

        FCB 98.17.2.4:5126 per-session data

        FCB 13.1.2.7:2134 per-session data

...

HASH

...

Node
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ARRAY
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ICMP TYPE DST PORT + ADDR
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6970
10.0.0.27

IF

...

Figure 4: Part of the classification tree for the example in
Figure 2 (omitting TCP and system’s classification such as
ICMP, ARP, etc.).

1 (1) fcb* match(packet) {
2 node = root;
3 while (node is not leaf) {
4 field = node->level->get_field(packet);
5 child = node->find(data);
6 if (!child)
7 if (node->level is dynamic)
8 child = node->default->copy();
9 else

10 child = node->default;
11 node = child;
12 }
13 return (fcb*)leaf;
14 }
15 (2) bool verify(packet, fcb) {
16 node = fcb->parent;
17 field = fcb->field;
18 do {
19 if field != node->level->get_field(packet)
20 return false;
21 node = node->parent;
22 } while (node is not root);
23 }

Figure 5: Pseudo code for (1) the traversal of the classification
tree to find the FCB matching a packet and (2) verify a given
FCB is matching a specific packet.

performance irrelevant as explained in Section II-F.
FCBs are managed in per-thread pools for efficient alloca-

tion and recycling. Both nodes and FCBs have their first bytes
reserved for the value of the parent level. If the flow manager is
to be traversed by multiple threads, a special dynamic “thread”
level will be inserted before the first dynamic level. When
a new thread pass through the thread level, it will duplicate
its default children nodes for the current thread, under the
assumption that packets of the same session are handled by
the same core, a feature allowed by RSS hashing.

E. Classification tree expansion
When the default implementation of a dynamic node is

insufficient (e.g. it reaches its maximal capability, it produces
a lot of collisions for a hash table, . . . ) the node starts to grow,
which is marked by a flag in the node. In this case, the default
path of the node is replaced by a new empty node that uses
the same level but a more appropriate implementation, e.g. a
bigger hash table, or when the hash table size is close to the
number of possible values (i.e. the 65536 possible values for
the 16-bit TCP/UDP port fields) then use a vector with one
path for every possible value. When a node grows such that
no child can be added, the classification only passes through
it looking for existing flows. When all children of a growing
node are removed (i.e. all flows timed out or finished), the
growing node is removed and only the new node remains.
This scheme avoids the jitter caused by growing hash tables,
which normally requires a full re-allocation of the buckets. It
allows transformation of a badly performing implementation
into another one, e.g. changing the hash function of a hash
table, moving from linear probing to open addressing, etc.
The level tracks the node’s growth, therefore it can propose
an appropriate implementation for new node(s).

F. Hardware acceleration
As individual software elements in a service chain cannot

access the NIC, combining the classification upfront enables
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offloading of all or a part of the classification to the NIC.
As a first step towards hardware offloading, we use the RSS
hash given by the NIC as an index into a cache to directly
find the FCB, a technique already used by OpenVSwitch[21]
to classify a few most-seen rules. As multiple sessions can
map to the same RSS hash, one still has to verify the fields’
values. This is done by traversing the tree from the leaf to
the root (see pseudo code shown in Figure 5). The bottom-
to-top traversal verifies each field is equal to the node’s child
value and has a complexity proportional to the depth of the
tree (i.e. the number of fields minus potential optimizations).
This is much faster than a top-down descent where each node
performs a lookup (in e.g. a hashtable) to find the child node
for the given field’s value, as this is proportional to the sum
of each node’s own lookup method’s complexity.

With the increasing classification capacity of commodity
NICs, the traffic class classification (of non-PFP fields) can
be offloaded to some recent NICs, such as our Mellanox
ConnectX 5[22]. Therefore, we propose an extended version
of our flow manager that offloads to the NIC the static part
of the tree. One rule is installed in the NIC for each path to
a FCB or a dynamic node. The rule uses a "mark" action to
associate an id with the packet. This is subsequently used by
software to directly access the final object of the path via an
indirection table. We did not implement dynamic classification
offloading. In an NFV context, we target millions of flows per
second, but the NIC is only able to install a few thousands
rules per second. Techniques such as offloading only elephant
flows[23] fall outside of the scope of this article.

We can use the RSS-based cache and offload the static
classification at the same time. For instance, the hardware will
mark TCP packets with destination 80, and then the cache will
find the correct dynamic FCB. However, the flow manager still
needs to ascend in the tree from the leaf (the FCB) to the first
non-PFP field (i.e. the last static node referred to by the mark)
to verify the FCB is not from a colliding flow for the 3-tuple.
Both techniques and their combined performance improvement
are evaluated in Section V.

G. FCB release

Each FCB has a usage counter. When a packet matches a
FCB, the FCB usage counter is incremented, and when the
packet is released, the usage counter is decremented. VNFs
can declare an amount of time the FCB will stay alive after
its usage counter reaches zero (as packets of the same session
might soon arrive). The FCB is released when the usage
counter reaches 0 and the timeout has passed. Upon release,
an optional chain of user-defined functions is called to clean
up any FCB state (as needed). The FCB is returned to the
pool but removed from the tree. All nodes and leaves (FCBs)
have a parent pointer so all dynamic (PFP-duplicated) parent
nodes having no remaining children can be removed to prune
the tree.

The main mechanism for ageing is lazy deletion. Upon
collision when looking up for FCBs in the tree, the FCB
encountered during the traversal will be verified for expiration.
If it is expired, the FCB will be renewed by the classifier
(i.e. the release function is called and the FCB’s space reset

to its initial value). As collision may never happen, garbage
collection must still be ensured. If the timeout has not passed
when the usage counter reaches 0, the FCB is added to a list
of pending timeouts. The list of pending timeouts is traversed
when the system is idle (i.e. polling all input devices gave no
packet) or the length of the list of pending timeouts exceeds
a threshold. As growth of the list is normal, the threshold is
set using exponential back-off. A timer triggers a list pruning
every 15 seconds, thus providing a fixed upper bound on the
release time.

H. Isolation between VNFs

Figure 6a shows a single-process deployment of the service
chain, where each VNF is a distinct object that can directly
access the flow table. Our prototype (see section III) follows
this approach, because passing packets between functions only
involves functions calls and the flow table is directly accessible
from each VNF.

Process

NF1Flow Manager NF2

(a) Deployment of a chain of VNFs in
a single process

Process Process Process

NF1Flow Manager NF2

(b) Deployment of a chain of VNFs
with one process per VNF

Hypervisor

Flow Manager

VM 1

NF1

VM 2

NF2

Shared memory

(c) Deployment of a chain of VNFs using virtual machines

Figure 6: Access to the shared flow table under various
isolation levels

To integrate third-party applications, one must use shared
memory to first, pass packets between processes, and secondly,
allow access to the flow table from the other processes as
shown in Figure 6b. The flow manager allocates FCBs from
a shared memory zone to allows every process to access it.
Pointers to FCBs are passed with the packets, e.g. as metadata.
This model allows access of one VNF to the scratchpads
of other VNFs. However, isolation between VNFs can be
enforced by using indirect memory allocation, where the FCB
contains only pointers to memory allocated from pools shared
between the flow manager and each NF. This scheme can
also be used with virtual machines (VMs), as shown in Figure
6c. For each VNF, the hypervisor reserves enough space in
the FCBs to keep a pointer rather that the session data itself.
When a “PFP” rule is matched, the FCB will be duplicated.
Thus, when a flow is seen for the first time, the hypervisor
allocates the space needed per-session for each VM in guest
memory. This enables fast allocation of per-session space in
the guest system without traversing per-VMs flow tables, while
ensuring memory isolation. Unlike our prototype, a practical
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implementation needs a new API to pass the allocated memory
pointer together with batches of packets from the same session.

Indirect memory allocation can also be used if the data
needed by a VNF component has variable size, as the VNF
simply ask for space to fit its static data and a pointer. The
pointer can then be used to keep a reference to memory
allocated when the flow is first seen using another dynamic
mechanism, such as an efficient pool-allocation system.

I. Flow manager placement

The flow manager does not necessarily need to run as the
first VNF, hence it may run after other VNFs. In the end, it
is a VNF like any other VNF; however, it provides certain
services for the downstream VNFs. For example, consider an
anti-DDOS system, such as a heavy hitter detector, followed
by stateful VNFs (e.g. a load balancer). It would be counter-
productive to run a stateful classification before the anti-DDOS
module. In this case, the flow manager is placed (i) before
the anti-DDOS module, so it will offload all traffic class
classification (in practice there will always be some ARP
handling, IP header parsing, etc – independently of the first
VNF) and (ii) after the anti-DDOS module. The first instance
defines a few "static" FCBs, doing almost nothing in software,
while the second flow manager’s tree will be probably be
limited to a single level of stateful classification and will
be pruned according to the traffic classes of the first flow
manager. Only packets passing the heavy hitter detector will
be processed by the second flow manager, which will replace
the current FCB pointer with a new dynamic one.

III. PROTOTYPE IMPLEMENTATION

We modified FastClick[24], an extension of the Click Mod-
ular Router[25] to allow its basic building blocks (called
elements) to expose their traffic class and session needs to the
flow manager. Click allows piping simple networking elements
together to build a more complex NF using a simple language.
The elements themselves are written in C++, and implement
a few virtual functions to handle packets and events. Many
believe that Click is limited to its native elements in C++.
However, FastClick can exchange packets with applications
through various I/O systems (such as Kernel sockets), but also
much faster means such as DPDK rings (allowing it to also
pass metadata needed to pass the pointer to the FCB along with
the packets) or netmap pipes (allowing to exchange packets
between applications running in different VMs[26]). There-
fore, we picked FastClick as a very efficient service-chaining
tool while avoiding re-writing of every applications. The flow
manager could be designed as a socket extension, allowing
applications to open a socket with a new option to expose
the traffic classes and the session needs. The socket would
allow receiving packets with a link to the space in the FCB.
In contrast, we prefer a userlevel approach because Kernel I/O
would reduce performance of inter-VNF communication.

In our prototype, called MiddleClick, the flow manager is
implemented by the FlowManager element that must be
placed before any element that would access the FCB. This is
enforced at configuration time. The FlowManager traverses

the graph, using the traffic class and session definitions ex-
posed by the elements of the graph to build a flow table as
explained above.

A. Traffic class and session definition

Figure 7 shows a Click element that defines a rule to
verify the IP protocol field is TCP (10/06), a standard 4-
tuple for a TCP session, and asks for some space to store
a structure in the FCB by extending a specific C++ class.
The classification rule is directly used by the flow manager to
build the table. The FLOW_IP constant (line 14) (described in
Section IV-A is used by the previous context (Ethernet in this
case) to spawn a rule for IP packets themselves. This supports
tunneling, as each layer has a way to define the next protocol.
The inheritance class (line 7) is a higher level abstraction
avoiding registering some virtual functions to expose the size
of the NATEntry structure and directly passes to the push_flow
function a pointer to where that structure is in the FCB.

1 //Per-session data kept for the NAT
2 struct NATEntry {
3 PortRef* ref;
4 bool fin_seen;
5 };
6
7 class FlowNAT:
8 public FlowStateElement<FlowNAT,NATEntry> {
9 public:

10
11 [...]
12
13 FLOW_ELEMENT_DEFINE_SESSION_CONTEXT(
14 "10/06 12/0/ffffffff "
15 "16/0/ffffffff 22/0/ffff 20/0/ffff", FLOW_IP);
16
17 void push_flow(int, NATEntry*, PacketBatch *);
18 }

Figure 7: Example of session definition for a self-contained
NAT element. The novel API is written in purple.

B. Service chain definition

In Click, a service chain is defined as a set of elements
piped together. Dispatching traffic according to header fields -
the traffic class classification - is done using a Classifier
element (or a variant such as IPClassifier that provides
more convenience), to dispatch traffic to subsequent elements
according to a given set of rules, as shown in Figure 8(a).
In MiddleClick, the Classifier is modified to expose its
rules as a set of traffic classes. Therefore, the FlowManager
includes the classifier’s rules in the flow table and sets the next
hop number according to the Click output path in the FCB.
Thus, the Classifier simply reads the next hop number in
the FCB to decide the output, without classifying in place or
even touching the packet.

Alternatively, Figure 8(b) illustrates a new link syntax
called a context link, ∼>, which will automatically place a
Classifier element according to the traffic classes ex-
ported by all elements to the right of the arrow. Context links
remove the needs for obvious classification. In our example,
by using the context link the input can directly be tied to all
ARP elements, the flow defined by the ARP elements will
be used pass ARP requests to the ARPResponder, replies to
the ARPQuerier, and other packets to the remaining paths. In
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many cases, the element will always ask for the same packets
and an explicit Classifier is unneeded.

FromDevice(...)
-> Classifier(12/0800) // Accept only IP packets
-> cp :: IPClassifier(proto udp, proto tcp);

cp[0]
-> IPClassifier(dst udp port 6970 &&

dst ip addr 10.0.0.27);
-> t :: NetFlow();

cp[1]
-> IPClassifier(dst tcp port 80)
-> h :: HTTPProcessor();

(a)

fd :: FromDevice(...);
fd

~> FlowDispatcher(dst udp port 6970 &&
dst ip addr 10.0.0.27)

-> t :: NetFlow();
fd
~> h :: HTTPProcessor();

(b)

Figure 8: (a) Click configuration for the example of Figure 2.
(b) Corresponding MiddleClick configuration.

If some elements rewrite headers that have previously been
classified, such as a NAT, no re-classification is done, as
in most cases the packets belong to the same session. If
the session must change (e.g. dividing a flow into multiple
subflows in a dynamic way), a new FlowManager placed in
the chain will assign new FCBs, therefore new sessions. It is up
to the NF operator to ensure the service chain is still correct
after rewriting, e.g. a firewall placed after a NAT does not
classify on the original addresses. Alternatively, SymNet[27]
or another similar system may allow verification of correctness
for similar configurations.

IV. STREAM ABSTRACTION

At this point in our design, a VNF developer can easily
receive a batch of raw packets matching a given traffic class
along with their FCB. The developer knows the traffic class
of the packets, as this is marked in the FCB. If the component
asked for some per-session scratchpad and the VNF compo-
nent has space for its own use in the FCB, thus the FCB is
duplicated per-session and this space is shared by all packets of
the same session. Most of the time, a VNF developer expects
a seamless stream of data of a given protocol, rather than
simply packets matching a given set of tuples. The developer
also wants a way to touch the data without caring about the
protocol’s details. Therefore, we introduce the stream context
concept.

A. Contexts

VNF components exchange batches of packets of the same
session. A stream context allows requests to act on or modify
the stream. Within in a given context, components can use
a content offset to access metadata associated with each
packet or to directly access the payload. Additionally, we offer
multiple abstractions to act on the data as a stream, without the
need to copy the packet’s payload, similar to an iterator that
can iterate across packets. This enables zero-copy inspection

of a stream and allows a VNF component using this higher-
level stream abstraction to access headers as needed (a feature
that all intrusion detection systems (IDSs) need as attacks may
be based on header fields).

In the case of TCP, the context offset follows the TCP
header of each packet. Each context independently handles
a request and then passes the request to the previous context.
Modificationa that impact the size of a stream are via requests
to add bytes or remove bytes. An example, of adding bytes is
showed by the green boxes and lines in Figure 9. Modification
of the number of bytes in a TCP stream implies adjustment of
acknowledgement and sequence numbers (see Section IV-C).
If the packet length changes, the IP header also needs to
change so the request is passed to the lower layer.

In addition to functions to modify packets, the context can
determine if a given packet is the last useful packet for the
current context, i.e. the packet has set the FIN flag for a
TCP connection. In an HTTP context, the value of Content-
Length is passed to the previous context or TCP if the previous
context is unknown. This context closes the current connection
when the context supports a stateful protocol, such as TCP
and registers a function to be called when the connection
terminates (to cleanup the session scratchpad).

Figure 9: Context approach. Upon entry into a context, the
payload offset is moved forward. When the stream is modified,
prior layers take care of the implications (see Section IV-C).

Figure 10 shows a checksum computation element using a
per-chunk stream iterator. The process_data function is called
when a batch of chunks of payload is available. When the
stream closes, the release_stream function is called to do
something with the final checksum. The checksum could be
checked against a database of known dangerous payloads or
the process_data could return a negative value to terminate
the connection by triggering the close connection request.

B. TCP Flow stalling

One may want to buffer data before forwarding it, e.g.
execute a pattern match and avoid any part of the pattern being
forwarded, a feature especially important for network-based
parental control, DPI, and ad-removal. While our platform is
protocol-agnostic, the TCP case shows it could operate. As
a TCP source may wait for an ACK from the destination
before sending more packets, buffering data may prevent the
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1 struct fcb_cksum {
2 unsigned int fcb_cksum = 0xffffffff;
3 };
4
5 class FlowChecksum:
6 public ContextChunkBufferElement<FlowChecksum,
7 fcb_cksum> {
8 public:
9 [...]

10 int process_data(fcb_cksum*,
11 FlowBufferChunkIter&);
12
13 inline void release_stream(fcb_cksum*) {
14 //Do something with fcb_cksum->cksum;
15 }
16 };
17
18 int
19 FlowChecksum::process_data(fcb_cksum* fcb,
20 FlowBufferChunkIter& iterator) {
21 while (iterator) {
22 auto chunk = *iterator;
23 fcb->cksum = update_cksum(fcb->cksum,
24 (char *) chunk.bytes, chunk.length);
25 ++iterator;
26 }
27 return 0;
28 }

Figure 10: Code for a stream checksum computation element.

destination from sending that ACK, thus leading to a deadlock.
The TCP context provides functionality to pro-actively ACK.

If enabled, when the TCP context receives a request for
more packet, it sends an ACK for the given packet to the source
with an acknowledgement number that the destination would
have sent. Therefore, we maintain outgoing pre-ACKed TCP
packets in a buffer until the destination ACKs them. Buffering
is done when a VNF component specifies that it may stall
or modify packets, or when the component wants to protect
against overlapping TCP segment attacks[28]. Functions that
do not need to see a stream of data, such as NATs or load-
balancers, do not need to keep outgoing packets in buffers,
as processing retransmissions does not pose any problems.
Buffering uses reference counting to avoid copying packets.
Packets leaving the TCP context are remembered (using a
linked list of pointers) and have their usage counters incre-
mented by one, most likely to 2. When the packets are sent,
their usage counter is decremented, most likely to 1. When
the ACK is received, the list will be pruned and the packet’s
counter decremented. Finally, the packet is recycled when the
counter reaches zero.

Another traditional approach supported by our platform
when the flow is not modified (such as for analysis purposes)
is to forward the packet even if it may be part of malicious
content. The ACK is sent by the destination as expected,
and we send a RST to both sides of the connection when
the connection needs to be closed when a further packet is
received, e.g. when a pattern has been matched by an IDS.
However some protocols operating on top of TCP may already
have handled the payload and most of the attack may have
been executed or unfiltered content could have been displayed.
A realistic example of such approach is the case of HTTP file
downloads, where generally the file will be dropped by the
browser if the connection is reset before the last packet is
received.

C. TCP Flow resizing
Many applications need to modify the content of a stream.

For the web, examples include rewriting HTTP traffic to
replace URLs with a corresponding CDN-based URL, ad-
insertion and removal, and potential new uses enabled by
the lightweight in-the-middle stack we propose, such as per-
user targeted HTTP page modification or a proxy cache that
includes image content in the page itself. Additionally, pages
could be translated on the fly to the requesting user’s language.
Other non-web uses include TLS termination, protocol trans-
lation, video transcoding and audio enhancement. Therefore,
the ability to modifying a stream is an essential NF and this
requires stalling (delaying) and re-ordering packets.

When a VNF removes data from or adds data in a TCP
stream, the sequence number must be modified lest the desti-
nation think the data has been lost or is a duplicate. However,
when the destination sends the corresponding ACK, the value
must be also mapped to the correct value. For example. Figure
11 shows an example in which the following modifications are
made to the original flow by components in the TCP context:
2 bytes are removed at position 2, removing CD from the
stream, and 3 bytes are inserted at the position 5, adding XYZ
in the stream. We keep a list of modifications, represented by a
position (the position at which the modification occurred) and
an offset that corresponds to the number of bytes modified.
This offset is negative if bytes are removed and positive if
bytes are added. Note that cannot maintain a cumulative offset
because an ACK may induce a retransmission of previously
sent data before the cumulative offset and we would not know
which bytes had been removed or added from the original
flow. Once an ACK arrives for the data, then the list can be
pruned.

Figure 11: Example of the mapping between an original flow
and the corresponding modified flow. Red cells correspond to
data removed from the original flow and green cells correspond
to data added in the modified flow.

It is worth mentioning that the book-keeping is only instan-
tiated if one of the VNF components specify it may resize
a flow. When the size of the flow is unchanged, there is no
need for book-keeping. From a practical point of view, adding
too many bytes will eventually break congestion algorithms
on a host, or fill-up the receive window. Fortunately, many
applications only modify slightly the size of the TCP flow,
such as encryption and TLS termination, content filtering, split
proxies, . . . ; however, evaluation of how many bytes can be
removed or added without negatively impacting congestion
control is left for future work.

D. Matching both directions of the flow
Within MiddleClick some data must be shared between both

directions of a session, such as TCP sessions. One option
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would be to re-parsing the classification tree but with inverted
destination and port, but if both directions are not served by the
same core, then the flow table would need a complex locking
solution. Alternatively, a symmetric hash key[29] could be
used, but if a VNF is a NAT, then the return direction will have
a different tuple and is unlikely to hash to the same core. As
shown in mOS[18], one approach is to loop through multiple
NAT source ports and compute the 4-tuple hash in software
in the same way the hardware would until the hash leads to
the current core as RSS would. Unfortunately, on average as
many hashes as cores have to be computed in software, with
an unbounded worst case. The capabilities of recent NICs
might be used to allocate NAT ports in such a way that the
return packets will be served by the correct core, by using
specific receive filters to assign chosen ranges of ports to cores.
However, not all NICs are capable of masked classification,
and NICs often lack support for newer protocols. Therefore,
we developed an efficient, lockless solution that allows each
side of the connection to be served by different cores while
proposing an efficient way to reconcile common data.

When a new TCP stream is seen (a SYN packet), the
TCP context entry allocates a new common data structure for
data common to both directions using a per-thread memory
pool. The pointer to this common data is saved in the FCB’s
session scratchpad. The TCP context entry component adds a
pointer to this common space in a thread-safe hash table where
each bucket is protected by a Readers-Writer (RW) lock. The
RW lock is based on a usage counter. The counter will be
negative while there is one writer and positive when there are
readers in the bucket list. When the other direction sees the
corresponding stream, it looks for the inverted 4-tuple in the
hash table, adds the pointer to the common data to its own
session scratchpad. As the session scratchpad is returned with
each packet of the stream, the hash table is never read again
for this session, thus contention between cores is minimal as
it only occurs if two sessions are created at the same time
and in the same bucket. We verified this in experiments with
millions of new connections per second (see Section V).

E. Context implementation

Entry and exit of contexts are done through pairs of IN and
OUT elements, such as TCPIn and TCPOut. IN elements
traverse the graph to find their corresponding OUT elements
and announce themselves to them so one can access the other.
Along the way, they announce themselves to the next flow
elements, including other “downstream” IN elements. A VNF
element will have a previous context pointer pointing to the
last IN element, which has its own pointer to the previous one,
etc. up to the first IN element.

Each context entry element implements the set of known
requests described in Section IV-A. Access to the context is
done through function calls to the previous context element.
The previous context element handles its protocol specifics
and passes the request to the previous one and so on, until
the first entry element (IPIn in most cases) finds no other
context entry. Combined with the context link, the usually
complex Click manual wiring is actually very minimal as

shown in Figure 12. When the flow classifier traverse the graph
and resolves the ∼> context links, it remembers the last IN
element that was traversed.

The context link already allows spawning a classification
rule for a traffic class & session definition according to the
elements on the right of the ∼> symbol. We implemented a
way to automatically define protocol classification when IN
elements are inserted. For instance, the IPIn element could
not expose a traffic rule such as ethertype 0800 because the
IP header may be encapsulated by another protocol, e.g. a
GTP tunnel, rather than an Ethernet frame. Therefore, the
last IN element is interrogated to spawn a traffic class rule
based on the next IN element. Thus the IPIn element can
spawn a ip proto/06 traffic class rule when it is followed by a
TCPIn element. While if TCPIn was preceded by an ATMIn
element to implement TCP-over-ATM, a different traffic class
rule would be used if ATMIn was programmed to return a rule
when interrogated about how to classify fora TCP context.
By default, the FlowManager act as a first “EthernetIn”,
returning a rule (i.e. eth type/0800) when a context link is
inserted before an IPIn element. Therefore, the example of
Figure 12 will have a flow table with one rule “eth type/0800
ip proto/06 ip src/ffffffff ip dst/ffffffff udp src port/ffff udp
dst port/ffff” that will drop non-IP/UDP packets and duplicate
itself and the session scratchpad for each UDP 4-tuple.

In this way, we retain Click’s modularity but have a more
streamlined default case. If the user wants to exercise finer
control of classification using a more refined Classifier,
the context links can be omitted. Using an IPIn context entry
after a UDPIn supports IP in UDP encapsulation – out of the
box. A pattern matcher can be used on top of an application
layer context, that would be put after e.g. the HTTPIn block
as many protocols are now deployed on top of HTTP - with
HTTP accounting for a majority of the internet traffic[30]. The
same pattern matcher could be used on top of QUICIn (a still
to-be-implemented context block to support QUIC[10] – itself
on top of UDPIn.

FromDevice(...) − > FlowManager
∼> IPIn
∼> UDPIn(TIMEOUT 300)
∼> WordMatcher(ATTACK, MODE REMOVE)

− > UDPOut
− > IPOut

− > ToDevice(1);

Figure 12: Configuration for a transparent VNF that removes
the word "ATTACK" from the UDP flow, even across packets.
As UDP does not implement connection semantics, the UDPIn
element sets the session timeout to some value, here 300 s.

F. Socket-like abstraction

As the elements of a FastClick configuration manipulate
batches of packets, it is inconvenient for a developer to
perform some operations, such as searching a specific pattern
in the flow. To address this, we provide an iterator-like object
reminiscent of FlowOS[31]. Initially, the iterator points to
the first byte of the current level in the batch of packets.
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When calling iterator++, it may cross a packet border
seamlessly according to the current context. If the processing
function returns with the iterator in the middle of a packet, all
packets before the iterator will be forwarded to the rest of the
graph. A request for more data will be propagated through the
context for packets after the iterator. If the iterator was at the
last packet, all packets are forwarded. This abstraction allows
implementation in only a few line of new VNF components
that would appear complex. Additionally, we provide multiple
generic VNF elements that act on the current context, such as
regular expression matcher, packet counter, load balancer, and
an accelerated NAT.

Figure 13 shows the code for a simple intrusion prevention
system (IPS) using the byte iterator. Each byte of the payload
is fed to a deterministic finite automaton (DFA) (on line 8)
with its state kept inside the FCB. If the DFA finds a match,
the connection is closed (line 11). If the iterator is at the end
of the available payload, but the DFA is in the middle of a
potential match (line 18), the iterator will be left at the last
point known to be safe in the flow (saved in line 14). Packets
up to that point will be processed, others will be kept in the
FCB and a request for more data will be made. In contrast
to most IPS, such as Snort[32] or Suricata[33], this IPS is
not subject to eviction attacks, as the matching state is kept
between windows. Moreover, packet buffering is minimal – as
only the data part of a potential match will be kept.

1 int FlowIDSMatcher::process_data(fcb_ids* fcb,
2 FlowBufferContentIter& iterator) {
3 //Position in the flow where there is no pattern for sure
4 FlowBufferContentIter good_packets = iterator;
5
6 while (iterator) {
7 unsigned char c = *iterator;
8 _program.next(c, fcb->state); //Advance the DFA
9 if (unlikely(fcb->state == SimpleDFA::MATCHED)) {

10 _matched++;
11 return CLOSE;
12 } else if (fcb->state == 0) {
13 //No possible match up to this point
14 good_packets = iterator;
15 }
16 ++iterator;
17 }
18 if (fcb->state != 0) {
19 //No more data, but in the middle of a potential match
20 iterator = ++good_packets;
21 }
22 return 0;
23 }

Figure 13: Code for a DFA-based IPS that is not subject to
eviction. It only buffers data when the payload is missing the
next bytes in a state that might detect a pattern.

V. PERFORMANCE EVALUATION

In this section we discuss MiddleClick’ performance under
various test cases. We start by demonstrating the performance
of the flow manager for a single stateful function in §V-B.
We then study the performance of the stream abstraction built
on top of the flow manager in §V-C. In §V-D we analyze
the benefit of avoiding multiple re-classifications and multiple
stacks. In §V-E, we study how MiddleClick behaves with a
chain of light and heavy NFs to assess if is fit-for-purpose in
a realistic environment. We finish, in §V-F, with a quantitative
assessment of the benefits for a developer.
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Figure 14: HTTP Goodput when downloading many objects
of various size through a load-balancer using 2048 concurrent
connections. The proxy ran on a single CPU core.

A. Testbed

Tests were done using a client machine, with 192GB of
RAM and two 16-core Xeon Gold 6246R @ 3.4GHz pro-
cessors that generate HTTP requests using WRK[34]. These
requests are sent towards a Device Under Test (DUT) with
192GB of RAM and an 18-core Xeon Gold 6140 processor,
fixed at its nominal frequency of 2.3GHz using the Linux
Kernel cpupower facility. The DUT’s first processor is isolated
with isolcpus for running the VNFs for the tests, while the
second processor run the experiment scripts. The DUT running
the various solutions being tested forwards packets to the sink,
a machine similar to the client that runs the NGINX[35] web
server on all 32 cores. All machines are interconnected using
Mellanox ConnectX 5 2*100GbE NICs. All test scripts used
NPF[36] to run each test 10 times for 20 s (after a 2 s period to
avoid measuring cold-start) and output a graph of the average
and standard deviation for the selected metric. All of the test
scripts are available online1.

B. Performance of the flow manager for a single function

The goal of the testing described in this section is to
ensure that decoupling state management from the VNF is
beneficial – even for a single function. We evaluate the session
classification performance of our system against state-of-the
art solutions, using a TCP load-balancing reverse proxy. The
proxy balances in a round-robin way the upcoming HTTP
connections from the clients to multiple IP addresses assigned
to the sink, ensuring that packets of the same session go to the
same IP destination. This is a typical datacenter application.
Redirections is done by changing the destination IP address
of the request. The requests traversing the proxy are NATed,
to ensure that the packets go back through the box such that
the source IP address sends them to the original destination.

We compared a load-balancer implemented using Middle-
Click to FastClick, HAProxy[37] in TCP mode and the
NGINX[35] reverse proxy. For the laters, we tuned the Linux
TCP stack to allow enough connections and enabled vari-
ous common optimizations, such as using SO_REUSEPORT.
While OpenBox, E2, and Microboxes[8] are probably closest

1https://github.com/tbarbette/middleclick-experiments/

https://github.com/tbarbette/middleclick-experiments/
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to MiddleClick, their implementations are not fully available2

In this experiment, the VNFs require only a partial TCP state
reconstruction (similar to FastClick’s one) and not a full (in-
the-middle) TCP stack. The script request files ranging in size
from 0 kbyte to 256MB. HTTP keep-alive is disabled, so
each HTTP request is made using a new TCP connection.
Figure 14 shows the goodput as a function of file size and im-
plementation. The “Forwarding” line shows the performance
of the testbed when the DUT is only forwarding packets
using a forwarding configuration in FastClick (as an upper
bound). The MiddleClick proxy has similar performance to the
FastClick one. Indeed, the advantage of the minimization of
the classification is balanced by the flexibility of the flow man-
ager. Additionally, the offloading features were enabled one by
one to decouple the individual improvements. Activating the
cache (as described in Section II-F) improved performances up
to 40% over FastClick. Activating the traffic class offloading
leads to a lower improvement, as the flow classification is the
heavy work in this testcase. All MiddleClick solutions were an
order of magnitude faster than HAProxy and NGINX, because
of their unnecessary TCP termination and inefficient network
I/O.

C. How fast is the stream abstraction?

Figure 15 exposes the cost of using heavier context features
compared to other software doing similar modifications. The
simplest context feature is a TCP state tracking function. This
allows context components to react to TCP state changes (e.g.
connection established, closed, ...) and be called when some
data is available, but not reordered. It also calls a function on
each block of payload available, but in this experiment, does
nothing with it. mOS[18] is one of the rare fully available
NFV frameworks and it proposes an implementation that we
compare against. We made an mOS application which uses
mOS’s flow monitoring, but also performing no action. As can
be seen in Figure 15, MiddleClick performs 2.3 times better
than mOS for state analysis. mOS reproduces the state of both
sides of the connection, therefore spending a lot of time in
timeout management. Next, we compared multiple solutions
that fully reorder and reconstruct the stream, allowing the
VNF operator to act on the bytestream. Utilizing the full

2Specifically, E2 and Microboxes are unavailable. OpenBox[5] is partially
available, but its per-flow metadata mentioned in §4.5.3 is not present,
therefore we would end up using the same NAT elements as FastClick, only
using slower I/O.

TCP State TCP Stream Alert Mask Remove Replace
 

0

5

10

15

20

HT
TP

 G
oo

dp
ut

 (G
bi

ts
/s

)

MiddleClick
mOS
Snort-DPDK
NGINX

Figure 15: Throughput for various action on streams of 8K
HTTP requests

TCP in-the-middle context block of MiddleClick for stream
processing, while adding reordering and more book-keeping
incurs a 54% performance hit. We also ran Snort IDS version
2.9.11.1 with a DPDK Data Acquisition Module (DAQ) for
I/O[38], configured without any rule or inspection preproces-
sor other than the TCP stream engine (i.e. Stream5), hence
doing no matching, only TCP reconstruction. We compared
this solution to NGINX in proxy mode, as it similarly passes
bytes untouched. Our system performs at least twice as fast a
the other engines.

The alert function builds on top of the TCP context to detect
the presence of a single word ("ATTACK" in the experiment)
in the stream and raises an alert when found. In MiddleClick,
we use the WordMatcher element that uses the chunk payload
iterator presented in Section IV-A to run an AVX2-based string
matcher taken from [39]. We also integrated HyperScan[40],
a full-featured pattern matching library for IDS, that allows
the developer to register the state of the DFA in its own
memory location. We therefore allocate and keep the DFA
directly in the FCB, avoiding eviction attacks in contrast
to window-based implementations such as Snort – as the
matching algorithm always continues in the state it was left
in. The HyperScan element incurs only a performance drop
of 2.6% when compared to the AVX2 implementation of
the alert function; therefore, it was not shown in Figure 15.
Snort configured with the HTTP preprocessor and a single
similar matching rule performs 20 times slower than the other
configurations.

The mask function replaces the word with some stars (*)
characters. NGINX’s substitution module can be used to im-
plement the same replacement function, but its througput is 4.6
times lower than MiddleClick. Snort can perform exact-length
replacement too but is unable to add or remove content. Stream
size modification is showcased by the remove function that
will remove the word, while the replacement function replaces
the string by a longer HTML string, explaining in color that
some harmful content has been removed. Those two functions
modify the payload and utilize the TCP sequence tracking
explained in Section IV-A. Still, MiddleClick performs more
than 2.2 times better than NGINX for both removal and
replacement. After multiple fixes, ClickNF[41] could only
achieves 128Mbps in a configuration similar to TCP Stream
and was kept out of Figure 15. This showcases well the
difficulty of building a full TCP stack compliant with the
standards and shows the relevance of our lighter approach.

D. What is the benefit of avoiding multiple re-classifications?

Section I already showed in Figure 1 the impact of adding
multiple VNFs in the chain without consolidating both the
classification and the stack. In this experiment, a flow moni-
toring module is repeated, from zero to five times. Each blocks
require 24 bytes for tracking, that will be accommodated in
a single flow table, for the "combined", or in repeated flow
managers, one per NF for the "Independent" lines. The com-
bined table allows for offloading, which gives an improvement
of around 1.5X as shown by the "Accelerated" lines. In case
of the TCP stack, we use the monitoring "TCPIn" element
presented above. Figure 16 shows the latency of packets for the
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same experiment. The latency is computed as the time between
the reception and the transmission of the packet. With 5 NFs,
the latency is 10 times lower when combining the TCP stack
(using hardware acceleration) compared to using independent
NFs. The flow completion time (average file download time)
follows the same trend, divided by 4 when using the combined
version.
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Figure 16: Latency of a chain of stateful NFs, and TCP-based
NFs.

E. How does MiddleClick perform with a chain of light and
heavy NFs?

Figure 17 shows the performance of several service chains
running on 1 to 4 cores for 8K HTTP requests. First, we
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Figure 17: MiddleClick advantage when chaining multiple
VNFs compared to two functionally identical FastClick setups
for NAT and stream statistics, Linux NAT, mOS NAT and mOS
stream statistics.

compare a chain of a single function, a NAT, using Middle-
Click, FastClick, mOS, and the Linux NAT. As established
in Section V-B, MiddleClick outperforms both FastClick and
mOS, and the Linux NAT too. Additionally, mOS faces serious
limitations as its model prevents using L2/L3 features such as
learning bridge or ARP queries, therefore it only supports a
bump-in-the-wire configuration (mandatory for a NAT) when
used in inline3. In its current state, mOS cannot be used either
in a service chain when using DPDK, which is mandatory to
have acceptable userlevel performance (a shortcoming solved
by Microboxes[8] which is still not available at the time of
writing). The slowness of mOS can be explained by it much
heavier TCP stack – most of which is unnecessary for a NAT.

When adding to the FastClick and MiddleClick solutions a
statistics VNF to simply count all bytes per-sessions, FastClick
performance drop considerably because of the second session
classification. In contrast, MiddleClick is barley slowed down
by the second function, as adding this function only extends
the flow table by a few bytes. To further highlight the
advantage of using MiddleClick, we introduce a few more
functionalities to the chain. When adding TCP reconstruction
to the MiddleClick chain, performance decreases to 7.6Gbps,
due to the cost of TCP state management and reordering of
TCP packets. Adding VNFs for flow statistics (per-session
byte count but only for the useful payload), a load balancer,
and a computation of a checksum (similar to the checksum
computation element presented in Figure 10) has very little
impact on performance as they all have their own space in
the FCB as automatically extended to fit all VNFs of the
service chain by MiddleClick. i.e. without any manual tuning.
In comparison, mOS with only stream statistics performs worst
than the MiddleClick chain running 5 more functions. We
note with a single core, the mOS application enters a receive
livelock situation, barely handling any packets, while the NAT
does not work with 3 cores as the RSS computation to find
a port that will lead to packets returning to the same core is
broken for our NIC.

Figure 17b shows the average flow completion latency for
8K requests for the same experiments, under increasing offered
load. For a single function (NAT), MiddleClick performs simi-
larly to FastClick. However, once the price of the classification
has been paid, adding more functions does not increase the
latency very much, even when executing the heavier DPI
function.

In this example, the FCB layout for the full chain is 282
bytes for the forward path and 278 for the reverse path. The
full TCP tracking accounts for 112 bytes, static classification
(marking which path should be selected according to the traffic
class) for around 24 bytes (depending on the path), and the 7
NFs share the rest more or less equally.

F. What are the quantitative benefits for a developer?

Decoupling the state management from the network func-
tion itself removes a lot of burden for developers. As an

3i.e. when packets pass through the box, as opposed to a monitoring mode
where the box receives copies of packets to perform some analysis on but
does not pass them through
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example, the datapath code for the FastClick NAT contains
more than 400 lines of code, handling classification, ageing,
state tracking, etc. The code of the UDP path is mostly
copy-pasted from the TCP part, forcing the developer to
maintain both code bases. In comparison, the MiddleClick
datapath code is only around 20 lines. Figures 7, 10 and
13 already show examples of MiddleClick pseudo-code. As
stated in Section II, the flow manager can utilize multiple
classification algorithms – selecting them according to the
characteristics of the tree and the performance of the nodes.
The classification algorithm accounts for more than 6000 lines
of code allowing to fit many use cases. During the development
phase, we built many components such as a pattern matcher,
data replacement blocks, statistic tracker, . . . However, thanks
to the context system, one can re-use those blocks on top of
existing protocols, without necessarily writing C++. Avoiding
a full TCP reconstruction also makes MiddleClick’s context
elements much more maintainable. We did not need to include
any congestion control mechanism, as we let both parties
handle re-transmission, but only translate SEQs and ACKs
sent in the session. Additionally, the session manager would
be compatible with an implementation of a full TCP stack,
e.g. to implement a web server; hence, naturally merging such
a server with firewalls, flow trackers, or other stateful NFs.
The TCP stack elements constitue around 3000 lines of code.

VI. RELATED WORKS

In addition to the state of the art discussed in the previous
sections, this section discusses some related prior work.

A. Operating Systems
One could argue that efficient service chaining is the

problem of the Operating System (OS), but generic OSs
have proven to be far too slow for raw I/O [24] and mid-
dlebox implementations[18]. Prior work, such as IX[14] or
Arrakis[13], modified or re-designed the OS to improve per-
formance and increase isolation between middlebox compo-
nents. Mirage[42], NetVM[43], and ClickOS[44] try to make
the components themselves faster using fast-deployable and
efficient unikernels or light VMs, but all three lack support
for cooperation between VNF components inside the OS and
cooperation between multiple instances of the dataplane.

B. Userlevel TCP stacks
CliMB[16] and ClickNF[41] introduce a full event-driven

TCP-stack inside the Click Modular Router[25] which has
proven to be a good platform for middlebox and NFV im-
plementations and helps to bridge the gaps, along with other
user-space stacks[15], [17], [45], towards a full userlevel
service chain by bypassing the kernel. StackMap[46] observed
most userlevel TCP stacks were actually not maintained and
preferred to keep the kernel stack, which is well maintained
and benefits from all protocols extension, but to use the kernel
bypass techniques of netmap[12] to accelerate the fast path
I/O. Yet, they are not in the scope of cooperation between
instances of those stacks. Those userlevel stacks all receive
and send raw packets, that would need full re-classification
and protocol specific management for each VNF along the
chain while a full TCP stack is often not even needed.

C. NFV Dataplanes

xOMB[47] provides better programmability by decoupling
middlebox functionalities, allowing simple pipelines of mid-
dleboxes functions to. CoMb[2] explores consolidation of mid-
dleboxes for better resource management and reduces the need
for over-provisioning. As in our design, CoMb proposes mem-
ory sharing with older applications that cannot be modified
to take advantage of the facilities provided. But both xOMB
and CoMb lack consolidation inside the low-level components,
e.g. passing flows between applications and providing support
to build functions on top of a flow abstraction that can be
unified, likely leading to limited throughput or higher latency
when the service chain is long. xOMB relies on heavy message
buffers passed between components and does not achieve high-
speed. For a function similar to the one evaluated in V-B their
performance is less than 1% of ours. This difference is unlikely
to be solely due to their older testbed. Moreover, xOMB does
not provide a way to decompose and recompose multiple
VNFs to consolidate the components of multiple middleboxes
together, thus their performance is likely to drop even further
with more VNFs. As xOMB is not publicly available, it is
impossible to evaluate what it current performance might be.

NFP[48] automatically builds a parallel graph based on
the order and dependency between VNFs and takes care of
efficiently copying packets and merging them back. It unifies
the static service chain classification, but not the intra-VNF
classification nor the dynamic flow tables & flow abstraction.
While we utilize a run-to-completion model, their pipelining
technique could be used in conjunction with our proposal.

OpenBox[5] consolidates low-level functions across the
service chain, using a controller to manage Click-based low-
level components (although this is only a proof-of-concept
and they allow for other implementations including hardware
ones), extracting packet header classification to a unified parser
but lacks stream abstraction and re-use of session parsing. The
OpenBox protocol defines a per-session key/value store but
this per-flow metadata is only conceptual, and the authors do
not explain how they would build and manage a data structure
(such as the FCBs) to handle millions of flows per second,
which is a major contribution of our work. Nor do they address
recycling of entries in the store or how to handle possibly
multiple levels of sessions (per destination, per IP pair, per
TCP session, ...). In contrast, we address all these issues.

D. Flow tempering

Both NetBricks[49] and mOS[18] implement a TCP stack
with similar abstractions, but do not provide any factoriza-
tion and acceleration of the full service chain. Their flow
abstraction is limited to a less flexible window system and
do not provide a generic non-TCP stream abstraction nor the
session scratchpad facility, likely losing a lot of performances
when the running many different VNFs. mOS offers a nice,
high-performance event-based TCP stack. Most of the events
they offer are available through MiddleClick context with
the advantage that MiddleClick can work for any protocol.
More importantly, neither proposes a way to modify flows
(i.e. more than simple rewriting) without fully terminating
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the connection. In contrast, we lets endpoints handle the TCP
semantics, making it future proof whereas most of the state
of the art TCP stacks only support part of the TCP protocol,
strip options, or represent so much maintenance work that they
are already abandoned. TCP Splice[50] avoids full termination
by mapping sequence and acknowledgement numbers with a
constant offset, but does not allow modifications. In contrast
with this paper, they do not focus on service chaining, use
shared flow tables, or describe classifications problems. More-
over, our proposal is protocol agnostic and allows a context-
based system that support e.g. HTTP modifications on top of
TCP modifications. Microboxes[8] essentially extends mOS
to offer a publish/subscribe API to either a monitoring socket
or a full stack. In contrast, we offer an in between solution
to modify flows without running two full TCP stacks. More-
over, MiddleClick combines classifications and components
as a lower-level combination to achieve very high-speed and
enables hardware offloading of the classification.

VII. CONCLUSION

In this work, we have developed a high-speed framework
to build service chains of VNFs. Our system has better
throughput and lower latency than other approaches, thanks
to the avoidance of multiple reclassification of packets as they
pass through the various VNFs in a chain.

Our framework also eases the handling of per-flow and per-
session state. Thus an VNF developer can specify, in a flexible
way, which flows or sessions the VNF is interested in, and
the size of the state the VNF needs for each traffic class or
session. Then, the system automatically provides and manages
the associated per-session storage, which is directly available
to the VNFs.

Finally, our framework exposes simple stream abstractions,
providing easy inspection and modification of flow content
at any protocol level. Thus the developer simply focuses on
the VNF functionality at the desired protocol level, while the
framework adjusts the lower-level protocol headers as needed,
even creating new packets if necessary. Our framework can
also act as a man-in-the-middle for stateful protocols such as
TCP, greatly simplifying high-level VNF development, while
avoiding the overhead of a full TCP stack.

Our open-source implementation of MiddleClick4, shows
significant performance improvements over traditional ap-
proaches on a few test cases. We believe the ease of use
demonstrated through the various examples in this paper show
its potential for broad adoption.

ACKNOWLEDGMENT

This work has been funded by the Fond National de la
Recherche Scientifique (FNRS) through the PDR ePi project
and the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
(grant agreement No 770889). The authors would like to thank
Gerald Q. Maguire Jr. for his help reviewing the paper, as well
as the anonymous reviewers of ToN for their valuable input
that greatly improved the quality of this paper.

4Available at: https://github.com/tbarbette/fastclick/tree/middleclick

REFERENCES

[1] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” in Proc. ACM SIGCOMM, August 2012.

[2] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design
and implementation of a consolidated middlebox architecture,” in Proc.
USENIX conference on Networked Systems Design and Implementation
(NSDI), 2012.

[3] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang, “An untold
story of middleboxes in cellular networks,” in Proceedings of
the ACM SIGCOMM 2011 Conference, ser. SIGCOMM’11. New
York, NY, USA: ACM, 2011, pp. 374–385. [Online]. Available:
http://doi.acm.org/10.1145/2018436.2018479

[4] G. P. Katsikas, M. Enguehard, M. Kuźniar, G. Q. Maguire Jr, and
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