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Abstract The particle finite element method (PFEM) is a Lagrangian method that avoids large mesh distortion
through automatic remeshing when the computational grid becomes too distorted. The method is well adapted
for flows with deforming interfaces and moving boundaries. However, the a-shape technique used to identify these
boundaries presupposes a mesh of approximately uniform size. Moreover, the a-shape criterion is purely geometric
and, thus, leads to violations of mass conservation at boundaries. We propose a new algorithm for mesh refinement
and adaptation in two dimensions to improve the ratio accuracy to computational cost of the PFEM. A local target
mesh size is prescribed according to geometric and/or physics-based criteria and particles are added or removed
to approximately enforce this target mesh size. Additionally, the new boundary recognition algorithm relies on
the tagging of boundary nodes and a local a-shape criterion that depends on the target mesh size. The method
allows thereby reducing mass conservation errors at free surfaces and improving the local accuracy through mesh
refinement, and simultaneously offers a new boundary tracking algorithm. The new algorithm is tested on four
two-dimensional validation cases. The first two cases, i.e., the lid-driven cavity flow at Reynolds number 400 and
the flow around a static cylinder at Reynolds numbers below 200, do not feature a free surface and mainly illustrate
the mesh refinement capability. The last two test cases consist in the sloshing problem in a reservoir subjected to
forced oscillations and the fall of a 2D liquid drop into a tank filled with the same viscous fluid. These last two
cases demonstrate the more accurate representation of the free surface and a corresponding reduction of the error
in mass conservation.
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1 Introduction

The Particle Finite Element Method (PFEM) [15,47] is
a numerical approach that relies on a mesh-based finite-
element formulation of the governing equations for
the simulation of multi-physics problems in deforming
domains. In contrast to classical Eulerian finite-element
methods (FEM) used in computational fluid dynamics
(CFD), the mesh nodes behave as particles and
move with the material. A new computational grid is
generated when the mesh becomes too distorted using
a fast Delaunay triangulation [19,41,49]. Additionally,
the domain boundaries are identified from the full
convex triangulation by means of geometric criteria
using the a-shape technique [25,26,47].

Owing to its Lagrangian nature, the PFEM is
well suited for the simulation of flows involving
deforming interfaces, moving bodies and fluid structure
interaction. For instance, Onate et al. studied bed
erosion [46], Cerquaglia et al. focused on fluid structure
interaction problems with strong added mass effects
[10], Franci et al. studied free-surface Bingham fluid
flows interacting with structures [29]. Other examples
include the study of landslides by Cremonesi et al.
[14] and Zhang et al. [67] or the numerical analysis of
fluid-saturated porous media by Monforte et al. [44].
The PFEM has also been applied to solid mechanics
problems, such as the simulation of metal cutting |7,
50| and the numerical modeling of granular flows [23],
but the present work focuses on the simulation of
incompressible fluid flows.

In the specific context of fluid mechanics, the
PFEM combines the robustness of the finite-element
formulation and the wversatility of a Lagrangian
description to treat moving boundaries. However,
the numerical solution of such complex problems
always requires a trade-off between accuracy and
computational cost. It is thus important to rely
on an efficient implementation. In this context,
mesh adaptivity represents a powerful strategy to
increase accuracy for a given computational cost, or
equivalently, to reduce the cost for a given accuracy.

Mesh adaptivity essentially refers to the use of a
discretization based on mesh elements of different sizes,
such that high resolution is used in regions where
the solution features require it, while coarser elements
are used where the solution is smooth. This strategy
has been successfully used for decades in FEulerian
mesh-based methods for either fixed meshes or meshes
that evolve during the simulation. At the most basic
level, adaptivity can simply be achieved by defining
a priori a fixed but non-uniform mesh. In this case,
the characteristics of the mesh are usually based on

user expertise and/or some mesh convergence study.
At a more advanced level, iterative or time-dependent
solution-based mesh adaptation relies on the local
solution to define the local mesh density. This is often
referred to as Adaptive Mesh Refinement (AMR) and
is typically used with unstructured meshes or octree
(quadtree in 2D) grids [3,30,39,61].

AMR consists of two steps: i) the identification
of the mesh elements that need to be adapted,
and ii) the corresponding dynamic adaption of these
elements, typically through splitting or grouping. The
identification of the elements to refine or coarsen is
usually based on some solution-dependent quantity
and corresponding threshold values. As suggested by
Bansch et al. [24], such mesh adaptation techniques
can be divided into two categories. The error-based
methods use an estimate of the interpolation error
(see [18,22,24] for some examples). The other category
encompasses the heuristic methods in which the
elements are refined following physical criteria [6].
For instance, the refinement can be applied to areas
of large gradients [17,42]. This second category of
methods is well suited for highly nonlinear problems,
such as computational fluid dynamics (CFD) and
fluid-structure interaction (FSI), where error estimates
are either unavailable or expensive to compute [2].
Additionally, geometric criteria can also be used, for
instance based on the distance to solid surfaces when
bodies are moving.

While splitting or grouping cells is relatively
straightforward in the context of octree grids, refining
and coarsening an unstructured mesh without hanging
nodes often requires to modify not only the targeted
element itself but also its neighbors. This adaptation
can be isotropic or in specific directions. Beyond the
geometric aspects of defining new, coarser or finer,
elements, the main challenge is to assign them a
solution value. In particular, interpolation of new values
should ensure that conservation principles are satisfied
and that no large error is introduced.

Despite the vast amount of literature on mesh
adaptation and its common use in Eulerian methods,
particle methods still mostly rely on meshes with
a uniform resolution. A few recent exceptions can
be found in the context of the Smooth Particle
Hydrodynamics (SPH) method, such as Vacondio et
al. [60], Yang et al. [65] or Sun et al. [56]. Regarding
the PFEM, the recent review of Cremonesi et al.
[15] only reports two examples of mesh adaptation,
both using error-based refinement but only applied
to solid mechanics problems [7,50]. To the authors’
best knowledge, the PFEM with physics-based mesh
adaption has yet to be applied to fluid mechanics
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problems. The ability to adapt, possibly dynamically,
the mesh resolution to the solution is particularly
crucial to simulate flows with viscous boundary layers,
recirculation zones, interfaces, free-surface, etc. The
current lack of robust and efficient mesh adaptivity
capability thus considerably limits the range of possible
applications that can be simulated with the PFEM.

This shortcoming of the PFEM can be explained
by two major challenges originating in the fundamental
nature of the method. First, unlike Eulerian methods,
the PFEM, and more generally particle methods,
are characterized by a set of nodes that constantly
evolve along the simulation. More precisely, the nodes
are material points and thus move according to the
equations of motion in a Lagrangian fashion. In the
context of fluid flows, each node moves following the
flow, even when the velocity field itself is steady. In
other words, although the resolution could be defined
a priori such that it is initially best adapted for the
specific configuration studied, the displacement of the
nodes by the flow would completely randomize the
resolution, leaving sparse regions where high resolution
is required, and conversely. Adaptivity can thus only be
achieved by constantly creating and deleting particles.

The second reason is very specific to the PFEM
as it is directly related to the boundary recognition
algorithm. In particular, the classical version of
the a-shape technique typically used in the PFEM
presupposes a uniform mesh [16,47], as discussed in
more detail in the next section.

Our objective is therefore to develop an algorithm
for mesh adaptivity and to implement it into an existing
PFEM solver for incompressible flows. Note that only
two-dimensional meshes are considered here. The goal
is to efficiently capture important flow features found
around moving bodies.

The proposed approach consists first in identifying
the elements to adapt by comparing the actual mesh
size to a target mesh size defined at each node. This
target mesh size is determined based on a combination
of heuristic solution-based and geometric criteria. The
adaptation is then carried out through the addition
/ deletion of one or more nodes inside, and possibly
around, the corresponding mesh elements. The solution
value at the newly defined nodes is subsequently
obtained from interpolation with neighbor values using
the shape functions associated with the element’s
nodes. Finally, the domain boundary identification
relies on both node tracking and the a-shape technique,
but based on local parameters. Both the identification
and the refinement of the moving boundaries are
considered simultaneously in order to minimize the

error in mass (volume) conservation stemming from
remeshing and time integration.

The present article is organized as follows. After
this introduction, the next section provides a more
detailed description of the PFEM. In particular, it
illustrates some of the limitations of the general
method and highlights the challenges linked to mesh
adaptivity. Section 3 describes in detail the proposed
mesh refinement approach, considering successively the
definition of the target mesh size, the adaptation of
the mesh and the boundary recognition algorithm.
The mesh refinement algorithm and its implementation
are then assessed in section 4 through several two-
dimensional test cases, including the lid-driven cavity
flow, the uniform flow around a static cylinder, the
forced sloshing of a reservoir and the fall of a liquid
drop into a pool of the same liquid. This is followed
by a brief discussion on the extension of the algorithm
to three-dimensional tetrahedral meshes in section 5.
Finally, the work and the main results are summarized
in the conclusion.

2 The Particle Finite Element Method

The Particle Finite Element Method has been originally
proposed by Onate & Idelsohn [47] and more recent
developments can be found in the review article of
Cremonesi et al. [15]. The present work is based on
the PFEM implementation of Cerquaglia [8,9,10,11,
12]. This section first introduces the finite element
formulation of the basic equations and the a-shape
technique. The challenge of mass conservation is then
briefly discussed.

2.1 Basic equations and finite-element formulation

The two-dimensional Navier-Stokes equations for an
isothermal incompressible fluid are discretized using a
finite element formulation. After integration by parts
of second derivatives, the momentum and continuity
equations respectively read

D
M?:—i—Kv—i-DTp:f, (1)

Dv =0, (2)

where v and p are the vectors containing the two
velocity components and the pressure fields, M is the
mass matrix, K contains the viscous terms, D is the
discrete version of the divergence operator, (-)7 is the
transpose operator, D /Dt is the material derivative and
f is a vector containing the contribution of body forces
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(typically gravity) and surface tractions (e.g., applied
forces, surface tension, etc.).

The discretization relies on linear shape functions
for both the pressure and velocity fields, thus violating
the Ladyzhenskaya-Babuska-Brezzi (LBB) condition
[5,51]. To avoid pressure instabilities, a monolithic
Pressure-Stabilizing Petrov-Galerkin (PSPG) approach
is used, which consists in adding stabilization terms to
the mass conservation equation [38,58]. This leads to

Dv T

Dv

— -D L.p=h 4
Co; v+L;p=h, (4)

where C is a dynamic stabilization term, L. is the
discretized version of a stabilization Laplacian operator
and h results from the presence of the body forces in
the stabilization term [11]. Note that the stabilization
term vanishes as the iterations converge towards the
correct solution.

Finally, the system is integrated in time using an
implicit Euler scheme to obtain the velocity field v**!
at the next time step. This velocity is then used to
determine the new particle locations x"*! = x" +
vt At at time step t7T1 = t" + At. The iteration over
the system nonlinearity relies on a Picard (or fixed-
point) algorithm.

2.2 Meshing and «a-shape technique

Because the particles move with the flow, the initial
mesh is rapidly distorted. In the PFEM, the distorted
mesh used at the previous time step is thus discarded
and a new mesh is constructed from the cloud of
particles at their new position. The process is illustrated
in Fig. 1: Given a cloud of particles (a), a classical
Delaunay triangulation is performed to define the new
triangular mesh (b). Nonetheless, the entire convex
hull defined by the particles is triangulated. In order
to identify the actual boundary of the fluid, some
elements must be eliminated (c). In the PFEM, this
is traditionally achieved through a geometric criterion
based on the a-shape technique [47].

Originally, the a-shape technique has been
developed as a tool to separate subgroups of simplices
contained in the convex hull of a point set [25,26].
It simply consists in removing the triangles having a
circumscribed circle whose radius r. is larger than a
threshold «. Because otherwise the threshold « would
be problem-dependent, it is customary in the PFEM
to use this criterion in its non-dimensional form

"—,;>a, (5)

Fig. 1: Illustration of the meshing procedure and «-shape
technique. (a) Cloud of particles obtained from the previous time
step, (b) mesh over the convex hull of the particle cloud after
Delaunay triangulation, (c) final mesh after elimination of the
elements that are too elongated (i.e., with an a-value larger than
the threshold). The deleted triangles are considered as empty
space.

7. < ah 7. > ah

Fig. 2: Non-uniform mesh with a size progression from left to
right. The red circles represent schematically the circumscribed
circle of the corresponding triangle with radius r. and the green
circles the threshold ah of Eq. (5) using a constant value of h and
«. Applying the criterion would wrongfully eliminate all triangles
that are “large”, i.e., the grey triangles in this figure, despite their
regular shape.

where h is a characteristic length scale of the mesh.
Typically, h is defined as the average length of the
smallest element edge over the mesh [11,16]. Choosing
a global value a between 1.2 and 1.5 allows discarding
triangles that are too badly shaped or too large.

The drawback of the above method is that
it presupposes some uniformity of the mesh size,
preventing thus its direct use with mesh adaptation.
More specifically, applying the above a-shape technique
to a non-uniform mesh would eliminate all triangles
that are too large even if they are equilateral and
belonging to the fluid domain, as illustrated in Fig. 2.
Increasing the value of h would remedy it, but
then smaller badly-shaped elements that should be
eliminated would be incorrectly kept.

To circumvent this issue, one could replace the
global length scale h by a local value h. attached
to the element e, e.g., the shortest length of the
corresponding triangle. Although this approach would
eliminate badly-shaped triangles, some larger elements



Mesh adaption for two-dimensional bounded and free-surface flows with the Particle Finite Element Method 5

Fig. 3: Mesh obtained after Delaunay triangulation for a
cylindrical solid body immersed in a fluid. The use of a local
scaling length h. instead of a global measure h of the mesh size
in the a-shape technique would correctly eliminate the badly-
shaped elements (in red) but would fail to discard the large
regular triangle inside the solid body.

would be wrongly kept, as illustrated in Fig. 3. In
this case, the large triangle inside the cylinder is
not discarded and the algorithm fails to identify
the cylinder immersed in the fluid as a solid body.
Nonetheless, such an approach could be considered
if the local value h. is understood as an average
over some local region rather than directly related to
the corresponding element, and if only smooth spatial
variations of h. are permitted. A related method is
proposed in the present work, as described in Section 3.

Another option is to rely on a generalization
of the a-shape technique, the so-called weighted -
shape method [4,26,48], in conjunction with weighted
Delaunay triangulation (also referred to as regular
triangulation) [27]. In this case, large triangles or
small badly-shaped triangles can be simultaneously
discriminated by introducing user-defined weights at
each node. Note that it can be shown that the
aforementioned approach based on a local length scale
he is equivalent to the weighted a-shape method under
the assumption that the weights vary smoothly in
space. Nevertheless, the weighted a-shape method is
still a geometric criterion and special treatment is
required in the vicinity of the free-surface to minimize
the mass creation or destruction that is inherent to the
PFEM.

Surface stretching
Mass destruction

N

Fig. 4: Typical examples of error in mass conservation at a free
surface: mass creation due to two free surfaces approaching each
other (falling droplet on the left) and mass destruction due to
the stretching of the free surface (above the rising cylinder in the
middle).

Falling droplet

$‘/Mass creation

2.3 Mass conservation errors

Because the a-shape technique used to identify the
boundary of the fluid domain is not based on physics,
mass conservation cannot be rigorously enforced in
the PFEM, as it is also the case with some other
methods used for simulating free-surface or multiphase
flows. For incompressible flows, the total mass is
directly proportional to the volume of the fluid. Local
volume creation or destruction typically occurs at a
free-surface, both during numerical time integration
(displacement of boundary mnodes) and remeshing
(deletion of existing or addition of new elements). The
change in total volume can thus be decomposed into
two contributions, AV = AVyum + AViem, respectively.

As an example, volume creation/destruction due to
remeshing can take place when two free surfaces, or two
parts of the same free surface, approach each other, as
illustrated by the falling droplet merging with the bulk
of the fluid in Fig. 4. When the distance between the
two boundaries becomes of the order of the mesh size,
the elements between them are not discarded by the
boundary identification algorithm, thus creating mass.
On the other hand, mass can be destroyed along a free
surface that is stretched, as also illustrated in Fig. 4.
In this case, the stretching pulls boundary nodes apart
leading to obtuse triangles that are eliminated by the
a-shape criterion. Similar errors in mass conservation
can also be observed around the contact point of a
free surface and a solid wall (see Fig. 5), where mass
is created at the front of the moving fluid wetting the
surface and destroyed at its back.

Two approaches can be considered to limit mass
creation/destruction inherent to the PFEM. On the one
hand, one can locally refine the mesh in the critical
regions of the free surface, which provides another
motivation for mesh adaptation. On the other hand,
a different treatment can be applied to the nodes on
the free surface during the boundary recognition step.
Nevertheless, this requires some kind of tracking of the
free surface, e.g., by tagging the nodes belonging to it.
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Fig. 5: Typical examples of errors in mass conservation at a solid
wall: mass creation at the fluid front along the horizontal surface
and mass destruction behind the falling fluid on the vertical wall.

Both approaches are considered in the present work, as
explained in the following section.

3 Mesh adaptation algorithm

The objective of the proposed algorithm is to adapt the
mesh resolution so as to accurately capture the flow
features and decrease mass creation/destruction, while
minimizing the computational cost. In particular, we
want to dynamically refine the mesh in the viscous layer
close to solid surfaces, in the wake of solid bodies, at
free surfaces undergoing deformation and in regions of
possible flow separation or reattachment.

The main idea is to define a local target mesh
size L* that varies smoothly between a minimum
and maximum value across the fluid domain, and
to approximately enforce it through creation or
destruction of particles where the actual mesh size
differs from the target value. This step occurs at the
end of each time step, after the nodes have been
moved according to their computed velocity. Once
new particles have been added and some existing
particles have been potentially removed, the old mesh
is discarded and a new one is created using Delaunay
triangulation. This is followed by the boundary
identification step that is based on a boundary tracking
approach in conjunction with a local a-shape technique.

This section describes the definition of the
target mesh size and the process of particle
creation/destruction. Finally, the tracking of the free
surface and the special treatment of elements at the
boundary is explained.

3.1 Definition of the target mesh size

The local target mesh size L* = v/ A* is a measure of
the desired surface area A* of the mesh elements. Two

approaches are combined to define it. First, geometric
mesh refinement is based on the absolute position of the
particles in the computational domain and/or on their
relative position with respect to solid surfaces. While
this type of criterion is adequate in many cases, the
actual location of viscous layers is not always known a
priori. For instance, the trajectory of a buoyant object
is a result of the simulation, so that the position of
its wake cannot be easily defined purely geometrically.
Therefore, a solution-based mesh refinement is also
considered, which relies on a measure of the local
velocity gradients.

Note that, because the information about elements
is lost at each time step when the mesh is discarded,
the local target mesh size L* is calculated and stored
at each node n. It is also recomputed at each time step
to accommodate for the displacement of the nodes.

3.1.1 Geometric criteria

Viscous layers adjacent to walls are characterized by
large velocity gradients. A finer mesh is thus required
close to solid boundaries to accurately capture these
gradients. The target mesh size at a given location
can thus be defined as a continuous function L*(d)
of the shortest distance d to solid walls, whether
fixed boundaries or moving bodies. Different analytical
functions can be considered. For instance, L*(d) could
correspond to the smallest mesh size L. in some
region adjacent to a wall, then increase linearly with d
to the maximum mesh size L} . over some prescribed
distance and finally remain constant at L} . further
away. The wake region behind a body also typically
requires a finer mesh. If the location of the wake
is known beforehand, the target mesh size can be
prescribed through pseudo geometrical entities defined
in either an absolute frame of reference or relative to
the body, for instance. Such pseudo-entities could be
a rectangular zone or a center line behind the body.
Another option could be to define the target mesh size
as an analytical function of both the distance and angle
with respect to the body.

For complex geometries the calculation of the exact
minimal distance to a wall is not trivial and potentially
expensive from a computational point of view. In
practice it is therefore more convenient to consider each
(pseudo-) geometric entity k separately. This leads to
several criteria Lj. Note that each criterion can use
different values for L, and L} . . The actual target
size can then be defined as the minimum over the
different criteria:

L = mkin L. (6)
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Fig. 6: Non-uniform meshes for the simulation of the flow around
a fixed cylinder at Rep = 200. Only the nodes are shown, and
each image corresponds to a specific instant in time after a limit
cycle oscillation has been reached. The first mesh (top) uses only
geometrical mesh refinement based on the distances from the
cylinder and from the center line. The second mesh (bottom) also
uses this refinement but, in addition, includes a solution—based
refinement where the target mesh size is given by Eq. (7) with the
parameter 3 = % The dashed blue lines represent the rectangular
area for geometric refinement. Note that for better visualization
of the most refined regions, the point size is twice smaller in the
bottom image.

An example is shown in the top image of Fig. 6 for the
simulation of the flow around a fixed cylinder. In this
case, the target mesh size is set based on the distance
to the cylinder and a rectangular zone downstream of
it.

Additionally, complex boundaries or bodies can
be approximated through simpler geometric shapes
(e.g., line, circle, rectangle) to further simplify the
definition of the target mesh size. This also provides
the opportunity to implement generic criteria that can
be used for different configurations. Nevertheless, an
adaptation for each specific case is usually still required.
The complexity also increases with the number
of geometrical elements considered. An additional
drawback is that regions of large gradients sometimes
result from the flow dynamics and are thus unknown
before the computation.

8.1.2 Solution-based refinement

To avoid the need for an a priori knowledge of the
flow features, it is helpful to combine geometric criteria
with solution-based mesh refinement. While different
metrics can be considered, the present work relies on the
Froebenius norm of the local velocity gradient tensor,

[[Vul|. The goal is to prescribe a small mesh size in

regions with large velocity gradients, and vice versa.
In the proposed approach, the target mesh size is

based on a linear interpolation of a negative power of

[[Vul],
1) | 0) (7)

where 5, |[|Vu|lmin and ||Vu||lmax are user-defined
parameters. The parameter 3, usually between zero and
one, controls the rate of increase of the mesh size, while
the two other parameters are threshold values that
can be estimated beforehand based on characteristic
length and velocity scales of the problem considered
or known solutions of similar problems. The rationale
behind Eq. (7) is to retrieve a classical grid stretching
for a wall boundary layer, but other functional forms
could also be considered.

An example of this technique is shown in the bottom
image of Fig. 6, where, in addition to the previously
mentioned geometrical refinement, a solution-based
refinement is used. In this case, a small target mesh
size is imposed, in accordance with Eq. (7), in regions
of large gradients such as in the wake of the cylinder.
In particular, a high grid resolution can be seen in and
around the von Karman vortices and shear layers. Such
grid refinement allows a more accurate prediction of
drag, lift and Strouhal number, as discussed in more
details in section 4.

L =L + (L

max

-8 _ —B
s (i [ 19007 = Dl
IVal o, — [I9ullax

min

— L* )

min

In flows where features of interest have widely
different levels of velocity gradient magnitude, Eq. (7)
might not provide an adequate target mesh size. For
instance corner vortices might be much weaker than
other flow features but still important to capture. In
this case, it is better to replace ||[Vu|| in the above
expression by a normalized measure of the velocity
gradient magnitude, e.g.,

[[Vul|

Vul|= — 27
[Vl [lu— Uy + Ue

(®)

where U, is a small user-chosen velocity to avoid
division by 0, and U, is the constant free-stream
velocity. Note that other options can be considered
depending on the case of interest.

For problems involving free-surface deformations,
a finer mesh is also needed to accurately capture the
dynamics and location of free surfaces. Therefore, we
also rely on a solution-based measure related to the free-
surface deformation. In particular, the local target mesh
size is prescribed as a linear function of the free-surface
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radius of curvature r; to ensure an approximately
constant angular mesh size:

" . s« *
L* = min (max (ﬁ, Lmin) 7Lmax> ) 9)

where m is a user-defined parameter that controls
the angular mesh resolution, i.e., the number of edges
over a half-circle. The radius of curvature itself is
obtained as the radius of the circle passing through
the corresponding boundary node and its two direct
neighbors on the free surface. The target mesh size of
neighbor nodes in the fluid bulk can be prescribed in a
second step using the smoothing algorithm introduced
in the next subsection.

Finally, it should be mentioned that such solution-
based approaches, or similar ones, can partly replace
and/or complement some of the aforementioned
geometric criteria. Equation (6) is then used to
prescribe the actual local target mesh size. This is
illustrated in Fig. 6, where the geometric criteria are
combined with the solution-based refinement approach
of Eq. (7) to better resolve the von Karman vortices.

3.1.3 Smoothing of the target mesh size

For numerical accuracy of the discretization, but
also for applying the a-shape technique locally, it is
important to ensure a certain smoothness of the mesh
size. In particular, small and large elements should not
be directly adjacent to each other. This implies that
the target mesh size should also be sufficiently smooth.
While rapid variations of L* can be easily avoided
for geometric criteria, this is less trivial for solution-
based approaches. If variations in space and/or time
of velocity gradients are too rapid, discontinuities in
the target mesh size can occur. The refinement of the
free surface is another example because the curvature-
based target mesh size can only be prescribed for the
boundary nodes, and not for their direct and more
distant neighbors.

A smoothing algorithm is thus subsequently applied
to the target mesh size, so as to enforce a maximum
target mesh size ratio p, between two neighbors. More
specifically, if the condition

1
— <
pr L

~

*
m

< pr (10)

is not satisfied for a node m and its neighbor node
m, then the larger target mesh size is reduced to
satisfy Eq. (10). Starting from nodes with the smallest
target mesh size, the neighbors are, if needed, gradually
updated. The process is repeated recursively for all
nodes that have been themselves updated. Note that
the complexity of the algorithm is of order N, as the

above condition is tested for each mesh node a finite
number of times that depends only on the number of
direct neighbour nodes.

This smoothing step also allows refining the mesh
around solid boundaries with a complex shape, in a
similar manner as it is done with the curvature-based
refinement of the free surface. In this case, the target
mesh size can be imposed on the boundary itself and the
smoothing algorithm can be leveraged to “propagate”,
with some progression factor, the target mesh size into
the fluid domain.

3.1.4 Delaying mesh coarsening

After a mesh refinement, it might be sometimes
advantageous to delay any potential subsequent
coarsening. This could be to avoid a repeating cycle
of node creation and destruction that would introduce
unnecessary numerical dissipation.

Another situation in which delaying mesh
coarsening might be required is when the need
for a fine mesh is anticipated but the local target
mesh size provided by the refinement criteria is larger
than required. This is for instance the case during
the merging of two fluid regions, as illustrated by the
falling drop in Fig. 4. In such a case, one of the regions
(e.g., the droplet) might be much more refined than
the other (e.g., the liquid bath). As predicted by the
a-shape criterion, merging typically occurs when the
distance between the two regions is of the same order
as the mesh size of the coarser fluid region. Therefore,
an anticipatory local mesh refinement around the
liquid bath free surface, when the droplet approaches,
allows reducing mass creation. To ensure that the
mesh resolution remains sufficient before the actual
merging, despite a larger calculated target mesh size,
the coarsening that would otherwise take place should
be delayed for a duration Atgelny until the merging
process has started.

This is achieved by assigning to each node a time
counter t* that is incremented at each time step, but
reset to zero every time the new calculated target
mesh size is smaller than the current one. If the new
calculated target mesh size is larger and if t* < Atqelay,
then the current target mesh size at the node is not
updated and its old value is kept, thus preventing a
potential coarsening during the time step. The delay
time Atqelay can be imposed globally or locally as a
multiple of the time step size depending on the case
considered. For instance, just before the merging of
two fluid regions, their relative velocity can be used
to estimate a local Atgelay. A practical illustration of
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the process and the benefit of delaying coarsening is
discussed in Section 4.4.

3.2 Creation and destruction of particles

Once a smooth target mesh size has been defined
everywhere, it must be enforced up to some tolerance by
adapting the actual mesh. In practice, this is achieved
by creating/destroying nodes wherever the actual mesh
size L is outside a user-defined range around its target
value.

As explained in the following section, the
comparison between target and actual mesh size is
usually performed at the edge or, for elements at the
boundary, at the element level. Because the target mesh
size L} is initially defined at the nodes n, we also define
a target mesh size L7, associated with an element and
Liqge with an edge using a simple arithmetic average
over the corresponding nodal values,

* 1 *
elem — 5 Z Lneleln y (11)

Telem

* 1 *
edge — 5 Z Lnedge . (12)

Nedge

where Nelem and neqge indicate the corresponding nodes
of the element and edge, respectively.

8.2.1 Adding particles

In general, new nodes can be added either within
elements (Fig. 7(a)) or on their edges (Fig. 7(b,c)). In
the present algorithm, nodes are only added at the mid-
point of selected edges to avoid new elements that are
too obtuse [33] and a too agressive mesh refinement, i.e.,
a too large increase in nodal density!, from one time
step to the next. Nonetheless, the addition of nodes
in the center of elements could in principle also be
considered.

The main idea is to divide elements in the bulk that
are too large by a factor of two through the addition
of a new node on only one of their two largest edges
(Fig. 7(b)), and elements at the boundary by a factor of
four through the addition of new nodes on each of their
edges (Fig. 7(c)). The special treatment of boundary

L In 2D, the nodal density is defined as the number of nodes per
unit area. Because a triangular mesh has on average twice more
elements than nodes (away from boundaries), the nodal density
can be locally approximated as 1/(2Ac1em ), where Agjem is the
surface area of the element. Therefore, the more new elements
are created by the addition of a new node, the smaller their area
is and the more the local nodal density increases. As illustrated
in Fig. 7, adding one node on a single edge (case b) leads to the
smallest increase in nodal density.

(b) x 2

(a) x 3

Fig. 7: Different strategies to add nodes and corresponding
increase of the nodal density: one node added at the center of
the element (left), one node added at the mid-point of a single
edge (middle), nodes added at the mid-point of each edge of an
element (right). The new nodes are indicated by red circles and
the new virtual edges by red dashed lines.

elements is dictated by the boundary recognition step.
In order to correctly identify the boundary using the a-
shape technique, and thus reduce the mass conservation
error, it is crucial to ensure high-quality boundary
elements. This is discussed in more detail in section 3.3.
It is also important to emphasize that the new edges
(red dashed lines in Fig. 7) are only virtual because the
mesh is discarded and a new triangulation is performed
right after the node creation/destruction step).

Concretely, an edge in the bulk is refined by adding
a node at its mid-point if the three following conditions
are all satisfied:

— the average area of the two elements sharing this
edge is larger than the threshold value:

1 4,
§(Aelem1 + Aelemz) > gLegge7 (13)

— the edge is not the shortest edge of any of the two
elements sharing this edge, and

— the edge has not been previously tagged to prevent
its refinement.

The addition of a node on an edge impacts the two
adjacent elements sharing this edge. To avoid the
further division of these elements through the potential
addition of new nodes on their other edges, these
other edges are then tagged. This tag prevents their
refinement, thereby ensuring that elements in the bulk
are at most divided by two. Additionally, if the edge
that is refined belongs to a boundary element (i.e., an
element with an edge on the boundary), this boundary
element is automatically refined by adding nodes on all
its edges irrespective of its size (Fig. 7(c)). The rationale
is to ensure that the shape of the boundary elements
is as optimal as possible to improve the boundary
detection in the subsequent step.

On the other hand, if the edge is on the boundary
and if the area of the associated boundary element is
larger than the threshold value,

elem »

4
Adtom > gL*2 (14)
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Fig. 8: Algorithm for node addition. The edge considered is
indicated by the bold blue line. The blue dots represent boundary
nodes while the red dots and the red dashed lines are respectively
the new nodes and the new virtual edges if the edge is refined.

edge or tag?

Tag adjacent
edges

then this boundary element is divided by four. This is
achieved by adding a new node on each of the edges of
that element (Fig. 7(c)). Furthermore, if this boundary
element has a direct neighbor (i.e., sharing a common
edge) that is also a boundary element (i.e., with an edge
on the boundary), this neighbor element is also refined
irrespective of its size.

The algorithm is illustrated in Fig. 8. It should be
noted that, with this algorithm, the refinement has
some dependence on the order in which the edges
are considered. This is however not deemed to be
a problem, especially since there are anyway many
different strategies to refine the mesh. The threshold
coefficient 4/3 in Egs. (13) and (14) is chosen so
that, on average, the elements that are refined have
afterwards an area larger than %L*Q in the bulk and
%L*Q at the boundaries, and the unrefined elements
an area smaller than %L*Q. Increasing this coefficient
reduces the number of nodes added but induces a larger
discrepancy between actual and target mesh size, and
conversely.

Once nodes have been added, the associated nodal
values of physical quantities (e.g., velocity, pressure,
etc.) must be prescribed. This initialization uses the
interpolation shape function of the finite element
discretization. In practice, it implies that each variable
is simply obtained using the mean value of the
corresponding variable at the nodes of the refined edge.
This ensures that the local fields remain unchanged
during the process.

Aelem < ’YL*Q (15)

elem »

are deleted and a new node at the element center is
created. The new (virtual) elements have thus all more
or less the same size and are larger than the original
elements, which ensures a smoother transition between
coarse and fine mesh.

This node is assigned nodal
corresponding to the average over the three deleted
nodes. Deleting the nodes of the element has a direct
impact on its neighbors that share these nodes. More
specifically, it is important to realize that collapsing
all elements of a mesh region would increase the nodal
density rather than decrease it2. Therefore, the direct
neighbor elements and their own direct neighbors are
prevented to be themselves collapsed, irrespective of
their size. An example is shown in Fig. 9 where the
direct neighbors of the collapsed element 10 and their
respective neighbors, indicated by green circles, cannot
be collapsed. It can be shown that, for a uniform
mesh of equilateral triangles, this coarsening process
corresponds to increasing the area of the elements by
a factor 4/3.

The special coarsening algorithm at the boundary
is applied to all elements with at least one node (and
not only an edge as for node addition) on the boundary.
First, the actual element area Agjem used in the criterion
for coarsening, Eq. (15), is replaced by 1h2

2" min>

new values

Wi <AL (16)
where hpi, is the length of the smallest edge of the
element. This is to avoid too skewed boundary elements,
as illustrated in Fig. 10. Then, the smallest edge of the
element rather than the element itself is collapsed. More
specifically, if either both nodes of the smallest edge are
on the boundary or none of them is, then the two nodes
are deleted and replaced by a single node at their mid-
point. The average value of the physical quantities at
the two deleted nodes is assigned to the new node. If the
shortest edge involves a boundary node and an interior

2 As already mentioned, a triangular mesh has more or less
twice more elements than nodes so that collapsing each element
into a node at its center would approximately double the number
of nodes, and thus the nodal density.
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Fig. 9: Illustration of the coarsening process of a mesh region in
the bulk, i.e., without boundary elements, where the triangular
elements are numbered from 1 to 15. (Left) If element 10 is
collapsed, then all its neighbors and their respective neighbors
(green circles) are tagged to prevent them from being collapsed.
On the other hand, elements 2, 6 and 14 can be collapsed. Note
that collapsing all elements would not decrease the nodal density.
(Right) Resulting nodes and virtual mesh after coarsening where
the red dots indicate the new nodes, the black crosses the nodes
that have been deleted and the red dashed lines the corresponding
new virtual triangulation.

1,2
2 hmin< Actem

—

N

ol

Fig. 10: Illustration of a squeezed boundary (e.g., free-slip
boundary) where the boundary nodes are represented by the
dark blue dots and the boundary edges by the thick dark blue
lines. If the free surface is squeezed, boundary elements are
compressed along, and extended perpendicularly to, the free
surface, as indicated by the red arrows. This would lead to highly
skewed elements with a surface area Aeqjen, sufficiently large that
the coarsening criterion, Eq. (15), is not satisfied. The modified
criterion, Eq. (16), reduces the threshold for coarsening and thus
avoids that boundary elements become too skewed.

node, then this interior node is simply deleted. This
minimizes the impact of the coarsening on the shape of
the boundary.

The choice of the threshold coefficient v in Eq. (15)
is important to avoid a continuously alternating mesh
refinement and coarsening in the same region. In
particular, if v is too large, new nodes created at
the previous iteration might be deleted because their
associated element is now too small, or conversely,
elements that have been coarsened might be refined at
the next time step. Moreover, as the coarsening step
averages locally the solution, it introduces unwanted
numerical diffusion that should be minimized. It is thus

suggested to impose an upper bound, v < 1/2, such
that the coarsened mesh in the bulk is, on average,
smaller than %L*Q to avoid overlapping of refined and
coarsened elements in the same region. In practice the
parameter 7 is chosen between 1/3 and 1/2 in the
bulk. Reducing its value leads to more variability in
the element size, potentially slightly more deformed
elements but fewer node eliminations, and conversely.
At boundaries the increase of nodal density, if particles
are added, is twice that in the bulk. Therefore, the
parameter vy in Eq. (15) is there divided by two and
a smooth transition between /2 at the boundary and
v in the bulk is imposed over a few cells.

3.3 Boundary recognition algorithm

Once the node addition/destruction step has been
completed, the old mesh can be discarded and a
new Delaunay triangulation is performed. Because
the full convex hull of the domain is triangulated,
mesh elements that do not belong to the fluid must
be discarded. This boundary recognition step relies
both on boundary tracking and a local a-shape
technique. Concretely, nodes belonging to the boundary
at the previous time step are tagged and the global
characteristic length scale h in Eq. (5) is replaced by
the local target mesh size. In particular, the a-criterion
for triangle removal is modified to

re > ol (17)

elem »

where the user-defined constant a should take a value
between 1.2 and 1.8 depending on the case. Note that,
because of the difference in the definition of A and
L}, the typical value a = 1.2 in Eq. (5) corresponds
approximately to & = 1.8 in Eq. (17) for an equilateral
triangle. However, the boundary tracking allows using
a much lower value of «, so that in practice a = 1.2
in Eq. (17) provides good results. The influence of « is
further discussed in section 4.

As already illustrated in Figs. 4 and 5, the
mass conservation error is directly linked to the
boundary identification algorithm. To minimize this
error, three important aspects must be ensured: 1) a
sufficiently refined mesh in the boundary vicinity, 2)
well-shaped elements, and 3) the knowledge of which
nodes belonged to the boundary prior to remeshing
(boundary tracking). These requirements explain the
aforementioned special treatment of boundary elements
during node addition/destruction.

Because elements with at most one node on the
boundary can be safely considered as being part of the
fluid domain, the a-shape criterion is only applied to
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Fig. 11: Algorithm for boundary recognition combining a local
a-shape criterion and boundary tracking.

elements with two or three nodes tagged during the
previous time step as belonging to the boundary. This
reduces the computational cost and simultaneously
prevents the unphysical destruction of fluid elements
in the fluid domain.

An element with two nodes on the boundary is only
eliminated if the following three conditions are all met
(see also Fig. 11):

— the local a-criterion for triangle removal, Eq. (17),
is satisfied,
— the element edge on the boundary is the longest edge
of its element (Iy,.o. = lmax), and
— the element area is smaller than a minimum value
imposed by the global minimal target mesh size:
Actem < 5 L350
The third requirement ensures that the element is
removed from the triangulation only if the associated
error on mass conservation is of the order of the finest
mesh resolution. On the other hand, if only the first
two conditions are satisfied, the boundary is locally
stretched. In this case, the node that is not on the
boundary is tagged to be removed and the boundary
edge is tagged to be refined at the next time step, as
illustrated in Fig. 12. With this approach the number
of elements that would otherwise be deleted is greatly
reduced, which allows the use of a lower value of «, as
discussed in section 4.
Elements with three nodes on the boundary should
a priori be empty elements and thus discarded. Notable
exceptions are elements at domain “corners” (see Fig. 5)

Fig. 12: Illustration of the addition of a new node (red dot)
at the mid-point of the longest edge of an obtuse element when
this edge (thick blue line) is located on the boundary and the
corresponding element satisfies the a-shape criterion for element
removal, Eq. (17). The black cross indicates the node that is
tagged for removal.

and elements in a thin film whose thickness corresponds
to the element size (i.e., only one element thick). Such
elements also play a key role during the merging phase
of two fluid regions, as already shown in Fig. 4. They
are thus discarded of the mesh as soon as one of the
following two conditions is satisfied:

— the local a-criterion for triangle removal, Eq. (17),
is satisfied, or

— their area is significantly larger than that of one of
their direct neighbors. In practice, this condition is
expressed as

Agtom > 2 (ngn(L;;))Q : (18)

where the index n corresponds to the three nodes
of the element and the factor 2 has been chosen
arbitrarily to ensure that the element size is
sufficiently different from that of the neighbors.

The purpose of this second condition is to minimize the
spurious creation of mass, as illustrated in Fig. 13 for a
free surface folding on itself. A new fluid element is only
created if its size is comparable to that of its smallest
neighbor. Note that, in practice, the curvature-based
refinement of the free-surface ensures that this new
element has a size of the order of the global minimum
mesh size.

The merging of two boundaries with a significant
difference in their corresponding mesh resolution is
another example to illustrate the use for this second
condition, as shown in Fig. 14. If a significant
difference is identified among the target mesh sizes
Ly at the nodes of the element connecting the two
boundaries, this element is discarded. Additionally, the
largest neighbor(s) of this element is/are refined. More
specifically, the target mesh size of the node(s) lying
on the coarser of the two boundaries is assigned the
minimum target mesh size. This new target mesh size
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PN

Fig. 13: Illustration of mass creation when a free surface folds on
itself. At the previous time iteration, the blue shaded triangle had
been discarded by the boundary recognition algorithm and has
thus three nodes on the boundary (blue dots). After remeshing,
this element would be kept if it does not satisfy the a-shape
criterion for removal. To minimize the resulting mass creation,
the element is only kept if, additionally, it is of the same size as
its direct neighbors. The dark blue dashed line indicates in this
case the new boundary edge.
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Fig. 14: Merging of two fluid regions without (a,b) and with (c,d)
merging detection algorithm. (a) When the more refined region is
sufficiently close to the other boundary, the connecting element
(red dashed lines) is not discarded by the a-shape criterion,
leading to significant mass creation. Considering the second
condition based on Eq. (18) eliminates this connecting element
from the fluid region and, thus, prevents this artificial mass
creation. (b) However, when the more refined region becomes
closer to the coarse boundary, Delaunay triangulation might yield
a mesh with a different topology, e.g., with two elements (red
dashed lines) connecting the two fluid regions. In this case, it is
unclear whether these two elements should be kept or discarded.
Moreover, in both cases the error in mass conservation is of the
same order as the size of the coarser mesh. (c) Refining the coarser
boundary and its neighborhood after discarding the connecting
element (red dashed lines) delays the merging of the two fluid
regions. (d) Finally, delaying the coarsening of the newly refined
boundary region ensures that the merging takes only place when
the two boundaries are within a distance of the order of the
minimum mesh size and, thereby, significantly reduces the mass
conservation error.

is then propagated into the bulk through smoothing, as
described in sections 3.1.3 and 3.1.4.

Once all the elements that are considered non-fluid
elements have been removed, the new boundary can be
identified. In particular, all the nodes that define edges
belonging to a single element are tagged as boundary
nodes for the next time iteration.

Finally, it should be emphasized that, with the
proposed algorithm, the separation of a fluid region
into two can only take place in a fluid filament that
is stretched to a thickness of a single element, i.e.,
an element with three nodes of the free surface. Fluid
detachment is thus delayed compared to the classical
PFEM.

4 Validation cases

Four different test cases are now considered to illustrate
and validate the proposed mesh refinement algorithm.
The first two cases, i.e., the lid-driven cavity flow and
the flow around a cylinder at low Reynolds number, do
not feature a free surface and are mostly used to assess
the mesh refinement part (target mesh size definition
and node creation/destruction). If an Eulerian frame
of reference were used, these two flows would be
either steady or periodic in time. The third test case
corresponds to the sloshing motion of a liquid pool
in a reservoir that undergoes a rotating motion with
a period close to the sloshing resonance. Finally, the
last test case involves a two-dimensional liquid drop
falling into a bath of the same liquid. For the latter two
examples, that are fundamentally unsteady, the focus
is on the free-surface motion and mass conservation.

4.1 The lid-driven cavity

The first test case corresponds to a square cavity whose
bottom and side walls are fixed and whose top wall
(lid) moves from left to right at constant velocity. After
a transient phase, the velocity field reaches a steady
state characterized by a primary rotational structure
and smaller vortices in the lower corners of the cavity, as
illustrated in Fig. 15. All reported quantities are made
non-dimensional using the fluid density p, the cavity
side length L and the lid velocity U. A Reynolds number
Re = pUL/u = 400, with g the dynamic viscosity, is
considered here but similar results have been obtained
at Re = 100. First, a mesh convergence analysis
is performed using a uniform mesh and results are
compared with the literature. Then, several strategies
to define the target mesh size are analyzed. Finally,
results obtained with uniform and non-uniform meshes
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Fig. 15: Streamlines at steady state obtained for the lid-driven
cavity flow on a uniform mesh with 80 x 80 subdivisions along
the horizontal and vertical walls. The location of the three main
vortices is indicated by the red crosses.

are compared. These results are mainly assessed in
terms of the position of the primary and secondary
vortices (BL1 and BRI in Fig. 15) and the vorticity
at these locations.

4.1.1 Mesh convergence analysis

First, the convergence of the results on a uniform mesh?
is analyzed using a series of refined meshes with N x N
subdivisions along the vertical and horizontal walls,
ranging from 20 x 20 to 160 x 160. The corresponding
total number of nodes is more or less 4N?2/3, as
triangular elements are used. For comparison, this
would correspond to L*. = L. . ~ 0.6/N. Note
that, in the Lagrangian framework, the nodes on the
moving lid are moved back to their original position
at each time step before remeshing. The time step size
is defined based on the minimum target mesh size as
At = 5L}, /12 for this mesh convergence study and
all subsequent simulations. The results obtained with
these meshes are also compared to several references
from the literature [31,37,52,62].

Figure 15 shows the streamlines of the solution
obtained with the 80 x 80 mesh. As summarized in
Table 1, it is found that the mesh with a resolution
of 80 x 80 is sufficient to get results close to those
of the literature. The most resolved mesh (160 x 160)
does not lead to results that are significantly different
(the difference with respect to the coarser mesh is
of the same order of magnitude as the variability

3 The mesh is not perfectly uniform since it deforms at each
time step, but it has approximately a uniform element size.

across the reference data), but increases noticeably the
computational time. Because the intermediate 80 X
80 mesh provides sufliciently accurate results while
keeping the computational cost limited, all following
analyzes will be based on meshes of a similar size.

4.1.2 Definition of the target mesh size

As discussed in Section 3.1, several criteria can be
used to define the target mesh size. For this test
case, a geometric and two physics-based criteria are
investigated. The geometric criterion (denoted GEO)
defines a target mesh size that increases linearly from
Ly .. at the top wall to L} .. at the bottom wall. The
finer mesh at the lid is motivated by the larger velocity
gradients and the thinner boundary layer in this region,
as indicated by the closely packed streamlines in Fig. 15.
Moreover, a finer mesh at the cavity upper corners
reduces the effect of the velocity discontinuity induced
by the moving lid.

It can be expected that this geometric criterion
is not sufficient to accurately capture the vortical
structures. Alternatively, a refinement based on the
velocity gradients using Eq. (7) (denoted SOL1) is
thus also considered. Nonetheless, because the corner
vortices are much weaker than the primary vortical
structure, their associated velocity gradients are much
smaller, which leads to a rather large target mesh
size there. A better targeted refinement of the corner
vortices can be achieved with a solution-based criterion
(denoted SOL2) that uses rescaled velocity gradients
according to Eq. (8). The mesh size is thus prescribed
based on the shape of the vortices rather than on their
intensity. The different target mesh size parameters for
the three criteria are summarized in Table 2. The mesh
resulting from these three criteria are compared for

*in = 0.6/80 =0.0075 and L}, =8L% ...

Typical meshes obtained at steady state using the
above mesh refinement criteria are illustrated in Fig. 16.
The GEO criterion produces a mesh with an element
size progressively increasing in the direction normal to
the lid (Fig. 16a), while the SOL1 criterion leads to a
fine mesh along the lid with additional refinement at the
edge of the primary vortex, in particular below the top
right corner (Fig. 16b). However, the resulting mesh
at the two bottom corners is very coarse, preventing
an accurate representation of the corner vortices there.
The SOL2 criterion, on the other hand, yields a fine
mesh along the entire edge of the primary vortex and
at its core (Fig. 16c). Additionally, a better refinement
at the bottom corners is also achieved. For the chosen
mesh parameters, none of the two bottom vortices can
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PFEM simulations Ghia et al.  Schreiber et al. Vanka Hou et al.
Resolution — 20x20 40x40 80x80 160 x 160 257 x 257 180 x 180 321 x 321 256 x 256
Num. methods PFEM CSI-MG "Homemade" BLIMM LBM
Formulated var. U, v, P P —w P U, V, P BGK model
Te 0.5522 0.5527 0.5562 0.5543 0.5547 0.5571 0.5563 0.5608
Primary Ye 0.6039 0.6080 0.6074 0.6059 0.6055 0.6071 0.6 0.6078
w 2.446 2.3155 2.292 2.289 2.2947 2.281 — —
Te 0.8910 0.8857 0.8856 0.8854 0.8906 0.8857 0.8875 0.8902
BR1 Ye 0.1173 0.1213 0.1223 0.1224 0.1250 0.1143 0.1188 0.1255
w 0.3749 0.4007 0.4104 0.4161 0.43352 0.394 — —
T — 0.0493 0.05 0.05083 0.0508 0.05 0.05 0.0549
BL1 Ye — 0.0457 0.0467 0.04707 0.0469 0.0429 0.05 0.0510
w — 0.0675 0.04457  0.06037 0.056 97 0.0471 - -

Table 1: Mesh convergence study with uniform mesh for the lid-driven cavity test case: position (z¢,yc) and associated vorticity w
of the primary and secondary (BR1 and BL1, see Fig. 15 for definition) vortices for different mesh sizes and comparison with the
results of Ghia et al. (finite difference method, vorticity-streamfunction formulation) [31], Schreiber et al. (fourth-order finite difference
method, vorticity-streamfunction formulation) [52], Vanka (finite difference method on staggered grid) [62] and Hou et al. (Lattice
Boltzmann method) [37].

GEO SOL1 SOL2
[IVul|min - 2/9 2
[[Vul|max - 6 50
3 - 1/3 1
(Uss, Ue) - - ((0,0), 0.01)

Table 2: Target mesh size parameters of Egs. (7) and (8) for the
mesh refinement of the lid-driven cavity test case.

be captured using the GEO refinement, and the SOL1
criterion fails to predict the vortex BL1.

4.1.3 Uniform vs. non-uniform mesh

One of the main motivation for the present mesh
refinement algorithm is to be able to refine locally
the mesh in order to improve the solution accuracy in
specific regions while keeping the computational cost
limited. Alternatively, this also provides the ability to
use a coarser mesh in regions where the solution is
smooth, thus reducing the computational cost while
keeping the same accuracy of the solution. However,
it should be emphasized that even a very local and
spatially limited mesh refinement has an impact on
the time step. More specifically, the Courant-Friedrichs-
Lewy (CFL) condition imposes a corresponding time
step reduction when the element size is reduced. This
is compounded by the fundamentally unsteady nature
of the Lagrangian formulation that prevents the use of
large time steps as typically employed to solve steady
problems. In other words, even when the decrease of

+in induces only a small increase in the total number
of elements, a non-negligible increase in the overall
computational cost due to a larger number of time steps
is unavoidable.

Three non-uniform meshes based on the SOL2
refinement with the same L7, (corresponding to that
of a 80 x 80 uniform mesh) and a decreasing L} .
are compared to uniform meshes in Table 3. One
can observe that increasing L .. deteriorates slightly
the accuracy of the simulation, but also significantly
reduces the number of nodes. For instance, Mesh 2 in
Table 3 has half as many nodes as the 80 x 80 uniform
mesh for virtually the same accuracy. Comparing
Mesh 1 and the 40 x 40 uniform mesh that both have a
similar number of nodes, one observes that, although
the position of the primary vortex is surprisingly
slightly less accurate for Mesh 1, the corresponding

vorticity is much better predicted.

Finally, it should be emphasized that these results,
and in particular the position of the different vortices,
are very sensitive to many factors. This is clearly
demonstrated by the variability of the results in the
literature (see Table 1) despite very fine meshes.
This sensitivity is most likely due to the presence of
additional smaller and smaller vortices that emerge in
the corners when increasing the grid resolution. The
abrupt appearance of such a vortex impacts the overall
flow, and correspondingly the other vortices. This
phenomenon thus complicates the grid convergence
analysis. Furthermore, because the lid-driven cavity
flow is fully confined and involves boundary layers on
all four walls, the gain achieved by using a non-uniform
mesh is somehow limited. Most Eulerian studies in
the literature are actually based on uniform meshes.
Nonetheless, this test case provides the opportunity to
test different strategies of mesh refinement, as shown
above.
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(a) GEO: N, = 1184

(b) SOL1: Ny, = 3566

(c) SOL2: Ny = 2469

Fig. 16: Meshes at steady state obtained using three different mesh refinement strategies for the lid driven cavity. For all three cases,

L. =0.6/80 = 0.0075 and L},,, = 8L*

min min-’

other target mesh size parameters are summarized in Table 2.

The approximate total number of nodes at steady state, Nst, is also reported. The

Similar LY . Uniform
Mesh type — Mesh 1 Mesh 2 Mesh 3 | (40 x 40) (80 x 80) (160 x 160)
L: .. 0.0075 0.0075 0.0075 0.015 0.0075 0.003 25
L. JL*. 8 4 2 1 1 1
Parameters )y ></ 105" | 3125 3125  3.125 6.25 3.125 1.5625
Ninit « 500 « 1200 « 2900 « 2200 « 8500 « 34000
Ngteady « 3300 «~ 5200 “« 7900 «~ 2700 «~ 10500 «~ 42000
zc. | 0.5594 0.5563 0.5551 0.5527 0.5562 0.5543
Results Primary y. | 0.6106 0.6083 0.6072 0.6080 0.6074 0.6059
w 2.281 2.2895 2.292 2.3155 2.292 2.289

Table 3: Comparison of different mesh adaptation strategies for the lid-driven cavity flow: SOL2 mesh refinement for three meshes

with same L*

min

and decreasing L}

Fiax and three uniform meshes with decreasing L

*
min*

Mesh parameters, time step, initial and final

number of nodes and position (zc,y.) and associated vorticity w of the primary vortex.

4.2 Flow around a circular cylinder at low Reynolds
number

The second test case corresponds to the classical two-
dimensional flow around a circular cylinder of diameter
D. Several Reynolds numbers are considered up to
Rep = 200, so that the flow remains laminar and
two-dimensional but features either steady or periodic
dynamics.

4.2.1 Numerical setup

All physical quantities reported below are made
non-dimensional using the cylinder diameter D, the
free-stream velocity U, and the fluid density p.
The computational domain is rectangular. Unlike the
previous test case, this one features a flow that enters
and leaves the computational domain at all far field
boundaries. Because inlet/outlet boundary conditions
are not straightforward in Lagrangian methods, the
upper and lower boundaries are here modeled as slip

walls, i.e., with zero normal velocity, to prevent an
in- or outflow at these two boundaries. The left and
right boundaries are on the other hand inlet and outlet
boundaries, respectively. A uniform velocity profile is
imposed at the inlet and constant pressure at the outlet.
A description of the actual implementation of such
boundary conditions can be found in Cerquaglia [11].

A relatively large computational domain is chosen,
with —4.5 < z < 75.5 in the streamwise direction
and —15 < y < 15 in the flow normal direction,
where the origin is located at the cylinder center. This
allows minimizing the effect of boundary conditions
and the blockage effect induced by the slip walls (the
blockage is here B = 1/30). Furthermore, it provides
the opportunity to clearly demonstrate the advantage
of a non-uniform mesh, as relatively large elements can
be used away from the cylinder and its wake.

Overall, the non-dimensional target mesh size
ranges from LY. = 0.01 to L} .. = 1.1, corresponding

to a ratio of 110 between smallest and largest elements.
Two geometric refinement criteria are combined. First,
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*

L7 is increased linearly from LY. at the cylinder
surface to L} .. at a distance d = 15 from the cylinder
center. Then, the second geometric criterion imposes
a target mesh size L5 with an intermediate value of
0.11 for |y| < 2 (i.e., in the wake region). For |y| > 2,

5 increases linearly in y to L} .. at the upper and
lower boundary. Additionally, a solution-based criterion
provides a target mesh size L3 that varies between L ;|
where non-dimensional gradients are larger than 4 and
0.14 where gradients are smaller than 0.012 according
to Eq. (7) with 8 = 1/3. This criterion is however
only applied in the region |y| < 2 to ensure a good
resolution of the Karman vortex street. Finally, the
prescribed target mesh size is obtained as the minimum
over the three criteria: L* = min{Lj, L3, L}}. Examples
of meshes using only the two geometric or all three
criteria are shown in Fig. 6. It is interesting to note that
a uniform mesh with a mesh size of 0.01 everywhere
would increase the number of elements by a factor
between 10 and 60. At last, the non-dimensional time
step is At = L*

min*

4.2.2 Results

It is well-known that, for Rep g 40, the flow around a
static cylinder is steady with a symmetric recirculation
bubble downstream of the cylinder (see Fig. 17a), while
at higher Reynolds number the flow becomes unsteady
with periodic vortex shedding and a corresponding
Karman vortex street (Fig. 17b). The wake remains
two-dimensional and laminar for flows at Rep S 200.

The steady or mean (for unsteady cases) drag
coefficient C'p is compared for different values of Rep
ranging between 20 and 200 with references from the
literature in Fig. 18. Because the steady or mean lift
vanishes by symmetry, the root-mean-square (rms) of
the lift coefficient is reported in Fig. 19 and compared
with the numerical results of Norberg [45]. A very
good match is observed in both cases between the
present results and the reference data. This excellent
agreement is further confirmed by the comparison of
the recirculation bubble length L,.. for steady cases
with similar blockage B in Fig. 20, and the Strouhal
number, St = fD /Uy with f the shedding frequency,
for unsteady cases in Fig. 21.

The simulation at Rep = 200 has also been repeated
using only the geometric refinement criteria, L] and
L%. The same aerodynamic coefficients are found as for
the simulation using the solution-based criterion, but a
5% lower shedding frequency is observed, owing to the
coarser mesh in the wake.

o I . - .
8 0 8
(b) Rep = 200

Fig. 17: Two-dimensional flow around a static cylinder. (a)
Contour of the streamwise velocity component for the the steady
case at Rep = 40. The blue zone indicates the region where the
streamwise velocity is negative and illustrates the extent of the
recirculation bubble. (b) Contour of the vorticity for the unsteady
case at Rep = 200 showing the periodic Karman vortex street.
In both cases, only a short portion of the entire computational
domain is shown.

4.3 Forced sloshing reservoir

The previous two test cases are classical examples for
which an Eulerian approach would be better adapted.
On the other hand, the PFEM can be of advantage
when simulating flows with a free surface. To highlight
the added value of adaptive mesh refinement and to
evaluate the use of the proposed algorithm for free-
surface flows, the sloshing in a tank undergoing a forced
roll motion is now studied. In particular, the objective
is to reproduce the experimental and numerical results
of Delorme et al. [20] and Souto-Iglesias et al. [55] for
the case of water in the large tank with lateral impacts.
A schematic of the setup and its dimensions is shown
in Fig. 22 and the key physical parameters are listed in
Table 4. The Reynolds number is defined with the initial
water height H and the characteristic velocity /gH,
where g is the gravity acceleration, so that the Froude
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Fig. 18: Steady or mean (if unsteady) drag coefficient as a
function of the Reynolds number for the laminar flow around a
static cylinder. The present results (red stars) are compared with
the experimental results of Wieselberger [63] and the numerical
results of Henderson [35,36] and Sheard et al. [54].
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Fig. 19: Root-mean-square (rms) lift coefficient as a function
of the Reynolds number for the laminar flow around a static
cylinder. The present results (red stars) are compared with the
numerical results of Norberg [45]. The first two PEEM data points
correspond to the steady cases without vortex shedding.

number Fr = 1. Using the shallow water dispersion
relation, Souto—Iglesias et al. [55] estimate the resulting
sloshing period as

rH\\ V2
T, =21 (Lt nh < ; >) —1.9191s. (19)

The imposed rolling motion of the tank is an
oscillatory rotational motion around the horizontal
with an amplitude ¢max = +4° and a period T}
that is 85% of the natural sloshing period Ts. The

2.5
v AC (1968) B=0.05
A AC (1968) B=0.0:
201 ® B9 B=007
+ OB (1977) B=0.024
+ GR(1964) B=0.1
154 * GR(194) B=02
x  Sen (2009) B=0.04
®  Sen (2000) B=0.11
$ 1.0 ' Sen(2009) B=0.2
~ - TA (1956) B=0.03
* KT (1969) B=0.050 1 R
0.51 —*— PFEM 2D B=0.033 -
F L]
- t
0.04 4"
—0.5
5 10 15 20 25 30 35 40

Rep

Fig. 20: Non-dimensional length of the recirculation bubble
behind the static cylinder for Rep < 40. The present results (red
stars, B = 0.033) are compared with the experimental results of
Taneda (TA) [57], Grove et al. (GR) [32], Coutanceau and Bouard
(CB) [13] and Acrivos et al. (AC) [1], and to the numerical results
of Sen et al. [53] and Keller and Takami (KT) [40], for different
values of the blockage B.

0.22
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Fig. 21: Strouhal number of the vortex shedding in the wake
of a static cylinder for different Reynolds numbers. The present
results (red stars) are compared with experimental results of
Zhang et al. [66] and Williamson [64] and numerical results of
Henderson (2D and 3D) [34] and Karniadakis and Kedar (taken
from Williamson [64]).

corresponding tilt angle ¢(t) with respect to the
horizontal line has been taken from the experiment and
is shown in Fig. 23.

4.3.1 Mesh adaptation

For this case, the mesh adaptation strategy relies on the
combination of one geometric and two solution-based
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Fig. 22: Schematic of the setup for the sloshing experiment
of Delorme et al. [20] and Souto-Iglesias et al. [55]. Only two-
dimensional simulations are performed, neglecting the presence
of the front and back walls and the resulting friction. The red
dot on the left wall indicates the position of the pressure sensor
located at a height corresponding to the initial water height H.
The respective numerical values are summarized in Table 4.

Density p 998 kg/m3
Dynamic viscosity m 8.94-107* Pass
Surface tension o 0.0728 N/m
Initial water height H 93 mm
Tank length L 900 mm
Tank width w 62 mm
Reynolds number Re 10°

Froude number Fr 1

Sloshing period Ts 1.9191 s
Rolling period Ty 1.6312 s
Rolling amplitude Pmax  £4°

Table 4: Key physical parameters for the sloshing experiment of
Delorme et al. [20] and Souto-Iglesias et al. [55]. The geometrical
dimensions are defined in Fig. 22.

Fig. 23: Tilt angle ¢(t) of the tank as a function of the time taken
from the sloshing experiment of Delorme et al. [20] and Souto-
Iglesias et al. [55]. The points labeled (A) to (H) correspond to
maximum, zero and minimum tilt.

in 1.4 mm
Liiax 13 mm
||Vt min 21.5 m~1
[V max 107.5 m~1
8 1
Ue 0.01 m/s
m 120

Table 5: Parameters used to define the target mesh size for the
solution-based mesh refinement of the sloshing test case.

criteria. First, a mesh stretching from the minimum
target mesh size L}, = 1.4mm at the walls to L}, =
9.28L7 ., at a distance H from the walls is imposed
through a geometric progression. Then, regions of large
velocity gradients are refined according to Eqgs. (7)
and (8), while the free-surface is refined using the
criterion of Eq. (9). The corresponding parameters are
summarized in Table 5. The results are also compared
to those obtained on a uniform mesh with an element
size LZ . using the classical PFEM algorithm. Despite
the slight differences in Eqs. (5) and (17), the same «
is used for both mesh types. Moreover, two different
values, @« = 1.2 and a = 1.4, are considered to assess
the impact of o on mass conservation. As shown in the
following, the best results are obtained with @ = 1.2
for the non-uniform mesh and « = 1.4 for the uniform
mesh. These values are used when illustrating the
results. Finally, the same time step size At = 0.0005 s
is considered for all simulations.

4.83.2 Results

The deformation of the free surface obtained with
the non-uniform mesh (o = 1.2) is compared to
experimental measurements in Fig. 24 at the time
instants (A) to (H) defined in Fig. 23, ie., at zero,
maximum and minimum tilt angles. The white dots
correspond to the mesh nodes and are superposed
to photographs of the experiment. The effect of the
curvature-based free-surface mesh adaption is clearly
visible with a progressive refinement around the high-
curvature zones, which allows a better description
of the wave crest. Very good agreement can be
observed for the free-surface motion during the first
two sloshing periods ((A4) to (F) in Fig. 24). Following
the subsequent impact of the wave on the left wall,
the flow becomes more chaotic, with splashes and
individual vortices, and discrepancies become more
apparent. The wave front seems to break slightly
earlier in the numerical simulations (instant (G)).
Additionally, the free-surface reaches a higher height
when impinging onto the right wall (instant (H)).
Nevertheless, although discrepancies become more
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(A)

(B)

(©)

(D)

Fig. 24: Free-surface deformation for the sloshing test case:
computational nodes (white dots) of the PFEM on a non-
uniform mesh with o« = 1.2 superimposed to photographs of the
experiment [20,55] at different time instants corresponding to the
highlighted points in Fig. 23.

significant over time, the new algorithm provides a very
good approximation of the flow and free-surface motion
in this initial phase.

The  experiment also  includes  pressure
measurements that provide a more quantitative
basis for comparison [20,55]. The pressure sensor is
located on the left wall at a height corresponding to
the initial water height H (red dot in Fig. 22). The
time evolution of the pressure is shown in Fig. 25.
Very good agreement is found between the PFEM
simulation on a non-uniform mesh (red line) and the

Uniform  Non-uniform
Ninit ~ 29000 ~ 4700
Nirnp2 ~ 30000 ~ 5500
Nimp.3  ~ 29000 ~ 8000
Nimp.a  ~ 26000 ~ 8000

Table 6: Total number of nodes at the beginning of the
simulation and after the second, third and fourth impacts on the
left wall, for both the uniform (o = 1.4) and the non-uniform
(o = 1.2) meshes. The decrease of the total number of nodes of
the uniform mesh is due to mass destruction linked to nodes that
are eliminated when too close to each other.

experiment (green line) for the first wave reflection at
t ~ 1 s and when the wave impacts the left wall at
t =~ 2.3 s. The agreement remains good for the two
subsequent impacts, in particular regarding the impact
time, but a somewhat larger pressure level is predicted
by the simulation in the post-impact phase (at t ~ 4.3 s
and t = 6 s). Furthermore, the fourth impact seems to
be predicted slightly earlier. The slower motion of the
wave in the experiment is possibly due to the friction
forces on the front and back walls of the tank, as the
tank width is about 15 times smaller than its length.
The presence of these front and back walls, and the
corresponding friction, are not accounted for in the
present two-dimensional simulations.

Figure 25 also includes the results obtained with the
classical PFEM on a uniform mesh with o = 1.4 (blue
line). In this case, although the first two impacts are
well predicted, the long-time evolution of the pressure
clearly shows discrepancies. In particular, a growing
time lag is observed for the third, and mostly fourth
impact. This time-lag is even more significant with
a = 1.2 (not shown here). Moreover, the post-impact
pressure level continuously decreases at each impact.
To further analyze the differences between the two
PFEM simulations and the experiment in the later
phase, the free-surface deformation at the fourth impact
(t = 5.65 s) is shown in Fig. 26. For the non-uniform
mesh, the figure illustrates well the mesh refinement
at the free surface, close to the walls and in vortical
regions. The overall free surface is well captured, despite
some expected discrepancies in the impact region on the
left wall. For the uniform mesh on the other hand, the
aforementioned large time lag is clearly visible. Even
more striking in this case is the lower height of the
free surface, which suggests non-negligible mass loss.
Such mass destruction, and the resulting lowering of
the average liquid height H, likely explains the time lag
(larger sloshing period T, Eq. (19)) and possibly the
decreasing pressure level over time that are observed
with the classical PFEM on the uniform mesh.



Mesh adaption for two-dimensional bounded and free-surface flows with the Particle Finite Element Method 21

20
) —— Experiment
2 191" —— Uniform (a=14)
= 1.04 — Non-uniform (o = 1.2)
i
[ 0.51
= _/-\
0.0 . e
0 1 2 4 ) 6 7

t[s]

Fig. 25: Non-dimensionalized pressure at the pressure sensor on the left wall of the sloshing tank as a function of the time. PFEM
results with a uniform mesh and o = 1.4 (blue) and a non-uniform mesh and o = 1.2 (red) are compared to the experimental

measurements (green) [20,55].

Experiment

Uniform

Fig. 26: Free-surface deformation for the sloshing case at the
fourth impact (¢ = 5.65 s): photograph from the experiment |20,
55| (top) and mesh nodes from the PFEM simulations on the
non-uniform mesh with a = 1.2 (middle) and uniform mesh with
a = 1.4 (bottom). The wave break is barely distinguishable in
the experiment. Note that the size of the dots for the uniform
mesh (bottom) is twice smaller for better visualization.

4.3.83 Mass conservation

To further investigate the problem of mass
conservation, Fig. 27 depicts the time variation of
the total volume due to remeshing alone, AViem,
and to both remeshing and time integration,
AViet = AViem + AVpum. The first observation is
that the value of o has a non-negligible impact on
mass conservation. In particular, a lower mass error is
achieved with a = 1.4 on a uniform mesh while a = 1.2
yields better results on the non-uniform mesh.

The remeshing in the new algorithm leads to some
mass creation (see Fig. 27(a)), but which remains
limited compared to the larger mass destruction (about
two times in magnitude when comparing the better
results) in the classical algorithm. As already mentioned

in section 3.3, the new algorithm strongly reduces
unwanted mass destruction at the free-surface; this
allows using a low value of a that limits mass creation.
Note that most mass creation takes place at the vertical
walls when wetted by splashes. As shown by the red
dashed lines in Fig. 27, increasing « to 1.4 leads to a
larger mass creation. On the other hand, a larger «
reduces mass destruction with the classical PFEM on
a uniform mesh. This mass destruction mostly results
from nodes deleted on purpose to prevent a bad mesh
quality when they get too close to each other. This is
further supported by Table 6 that summarizes the total
number of nodes at the beginning of the simulation
and at the second, third and fourth impacts on the left
wall. Because the uniform mesh has elements of size
L%, its initial number of nodes is approximately six
times that of the non-uniform mesh. However, its mesh
size decreases between the third and fourth impact.
On the other hand, the total number of nodes of the
non-uniform mesh expectedly increases over time due
to mesh adaptation. Nevertheless, towards the end
of the simulations, the number of nodes of the non-
uniform mesh remains more than three times smaller
than that of the uniform mesh. Finally, the numerical
time integration induces in both cases some mass
destruction (see Fig. 27(b)). For the new algorithm the
two contributions, AVen and AVyum, cancel each other
almost perfectly (probably by chance here) so that the
total error in mass conservation is almost zero, while it
amounts to more than 25% after 8 s with the classical
PFEM using o = 1.4.

Overall, the results obtained with the new algorithm
are very good despite some discrepancies at later
times, mostly due to the inherently chaotic nature
of splashes, two-dimensional approximation and finite
mesh resolution. Moreover, the use of mesh adaptation
and boundary tracking reduces the error in mass
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Fig. 27: Variation of the total volume (mass) as a function of the time for the classical PFEM on a uniform mesh and for the new
algorithm on a non-uniform mesh for both a = 1.2 and 1.4 in Egs. (5) and (17), respectively. (a) Error AViem due to the remeshing
only, and (b) overall error including the error due to the time integration, AViot = AViem + AVaum.-

conservation. In particular, the new algorithm allows
choosing a lower value of o (more stringent criterion),
which decreases mass destruction. Additionally, the
value of a has been found to have an important impact
on mass conservation. This value could potentially
be further optimized for this specific case, but mass
conservation would still remain a major challenge [28].
This issue can be mitigated with the new algorithm.
Moreover, for the same maximum mesh resolution, the
non-uniform mesh has a lower total number of nodes,
so that the computational cost is significantly reduced.
Finally, it should be mentioned that the significant error
in mass conservation due to the time integration is most
likely due to the accumulation of errors following the
relatively long simulation time and repeated impacts
at the side walls.

4.4 Two-dimensional drop falling into a liquid bath

The last test case considered is taken from Franci et
al. [28] and corresponds to a two-dimensional drop
falling into a bath of the same liquid. A schematic of
the problem is shown in Fig. 28 and the key parameters
are summarized in Table 7.

To reduce the computational time, the simulations
begin with the drop closer to the free surface, as
the initial phase only involves the drop’s uniform
acceleration. In practice, the simulation is started at
to = 108.3 ms, i.e., when the drop is at a distance
ho = 0.5R above the free-surface, with the initial drop
velocity Uy = v/2¢(H — ho).

B

Fig. 28: Schematics of the initial configuration of the test case
where a two-dimensional drop falls into a tank full of the same
viscous fluid, as proposed by Franci et al. [28]. The numerical
values of the different geometric parameters are summarized in
Table 7.

Initial liquid height H 0.07 m
Length of the tank B 0.3 m
Initial drop position H 0.07 m
Initial drop radius R 0.025 m
Liquid dynamic viscosity  p 0.1 Pa-s
Liquid density P 103 kg/m3

Table 7: Geometric and physical parameters for the 2D drop
falling into a liquid bath, as proposed by Franci et al. [28]. The
definition of the geometric parameters is given in Fig. 28.

4.4.1 Mesh adaptation

Two different meshes are considered. The first one
is uniform and the classical a-shape technique with
a = 1.2 in Eq. (5) is used, while the second simulation
relies on a non-uniform mesh using the new refinement
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Uniform Non-uniform
« 1.2 1.2
h [mm] 1.5 -
L} ., [mm] ~1 0.18
Lima [mm] ~1 7.3
Ninit ~ 14000 ~ 8000
Npost ~ 14000 — 15000 ~ 14000 — 16500
[V |min [s71] - 85
[IVu||max [s71] - 3.15
B - 1/3

Table 8: Mesh parameters for the falling liquid drop test case.
Both a uniform mesh similar to that of Franci et al. [28] and
a non-uniform mesh using the solution-based criterion given by
Eq. 7 are considered. The definition of « is given by Eq. (5) for
the uniform mesh and by Eq. (17) for the non-uniform mesh. The
number of nodes at the beginning of the simulation and after the
drop impact is also reported.

and boundary recognition algorithm with @ = 1.2 in
Eq. (17). These results are then compared to the most
resolved case of Franci et al. [28].

Again, the target size of the non-uniform mesh
relies on a combination of geometric and solution-based
criteria. First, the tank’s side walls are discretized using
the finest mesh resolution L, in order to minimize
the mass error during their wetting. Then, a geometric
criterion imposes a linear increase of the target mesh
size from L. at the walls to L}, at a distance
0.75 D away from these walls. No special refinement is
imposed on the bottom no-slip wall as the impact of
the boundary layer in this region is considered small.
Then, the curvature-based criterion, Eq. (9), is used to
refine the free-surface with m = 270, provided that the
resulting target mesh size is not smaller than L}, . This
is combined with a solution-based refinement relying
on Eq. (7). On the other hand, the drop is initially
discretized at its surface using a mesh size of L7,
which is slightly smaller (62%) than the value that
would be imposed by the curvature-based criterion.
Finally, this test case relies additionally on the contact
detection algorithm to minimize mass conservation
errors during the impact of the drop onto the bath’s

free surface and merging of the two fluid subdomains.

X

The mesh parameters for both the uniform and
non-uniform meshes are summarized in Table 8 and
the initial non-uniform mesh is shown in Fig. 29. The
uniform mesh is similar to that of Franci et al. [28].
It is interesting to observe that the two meshes have
approximately the same final number of nodes Npost.
At last, the time step size is set to At = 0.157 ms for
both simulations.

Fig. 29: Initial non-uniform mesh for the falling drop. The
refined mesh in the vicinity of the side walls, as imposed by the
geometric criterion, and at the drop surface are clearly visible.

4.4.2 Results

A key feature of this test case is the merging of two fluid
domains. As discussed above, the PFEM is well adapted
to deal with such cases but it also suffers from mass
conservation errors. The mesh refinement technique and
the contact detection algorithm proposed here attempt
to mitigate this issue. The application of the contact
algorithm is illustrated in Fig. 30, which shows the mesh
of the drop and bath free surface at different instants
in time shortly before and during the merging process
for both mesh types. The mesh of the falling drop is
initially much finer than that of the flat liquid pool.
Without contact detection algorithm, the merging of
the drop with the bath occurs when the drop is within
a distance of the bath mesh size of the free surface,
with a thereby large associated mass error. The contact
detection allows anticipating the merging and refining
accordingly the liquid bath free-surface region around
the expected impact point. The mass conservation error
is thus lower, of the order of the smallest element size.

The motion of the bath free surface after the drop
impact is shown in Fig. 31 and should be compared
to Fig. 25 of Franci et al. [28]. The results with the
uniform mesh are very similar to those of Franci et
al., with small discrepancies, particularly close to the
walls. These discrepancies can be explained by the
chaotic nature of the problem. This high sensitivity to
small perturbations is highlighted by the asymmetry
of the solution at later times. The mesh resolution
has thus also a clear impact, as demonstrated by the
results of Franci et al. and the present comparison
between uniform and non-uniform mesh. The more
accurate representation of the free surface through
local mesh refinement is further illustrated by the
close view on a splash next to the right wall in
Fig. 32. The non-uniform mesh yields a much more
refined description of the liquid filament because
mesh refinement ensures that small elements are used
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Uniform Non-uniform

t =108 ms

Fig. 30: Comparison between the uniform mesh (left) and non-
uniform mesh with contact detection algorithm (right) at several
time instants before the initial drop impact and during merging
with the bath. The non-uniform mesh at the free surface of
the liquid bath is initially much coarser than the respective
mesh of the drop. By identifying the upcoming merging process,
the algorithm can refine the liquid bath mesh in the expected
impinging region. As shown by the last two time instants, the
size of the added elements during the merging process is thus
proportional to the smallest mesh size so as to minimize the mass
conservation error.

Uniform Non-uniform

t=03s

Fig. 31: Free-surface deformation at three instants in time after
the impact of the falling drop for the uniform (left) and non-
uniform (right) mesh. The snapshots correspond to those in
Fig. 25 of Franci et al. [28].

there and the boundary recognition algorithm prevents
elements to be removed unless they are smaller than
the highest grid resolution or have their three nodes
on the free surface. Nonetheless, the total number of
nodes is kept limited by using a coarser mesh away
from the free surface, which greatly reduces the overall
computational time.

4.4.8 Mass conservation

Unlike the previous test case, the error in mass
conservation due to remeshing is here of the same
order of magnitude for the classical PFEM on the
uniform mesh and for the new algorithm, as illustrated
in Fig. 33. For the uniform mesh this error oscillates
between periods with predominantly mass destruction
and periods of mass creation, such that the error
seems to remain bounded over time. On the other
hand, a monotone mass increase is observed with
the new algorithm. This increase seems to take place
during certain events between phases where the mass
remains mostly constant. This is again due to the
interface tracking algorithm which strongly reduces
mass destruction. Despite the relative small value
of «, mass is created at the vertical walls during
wetting events (see for example Fig. 32). A larger
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Fig. 32: Free-surface deformation and splash at the right wall
after the fall of a drop into a liquid bath. Two different time
instants are shown for the uniform (left) and non-uniform (right)
meshes. Contour of the velocity magnitude.
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Fig. 33: Variation of the total volume (mass) due to remeshing as
a function of the time for the falling drop test case: most resolved
results of Franci et al. [28] (green), classical PFEM algorithm
on the uniform mesh (blue) and new algorithm with contact
detection on the non-uniform mesh (red). The parameters used
for the simulations are summarized in Table 8.

value of o would further exacerbate this issue. Owing
to the contact detection algorithm, a much lower

—41 —— Uniform mesh

—— Non-uniform mesh
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Fig. 34: Variation of the total volume (mass) due to both time
integration and remeshing as a function of the time for the falling
drop test case: classical PFEM algorithm on the uniform mesh
(blue) and new algorithm with contact detection on the non-
uniform mesh (red).

mass increase is also observed at the drop impact
(t = 0.1 ms). Despite the similar mass conservation
error due to remeshing, the new algorithm allows a
much better representation of the free surface, and,
thereby, a more accurate time integration. This is
shown by Fig. 34, which represents the variation of
the total volume (mass) due to both remeshing and
time integration. Because the time integration leads to
mass destruction, the two contributions for the new
algorithm again almost cancel each other, such that the
net error remains very small. On the other hand, the
classical PFEM shows a continuous mass decrease over
time. This again illustrates the accuracy improvement
brought by the new algorithm.

5 Extension to 3D

Although the present work has focused on two-
dimensional meshes, it is interesting to briefly discuss
the extension of the proposed mesh adaptation
and tracking technique to three dimensions. Three-
dimensional simulations are computationally very
expensive. The use of a non-uniform mesh can thus
provide an even larger reduction of the computational
cost than in 2D. For some cases, it might even be the
only feasible approach to perform simulations with a
mesh that is sufficiently refined to ensure the required
solution accuracy.

Even if this extension is for many steps of the
algorithm rather trivial, several challenges arise, mostly
because some of the optimal properties of Delaunay
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Type 1

Type 2

Fig. 35: Two types of badly-shaped tetrahedra called slivers,
characterized by a small volume Vg, and at least one small
dihedral angle ;. In type 1 at least two points (C' and D here)
are very close to each other, such that the sum of the solid angles,
Zi £2;, is not particularly small. In type 2 all nodes are well
separated from each other, which results in a small sum of the
solid angles.

triangulation in 2D do not carry over in 3D. In
particular, the 3D triangulation can lead to the creation
of badly-shaped elements called slivers. Slivers merely
consist in tetrahedra having all their nodes close to the
equator of their circumscribed sphere, such that they
have a flat shape, as illustrated in Fig. 35. They are
characterized by at least one small dihedral angle and
a small volume, which can be used to identify them.
Slivers should be avoided as much as possible, as they
typically lead to inaccurate results and stability issues
in the case of artificially compressible schemes [43].
Overall, the idea of enforcing a target mesh size
through addition/elimination of nodes and of tracking
the interface can be reused. First, the definition of
the target mesh size L* based on geometric and/or
solution-based criteria can be easily extended to three
dimensions. However, determining whether elements
need to be refined or coarsened based on this target
mesh size is less obvious in 3D. In particular, while the
local nodal density depends only on the element surface
area in 2D, it depends on the tetrahedra volume and
shape in 3D. Specifically, it can be shown that the local
nodal density celer, away from boundaries is given by*

N 3D L >, 8
elem = ’ = L 5 20
Felem,3D ‘/;lcm ‘/;lcm 4m ( )
1 (2
Oeclem,2D = QN72D = Zl (21>

- )
elem Aelem 2m

where fy is the nodal fraction, Ve, the volume, Agem
the surface area and §2; the solid angles of an element®.
The nodal fraction is the fraction of the element nodes

4 Note that the sum of the solid angles can be related to the
sum of the dihedral angles 6; through Gram-Euler theorem :

>0/ (4m) =30, 0:/(2m) — 1.

5 In 2D, £2; are simply the internal angles.

that can be assigned to this specific element. Because
the three angles of a triangle sum to 7, the nodal
fraction fyop = 7/(2m) = 1/2 is constant in 2D and
the nodal density can simply be calculated using the
element surface area Acem. This is not the case in 3D
(fn,3p depends on the specific tetrahedron shape), so
that it is useful to define a target nodal density ¢* from
the element target mesh size L

* .
elem*

. h_ f
T Vo Lo -

Based on well-shaped space-filling tetrahedra, a value
& = 1/5 can be estimated. It is thus suggested to
replace the refinement/coarsening criterion based on
surface area or volume by a criterion based on the actual
nodal density and bounds around its target value.

An advantage of the proposed approach is that
ensuring a smoothly varying nodal density can prevent
the appearance of slivers of type 1 because these
elements are characterized by a local nodal density
that is larger than their neighbors (small volume but
not so small solid angle sum, see Fig. 35). On the
other hand, slivers of type 2 have not only a small
volume, but also a small fy3p, resulting in a nodal
density that is not particularly large with respects
to their neighbors. A mesh adaptation criterion only
based on the volume would consequently lead to a
mesh coarsening, even if the mesh nodes were uniformly
distributed and the mesh size were adequate, without
solving the problem of slivers. In other words, slivers of
type 2 should not be eliminated by adding or removing
nodes (unless the actual nodal density differs from
its target value) but rather by rearranging locally the
node distribution. Several methods have been proposed
in the literature [43,59] that could potentially be
integrated into the present mesh adaptation algorithm.

More degrees of freedom are available for refinement
in 3D. In particular, a new node can be added at the
center of the tetrahedron (dividing the element by four),
at the center of a face (dividing the element by three)
or in the middle of an edge (dividing the element by
two). In order to avoid large variations in local nodal
density, it is thus better to add a new node on an
edge [21]. Moreover, adding a node in the center of a
face would lead to four nodes in a plane, increasing
the risk of slivers. This latter option could however be
used to refine a boundary face. On the other hand,
mesh coarsening could follow the same algorithm as in
2D: elements with a too large nodal density would be
collapsed into a single node in their center and their
direct and second neighbors would be tagged to prevent
their own collapse.
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Finally, the boundary tracking algorithm in Fig. 11
can be directly extended to 3D. Tetrahedra with
less than three nodes on the boundary would be
automatically kept. Tetrahedra with three nodes, i.e., a
face, on the boundary would be considered a priori as
fluid elements but would be eliminated if they do not
satisfy the a-shape criterion in Eq. (17), if their largest
face is on the boundary and if they reach the minimal
mesh resolution. If the last condition is not satisfied, a
new node would be added in the middle of the boundary
face. At last, elements with four nodes on the boundary
would only be kept if their size is similar to that of their
neighbors.

In summary, the extension of the proposed
algorithm to 3D would provide a powerful approach
to reduce the computational cost of three-dimensional
simulations. Most of the steps could be easily adapted
in 3D. The most important change would be the use of
the nodal density rather than the volume to determine
the elements that need to be refined or coarsened. This
proposed approach would provide a useful solution to
slivers of type 1. Nonetheless, the algorithm would need
to be further extended, potentially leveraging existing
methods, to address the issue of slivers of type 2.

6 Conclusion

A novel mesh adaptation technique has been proposed
in the context of the particle finite element method
to improve the method’s computational efficiency
and mitigate its known deficiency regarding mass
conservation. The mesh adaptation algorithm relies on
the definition of a local target mesh size. This target
mesh size can be prescribed according to geometric
considerations, such as a distance from a solid surface,
or based on the solution itself, using for instance
velocity gradients, surface curvature or other physical
quantities. Both geometric and physics-based criteria
can be combined and customized to the specific case
considered. A smoothing of the target mesh size has
also been proposed to avoid large jumps in mesh size
across neighbor elements and to propagate the mesh
refinement from the boundary to the domain interior.
The target mesh size is then enforced approximately by
adding nodes if the actual mesh size is much larger than
its target value, or deleting nodes in regions where the
mesh is finer than it ought to be. Depending on whether
the corresponding elements are in the interior of the
domain or at a boundary, different strategies have been
proposed for adding or removing nodes. Finally, the
boundary recognition step relies on a local adaptation
of the a-shape technique and boundary node tracking.
In this context, a contact detection algorithm with

delayed coarsening has also been developed to improve
the description of the merging process between two fluid
regions.

The added-value of the method and its correct
implementation have then been illustrated through
several test cases without and with a free-surface, i.e.,
the lid-driven cavity flow, the laminar flow around a
cylinder, the sloshing dynamics in a oscillating tank and
the fall of a drop into a liquid bath. The corresponding
results have shown that the algorithm ensures a non-
uniform mesh with higher resolution in the targeted
regions. In many cases, this non-uniform mesh allows
reducing the computational cost by constructing a
coarser mesh in parts of the domain away from the
region of interest, or improving the solution accuracy
by increasing the mesh resolution where needed.

Importantly, a better overall conservation of mass
has been observed with the new algorithm. Because
of boundary tracking, less mass is destroyed so that
the error associated with remeshing corresponds for
all test cases to mass creation, while a net mass
destruction has been observed with the classical PFEM.
This mass creation takes mostly place when a fluid
region approaches another one or wets a wall, but
it can be mitigated by using a small value of a. A
concrete consequence of the reduced mass destruction
is a delayed detachment of parts of the fluid. Because
with the classical PFEM mass creation and destruction
at different locations can partly cancel each other, the
error in mass conservation due to remeshing is not
always smaller with the new algorithm. However, the
local refinement of the free surface enabled by the new
algorithm provides an efficient mean to decrease this
problem, and the overall error (from both remeshing
and time integration) has been found to always be
smaller than for the classical PFEM. Nevertheless,
the a-shape technique, although local here, remains
a purely geometric criterion. As such, it is not
possible to fully eliminate mass creation/destruction at
boundaries. The only possible cure would be to consider
a criterion that relies on the physics and involves nodal
physical quantities.

It should be emphasized that, in general, geometric
and physics-based criteria are not restricted to the
few examples considered here. The proposed approach
allows easily incorporating new criteria that might be
better adapted for a specific case. In that respect,
the criteria proposed here are most likely not optimal
but they have the advantage of being flexible and
versatile. On the other hand, tailoring the refinement
criteria to a specific case reduces also their generality
and presupposes an a priori knowledge of the flow.
Furthermore, any new criterion requires additional



28

Romain Falla et al.

implementation effort. The proposed criteria offer thus
a good trade-off between generality and optimality, but
many others can be imagined. Similarly, the choice of
the mesh adaptation parameters (e.g., in Egs. (7)-(10))
provides flexibility and user-control.

The mesh adaptation algorithm evidently adds to
the work load at each time step, but the algorithm
complexity remains O(N), where N is the total number
of nodes. The different test cases have shown that
the new algorithm increases by at most a factor
of two the cost of the remeshing step, which itself
corresponds to only a limited part of the overall
simulation time. Moreover, this additional cost can be
by far compensated by the reduced size of the mesh for
a given accuracy. It should nonetheless be emphasized
that the refinement of even very small portions of
the domain should be accompanied by a reduction of
the time step size to keep a constant CFL number,
which can have a non-negligible impact on the overall
computational cost.

Finally, it has been shown that the present
algorithm can be quite straightforwardly extended
to 3D. It has been suggested to use the local
nodal density rather than the element volume to
determine the elements to be coarsened or refined.
This should eliminate slivers of type 1. However,
the algorithm should be further adapted, possibly
by integrating existing methods, to address slivers of
type 2. Overall, the significantly larger computational
cost of three-dimensional simulations renders any mesh
size reduction even more critical than in 2D. The
present mesh adaptation technique thus represents an
important contribution in this regard and opens the
way to the application of the PFEM to real cases of
interest.
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