Automatable analytical workflow for characterization of fatty acids in animal-based matrix by GC×GC-TOFMS

Kinjal Bhatt*, Thibaut Dejong, Pierre-Hugues Stefanuto, and Jean- François Focant

University of Liège, Molecular Systems, Organic & Biological Analytical Chemistry Group, 11 Allée du Six Août, 4000 Liège, Belgium

	Background				Challenges		
	Dackground				Chancingeo		
Animal fats are a by-product of the meat industry,			•	Derivatization is a critical step in FAMEs analysi			
and can be used for biodiesel production, reducing				while using GC, as it converts non-volatile fatty acid			
waste and promoting sustainability.				into volatile compounds suitable for GC analysis.			
Its production process invloves the conversion of			•	To have a derivatization protocol that does not			
triglycerides into fatty acid methyl esters (FAMEs)				discriminate t	discriminate towards any specific class of FA		
through transesterification.				order to accurately monitor samples is critical.			
FAMEs can	be divided into th	ree categories:	•	Derivatization	n can be time-consumi	ng and labour-	
Saturated Fatty acids (SFAs), Monounsaturated FAs				intensive, making automation of the process is			
(MUFAs), Polyunsaturated FAs (PUFAs).				desirable for high-throughput analysis.			
PUFAs are no	t preferred in biodiesel	production due			Aim of study		
to their susce	ptibility to oxidation, w	hich can lead to			1 m of Study		
instability in the final product due to increased no of			•	 Developing automatable sample preparation proto 			
double bonds.	- ,			without creati	ng bias towards any clas	sses of FAMEs.	

Results

Full Factorial Design: (4.16)

Figure 1: Schematic diagram of two-stage chemical derivatization and extraction approach

Instrumental parameters

Response optimization

Structured Chromatographic Separation

I un I actorial Design.(4,10)						
Center point : 3						
Factors	-1	0	+1			
$T_1 (^{\circ}C)$	85	95	105			
t_1 (min)	5	15	25			
$T_2(^{\circ}C)$	85	95	105			
t ₂ (min)	5	15	25			

Table 1: Factors and levels tested for optimization using DoE (The optimized conditions are in bold)

Analytes covering the major range of ${}^{1}t_{R}$ (min), ${}^{2}t_{R}$ (sec), and representative of all of FAMEs were selected for classes response optimization (Figure 3(A)).

		Сс	omposite desirab	ility = 0.9159 (Ta	able 1) *n = nur	mber of double bo	nds		
100	8	24	41	58	33	42	50	4	
1D Retention time (minutes)						1D Retention time (minutes)			

Figure 3: (A) Representative of each class selected for response optimization: contour plot of pooled human plasma (B) Zoomed in contour plot of pooled human plasma

Conclusion

Statistically optimized sample preparation protocol to maintain a wide selectivity towards multiple classes of FAMEs [SFA, MUFA, and PUFA (ω -3 and ω -6)] is fully automatized with dual head autosampler. After optimization of biodiesel production process with GC×GC, the method can be easily transferred to 1D GC-MS, making it more economical and scalable. Developed on human plasma, verified with NIST plasma applied on pig plasma makes it most suitable for the analysis of animal

fat feedstock and biodiesel testing^[1].

Reference: [1] Bhatt, K.; Dejong, T.; Dubois, L.M.; Markey, A.; Gengler, N.; Wavreille, J.; Stefanuto, P.-H.; Focant, J.-F. Lipid Serum Profiling of Boarkinjal.bhatt@uliege.be Tainted and Untainted Pigs Using GC×GC–TOFMS: ikinjalbhatt@gmail.com An Exploratory Study. Metabolites 2022, 12, 1111. https://doi.org/10.3390/metabo1211111

Kinjal Bhatt

Research Foundation Flanders Opening new horizons

Monitoring FAMEs at selective m/z makes the data processing automatable: 74, 55, 67 for zero to two double bonds, respectively, while for three to six double bonds at 79.