

ENCODS 2023 · Workshop

Neuronal & Network computational models · Practical part ·

> Kathleen Jacquerie University of Liege · Belgium

1

Zooming at the neuronal level

Action potential

1 – Na rapidly flows inside the neuron: fast depolarization2 – K starts to go out: slow hyperpolarization

How to model an action potential?

How to reproduce a patch clamp experiment?

Hodgkin & Huxley model Concept: from the neuron membrane to the conductance-based model

• The impermeable membrane acts as a capacitance. It accumulates ion on both sides.

 \cdot The ion channels allow flow of ions across the membrane. They correspond to resistance. The inverse of a resistance is a conductance.

Hodgkin & Huxley model Current through the membrane

The impermeable membrane causes a capacitance current I_{C} :

 $I_C = C dV_m/dt$

C: membrane capacitance dV_m/dt : the variation of the membrane voltage

The sodium ions that flow through the membrane lead to a sodium current ${\sf I}_{\sf Na}$:

$I_{Na} = \overline{g}_{Na} (V_m - E_{Na})$

 \overline{g}_{Na} : sodium conductance V_m: membrane voltage E_{Na}: sodium reversal potential

The sodium ions that flow through the membrane lead to a sodium current $\ensuremath{\mathsf{I}_{\mathsf{Na}}}\xspace$

 $I_{Na} = \overline{g}_{Na} (V_m - E_{Na})$

 g_{Na} : sodium conductance V_m: membrane voltage E_{Na}: sodium reversal potential

The ion channel opens and closes depending on the membrane voltage. It is modeled by a conductance that depends on the membrane voltage

 $g_{Na} = g_{Na} m_{Na}^3 h_{Na}$

 g_{Na} : maximum sodium conductance m_{Na} models the activation gate h_{Na} models the inactivation gate

The potassium ions that flow through the membrane leads to a potassium current $I_{\rm K}$:

 $I_{K} = \overline{g}_{K} (V_{m} - E_{K})$

 \overline{g}_{K} : potassium conductance V_m: membrane voltage E_K: potassium reversal potential

The ion channel opens and closes depending on the membrane voltage. It is modeled by a conductance that depends on the membrane voltage

 $\overline{g}_{K} = g_{K}m_{K}^{4}$

 g_{K} : maximum potassium conductance m_{K} models the activation gate

The membrane is not perfectly impermeable and leaks.

 $I_{leak} = g_{leak} (V_m - E_{leak})$

g_K: leak conductance V_m: membrane voltage E_{leak}: leak reversal potential

Hodgkin & Huxley model Equations

$$V_m = V_{in} - V_{out}$$

An electrical circuit can be studied via Kirchhoff's law: The sum of the currents entering a node is equal to the sum of the currents going out the node.

$$I_{app} = I_{C} + \sum I_{ion}$$

We replace the different terms in the equations: C dV_m/dt = - $\sum I_{ion} + I_{app}$

 $C dV_m/dt = - (I_{Na} + I_K + I_{leak}) + I_{app}$

Hodgkin & Huxley model Equations

This variable models the dynamics of the activation gate.

 m_{Na} =1: gate is open m_{Na} =0: gate is closed

It depends on the membrane voltage V_m.

h_{Na}

This variable models the dynamics of the inactivation gate

Hodgkin & Huxley model Equations

Х

In general, dynamics is governed by a differential equation tau dX/dt = $X_{inf} - X$

This variable models the dynamics of the activation gate.

X = 1: gate is open X = 0: gate is closed It is simply read as: "the variable X converges towards its steady state X_{inf} with a time constant of tau"

To model ion channel, the steady state and the time constant depend on the membrane voltage.

Hodgkin & Huxley model Reproduce a current clamp experiment

Let's move to the notebook

Notebook Step by step: let's simulate an action potential

Open the link <u>urlis.net/HH_neuron</u> This is a **SHARED** code. Each modification done on this code affects the code of the other collaborators. Do a copy on your computer. File > Save a copy in your Drive

Let's go through the code.

Play with the parameters

Run each cell one by one (from top to bottom)

Simulate a current-clamp experiment

WIFI Network: ualg – conferencias ID: encods23 Password: 62878832

Step by step: let's simulate an action potential

 $C dV_m/dt = - (I_{Na} + I_K + I_{leak}) + I_{app}$ $C dV_m/dt = - g_{Na}m_{Na}{}^3 h_{Na} (V_m - E_{Na}) - g_K m_K{}^4 (V_m - E_K) - g_{leak} (V_m - E_{leak}).) + I_{app} + I_{appstep}$ Differential equation written on a code to be solved by the Euler method
(or with solver like ode) dV/dt = function V(t+1) = V(t) + dt . function

Notebook Step by step: let's simulate an action potential

alpha and beta are used to describe the sigmoidal shape of the gating variables. They are fitted on the experimental data obtained by Hodgkin & Huxley

Notebook Step by step: let's simulate an action potential

#	
#	Parameters of the neuron
π	
C = 1	# capacitance
VNa = 50	<pre># reserval potential of sodium channels</pre>
VK = -77	<pre># reserval potential of potassium channels</pre>
Vl = -49	# reserval potential of leak channels
Erev = [VNa, VK, Vl, C]	<pre># array to send all the reversal potentials in once</pre>
gNa = 120	<pre># conductance of sodium channels</pre>
aK = 36	# conductance of potassium channels
$g_{\rm R} = 90$	# conductance of leak channels
- gt - 015	
param_g = [gl, gNa, gK]	<pre># array to send all the conductances in once</pre>

Step by step: let's simulate an action potential

# Define #	Parameters chosen by the experimentalist the parameters used during a patch clamp recording
T = 300 dt= 0.01	<pre># [ms] Duration of the recording # Time step for numerical integration (Euler method)</pre>
「_dt = int(T/dt) t = np.arange(0.0, T, dt	<pre># array converting the duration into a numerical duration t) # array containing the timestep at which the membrane is updateing</pre>
Tapp = -10 Tstep = 20 Tstep_init = 100 Tstep_end = 200	<pre># current applied during the whole simulation # increment of current in addition to the previous one used to drive a pulse # instant when the pulses starts # instant when the pulses stops</pre>

Step by step: let's simulate an action potential during current clamp

Step by step: let's simulate an action potential during current clamp

Your turn

Test 1: increase the firing frequency. Test 2: mimic a TTX experiment where TTX is a sodium channel blockers. Test 3: explore the impact of some parameters by your choice.

Move from HH model to more complicated models Neurons have a rich variety of firing patterns

23

Move from HH model to more complicated models Neurons have a rich variety of firing patterns

[My thesis for references]

Move from HH model to more complicated models Intrinsic burst generation

Just need to add more channels on the model with their own dynamics

[McCormick et al., 1997]

Move from HH model to more complicated models Switches from tonic firing to bursting occur in a lot of types of neurons

Dopaminergic neuron in the ventral tegmental area

Step by step: let's simulate a neuron able to switch from tonic firing to burst

Open the link <u>mysl.nl/XZKy</u> This is a **SHARED** code. Each modification done on this code affects the code of the other collaborators. Do a copy on your computer. File > Save a copy in Drive

Let's go through the code.

Run each cell one by one (from top to bottom)

Do some tests by yourself

Study a thalamic neuron