
1.  Introduction
With the surge of extreme meteorological events and intensification of urbanization downstream of hydraulic 
structures, the need for predicting failure of dams and dikes has become of paramount importance for establish-
ing emergency response procedures (Zhong et al., 2021). To this end, numerical models are instrumental tools 
for simulating the embankment breaching process. Existing models can be classified into three categories. First, 
statistical (or parametric) models are based solely on regression analysis of data from past events or laboratory 
campaigns. They describe some breaching parameters (e.g., final breach width, failure duration or maximum 
breach discharge) as a function of dam or reservoir properties. These simple, computational-efficient models 
may lack generality because they entirely rely on data from specific cases without considering underlying phys-
ics (Chen et al., 2019; De Lorenzo & Macchione, 2014; Lee, 2019). Conversely, distributed physically based 
models can describe the phenomenon in greater detail, as they solve the flow and sediment governing equations 
using a computational mesh of the domain. Their results may be accurate but only if reliable data is available 
and if physical processes are numerically well represented, for example, erosion of non-homogeneous dam mate-
rial, slope failure or 3D-flow patterns (Cantero-Chinchilla et al., 2019; Onda et al., 2019; Pheulpin et al., 2020; 
Shimizu et al., 2020). Additionally, the time required to run distributed physically based models can be substan-
tial (ASCE, 2011). Simplified physics-based models offer a good trade-off (Wu, 2013). Without spatially distrib-
uting the flow description nor the embankment morphology, they enable simulating hydraulic and dam breach 
variables (e.g., time-evolution of breach discharge and dimensions) by describing selected physical processes 
(Li et al., 2020; Peter et al., 2018; Tsai et al., 2019; Wu, 2013; Zhong et al., 2017). Simplified physics-based 
models are computationally efficient and enable uncertainty analyses that require many runs, for example, the 
Monte Carlo method. In this paper, breaching of homogeneous dams made of non-cohesive material is computed 
using our implementation of the physics-based lumped fully coupled hydro-morphodynamic model developed 
by Wu (2016).
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In all numerical models, input variables can be subject to uncertainties, which may emerge from multiple sources 
(Kiureghian & Ditlevsen, 2009; Peter et al., 2018). Depending on their origin, they are generally classified as 
parametric or modeling uncertainties. The first group gathers uncertainties on physical parameters. They may 
originate either from inaccuracies in measurements or from the natural variability of parameters (e.g., spatial 
distribution of geometrical parameters or soil composition of embankments). Modeling uncertainties can be 
encountered when uncertainties arise from the model structure itself (Gupta et al., 2012), or when using parame-
ters tied to parametrization of complex physical phenomena (e.g., regression parameters). Assigning purely deter-
ministic values to uncertain parameters can be suboptimal and alternative characterizations may be preferred, 
such as variation intervals or probabilistic distributions.

Uncertainty analyses were developed to gain insights into model response to variations in input parameters 
(Borgonovo & Plischke, 2016). They are generally divided into three main steps (Arnst & Ponthot, 2014; Helton 
et al., 2006): (a) uncertainty characterization, (b) uncertainty propagation, and (c) exploitation of the results in 
accordance with the study goals. In Step 1, probability distributions are attributed to input variables. In Step 2, 
a numerical model is used to propagate those uncertainties to the model outputs. In Step 3, a common approach 
consists in leading a sensitivity analysis to better understand the relation that exists between output and input 
uncertainties. Sensitivity analyses are defined as local or global (Reed et al., 2022). In the first case, uncertainties 
in the model outputs are evaluated by slight modifications in the input values around a reference configuration. 
Although being computationally efficient, this approach is not suitable for nonlinear models as it explores a limited 
fraction of the input space and often assumes that input variables do not interact in the model (Rakovec et al., 2014; 
Saltelli and Annoni, 2010; Saltelli et al., 2019). To tackle those limitations, global sensitivity analyses are led to 
reveal the global impact of input uncertainties on model outputs by exploring the entire input space of interest.

Four main sensitivity analysis settings were listed by Saltelli et al. (2004), namely factor (or input parameter) 
prioritization, factor fixing, variance cutting and factor mapping. When the pursued objective is to identify the 
uncertain input parameters that induce the most critical variability in model outputs, one refers to factor prioriti-
zation. Conversely, factor fixing aims at pointing out input parameters whose variability has a negligible impact 
on model outputs, allowing to discard their influence in subsequent analyses. Variance cutting is used to assess 
the minimum number of input parameters that should be fixed to limit the uncertainty on model outputs below 
a prescribed threshold. Finally, factor mapping identifies which input values lead to output values contained in 
a specific range of the output space. This approach allows highlighting combinations of input values that lead to 
non-physical results (Pianosi et al., 2016; Spear & Hornberger, 1980).

This paper highlights the dependency between global sensitivity analysis results and test configuration through 
factor prioritization and factor fixing approaches. Within this context, variance-based methods are convenient 
as they rank inputs or subsets of inputs as a function of the influence of their uncertainty on the variability of 
resulting outputs (Saltelli et al., 2008). Among them, the use of Sobol indices of total order is widespread (Saltelli 
et al., 2010; Sobol, 1993). Those indicators illustrate the portion of the global output variance caused by the 
uncertainty on a specific input subset, including the interactions of this subset with any other input subset.

While previous studies were often limited to the analysis of a single case study (Tables S1 and S2 in Supporting 
Information S1), we apply here a global sensitivity analysis based on Sobol indices of total order to twenty-seven 
embankment configurations, in both laboratory and field scales. The results of this study highlight that the input 
parameter uncertainties contributing most to the output variability differ considerably from one configuration to the 
other. The magnitude of output uncertainties also varies with the considered configuration. Here, we demonstrate 
that sensitivity analysis results obtained for a specific dam breaching case may not be transferred to any other case.

The remaining of the paper is organized as follows: the computational model and the simulated dam configura-
tions are introduced in Section 2. The input sampling methods and the global sensitivity analysis technique are 
described in Section 3. In Section 4, results of the sensitivity analysis are presented and discussed for twenty-seven 
tests in laboratory and field-scale configurations. Conclusions are drawn in Section 5.

2.  Physical Data and Methods
This section starts with the description of our implementation of a model initially developed by Wu (2016), that 
is, the numerical model on which the sensitivity analysis was applied (Section 2.1). It is composed of three inter-
acting modules: (a) a hydrodynamic module, (b) a sediment transport module and (c) a morphodynamic module, 
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in which the breach geometry is described  as the combination of a flat top 
reach corresponding to the top of the breach and a downstream reach located 
on the dike floodplain face (Figure 1). A brief description of the considered 
experimental configurations is provided in Section 2.2.

2.1.  Computational Model

Based on initial and boundary conditions, the model hydrodynamic module 
evaluates the water level in the main channel and on the different parts of the 
embankment, the breach discharge, and the resulting shear stress using two 
main assumptions: critical flow on the dam crest and uniform flow on the 
downstream face. Those values are then introduced in the sediment transport 
module to compute both suspended-load and bed load concentrations in  the 

flow through the breach assuming non-equilibrium sediment transport. Using the eroded material volume, the 
new dam geometry is generated by the morphodynamic module. The procedure is repeated by feeding the hydro-
dynamic module with the updated dam geometry. At the start of the computation, the geometry of an initial notch 
in the dam crest needs to be defined by the user, as the model is not able to predict the location of breach initiation.

The computational model was coded using Matlab software and explicit resolution schemes were used. The 
time step was 0.5 s for all tests. The present section summarizes the three modules of the numerical model, and 
detailed flow charts are provided in Supporting Information S1 (Figures S1, S2 and S3).

2.1.1.  Hydrodynamic Module

The hydrodynamic module (Figure S1 in Supporting Information S1) computes first the water level in the main 
channel using mass balance:

𝑑𝑑𝑑𝑑𝑠𝑠

𝑑𝑑𝑑𝑑
= [𝑄𝑄in −𝑄𝑄𝑏𝑏 −𝑄𝑄𝑑𝑑 −𝑄𝑄out (𝑧𝑧𝑠𝑠)]

1

𝐴𝐴res,
� (1)

with zs the water level in the main channel, Ares the water area in the main channel, Qin the inflow discharge, Qb 
the discharge through the breach, Qd the drain discharge and Qout the outflow discharge at the downstream end of 
the main channel. If the water level is lower than the breach bottom elevation, zb, the breach discharge remains 
zero. Otherwise, the breach discharge is computed as

𝑄𝑄𝑏𝑏 = 𝑐𝑐1𝑏𝑏top(𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑏𝑏)
3∕2

+ 𝑐𝑐2𝑚𝑚(𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑏𝑏)
5∕2

,� (2)

with c1 and c2 two weir coefficients, btop the breach bottom width on the flat top reach (Figure 1) and m the breach 
side slope. Since non-cohesive dams are considered here, m can also be expressed as 𝐴𝐴 𝐴𝐴 = (tan𝜑𝜑𝑟𝑟)

−1 , where φr is 
the dam material repose angle considered similar for both wet and dry material.

The water levels on the flat top and downstream reaches (Figure 1) were computed assuming critical flow on the 
dam crest and uniform flow over the downstream face.

Flat top reach ∶ ℎtop = max

(

2

3
(𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑏𝑏); 0

)

,

Downstream reach ∶ 𝑄𝑄𝑏𝑏 =
1

𝑛𝑛
AR2∕3𝑆𝑆

−1∕2

𝑑𝑑
,

� (3)

with A the flow area over the considered reach, R the hydraulic radius, Sd the slope of the breach downstream side 
(H:V) and n the Manning roughness coefficient computed based on Strickler's formula:

𝑛𝑛 = max

(

𝑑𝑑
1∕6

50
∕𝐴𝐴𝑛𝑛; 𝑛𝑛min

)

,� (4)

where d50 is the median size of the embankment material, An an empirical coefficient and nmin the minimum value 
allowed for n, as defined by Wu (2016).

On both reaches, the bed shear stress can then be calculated as

𝜏𝜏𝑏𝑏 =
𝜌𝜌𝜌𝜌𝜌𝜌2𝑄𝑄2

𝑏𝑏

𝐴𝐴2𝑅𝑅1∕3
,� (5)

Figure 1.  Scheme of the embankment geometry used in Wu's (2016) model.
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where ρ is the water density and g the gravitational acceleration.

2.1.2.  Sediment Transport Module

The bed shear stress is introduced in the sediment transport module (Figure S2 in Supporting Information S1) to 
evaluate the eroded material volume on each reach. The effective shear stress is computed as follows:

𝜏𝜏𝑒𝑒 = 𝜏𝜏 ′
𝑏𝑏
+ 𝜆𝜆0𝜏𝜏𝑐𝑐

sin𝜙𝜙

sin𝜑𝜑𝑟𝑟

,� (6)

with ϕ the angle between a horizontal plane and the considered reach, that is, ϕ = 0 on the flat top reach and 
ϕ = tan −1(1/Sd) on the downstream slope. τc = θcr(ρs − ρ)gd50 is the critical shear stress involving the critical 
Shields parameter, θcr, and the sediment density, ρs. 𝐴𝐴 𝐴𝐴 ′

𝑏𝑏
 is the grain shear stress based on an empirical coefficient 

An’ and writes

𝜏𝜏 ′
𝑏𝑏
=

(

𝑛𝑛′

𝑛𝑛

)3∕2

𝜏𝜏𝑏𝑏 with 𝑛𝑛′ = max

(

𝑑𝑑
1∕6

50

𝐴𝐴𝑛𝑛′
; 𝑛𝑛min

)

.� (7)

𝐴𝐴 𝐴𝐴0 is a correction factor introduced by Wu (2016):

𝜆𝜆0 = 1 + 𝜆𝜆0,𝑎𝑎

(

𝜏𝜏 ′
𝑏𝑏

𝜏𝜏𝑐𝑐

)𝜆𝜆0,𝑏𝑏

𝑒𝑒2 sin𝜙𝜙∕sin𝜑𝜑𝑟𝑟 ,� (8)

with 𝐴𝐴 𝐴𝐴0,𝑎𝑎 and 𝐴𝐴 𝐴𝐴0,𝑏𝑏 two empirical coefficients.

The equilibrium sediment concentration on both reaches is made of two contributions:

Suspended load ∶ 𝐶𝐶∗ =
1

𝐶𝐶∗
𝑎𝑎 𝜌𝜌𝑠𝑠

(

𝑈𝑈 3

𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠

)𝐶𝐶∗
𝑏𝑏

∗

[

1 +

(

1

𝐶𝐶∗
𝑐𝑐

𝑈𝑈 3

𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠

)𝐶𝐶∗
𝑑𝑑

]−1

,

Bed load ∶ 𝑞𝑞∗
𝑏𝑏
= 𝑞𝑞∗

𝑏𝑏𝑏𝑏𝑏

(

max

[

𝜏𝜏𝑒𝑒

𝜏𝜏𝑐𝑐
− 1; 0

])𝑞𝑞∗
𝑏𝑏𝑏𝑏𝑏

√

(

𝜌𝜌𝑠𝑠

𝜌𝜌
− 1

)

𝑔𝑔𝑔𝑔3

50
,

� (9)

with 𝐴𝐴
{

𝐶𝐶∗
𝑎𝑎 , 𝐶𝐶

∗
𝑏𝑏
, 𝐶𝐶∗

𝑐𝑐 , 𝐶𝐶
∗
𝑑𝑑

}

and

{

𝑞𝑞∗
𝑏𝑏𝑏𝑏𝑏
, 𝑞𝑞∗

𝑏𝑏𝑏𝑏𝑏

}

 empirical coefficients obtained through experimental data fitting (Wu 
et al., 2000; Zhang, 1961), U the flow velocity on the considered reach and ωs the sediment settling velocity 
computed using the formula of Wu and Wang (2006), which is based on sediment density, ρs, sediment median 
size, d50, and Corey shape factor, Sp.

The actual sediment concentration at the outlet of each reach, Ct,out, is linked to the actual concentration at the 
inlet, Ct,in, through the following formula:

𝐶𝐶𝑡𝑡𝑡out = 𝐶𝐶𝑡𝑡∗ + (𝐶𝐶𝑡𝑡𝑡in − 𝐶𝐶𝑡𝑡∗ )exp

(

−
Δ

𝐿𝐿𝑠𝑠

)

,� (10)

with 𝐴𝐴 𝐴𝐴𝑡𝑡∗ = 𝐶𝐶∗ + 𝐵𝐵𝑤𝑤𝑞𝑞
∗
𝑏𝑏
∕𝑄𝑄𝑏𝑏 the total equilibrium sediment concentration and Bw the width of the water surface. Δ 

is the length of the considered reach and Ls = λBw is the mixing length characterizing the adjustment of sediment 
from a non-equilibrium state to the equilibrium state. λ is a numerical parameter to be adjusted in each simulation.

The eroded volume is computed on each reach using the following equation, in which p denotes the dike material 
porosity:

𝑑𝑑𝑑𝑑𝑏𝑏

𝑑𝑑𝑑𝑑
=

𝑄𝑄𝑏𝑏(𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

1 − 𝑝𝑝
.� (11)

2.1.3.  Morphodynamic Module

In line with Wu (2016), uniform erosion on all breach faces is assumed. The morphodynamic module (Figure S3 
in Supporting Information S1) computes the breach depth variation on each reach as

𝑑𝑑𝑑𝑑𝑏𝑏

𝑑𝑑𝑑𝑑
=

1

𝐴𝐴𝑒𝑒𝑒tot

𝑑𝑑𝑑𝑑𝑏𝑏

𝑑𝑑𝑑𝑑
with𝐴𝐴𝑒𝑒𝑒tot = 𝐴𝐴bottom + 2𝐴𝐴side,� (12)
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where Abottom and Aside are the breach bottom and breach side areas of the considered reach, respectively.

The breach bottom width variation on the flat top reach is computed as

𝑑𝑑𝑑𝑑top

𝑑𝑑𝑑𝑑
= 2

𝑑𝑑𝑑𝑑𝑏𝑏

𝑑𝑑𝑑𝑑

(

1

sin𝜑𝜑𝑟𝑟

−
1

tan𝜑𝜑𝑟𝑟

)

,� (13)

whilst the breach top width variation on this reach writes

𝑑𝑑𝑑𝑑top

𝑑𝑑𝑑𝑑
=

2

sin𝜑𝜑𝑟𝑟

𝑑𝑑𝑑𝑑𝑏𝑏

𝑑𝑑𝑑𝑑
.� (14)

On the downstream reach, Wu (2016) assumed that the breach width variation is influenced by the ratio between 
the breach width on the flat top reach and on the downstream reach. He introduced a correction factor cb 
expressed  as

𝑐𝑐𝑏𝑏 = min

[

1,max

(

0, 𝑐𝑐𝑏𝑏𝑏coef
𝑏𝑏top

𝑏𝑏D∕S
− (cb,coef − 1)

)]

,� (15)

where cb,coef is an empirical parameter and btop and bD/S are the breach bottom widths on the flat top and the 
downstream reach, respectively.

Breach width variations on the downstream reach write

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 2

𝑑𝑑𝑑𝑑𝑏𝑏

𝑑𝑑𝑑𝑑

(

max(𝑐𝑐𝑏𝑏, cos𝜑𝜑𝑟𝑟)

sin𝜑𝜑𝑟𝑟

−
1

tan𝜑𝜑𝑟𝑟

)

and
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
=

2𝑐𝑐𝑏𝑏

sin𝜑𝜑𝑟𝑟

𝑑𝑑𝑑𝑑𝑏𝑏

𝑑𝑑𝑑𝑑
.� (16)

To close the loop, updated geometrical variables are finally introduced in the hydrodynamic module and a new 
iteration is performed.

2.2.  Test Cases

The sensitivity analysis was applied to various experimental tests to assess how the configuration influences 
the relation between uncertainties on input and output variables. Frank (2016) investigated experimentally the 
spatial dam breach process due to overtopping for dams made of homogeneous non-cohesive material. A total 
of forty-five three-dimensional embankment breach tests in frontal configuration and laboratory conditions were 
conducted. The influence of several parameters was analyzed, including dam scaling, inflow discharge, sedi-
ment grain size, main channel width, dam cross-section, and reservoir volume (Table 1). In the latter case, the 
pumping system was regulated to simulate a reservoir of a larger volume than the real physical reservoir. For 
each test, hydrographs (breach, inflow, and drainage discharges) and the upstream water level were recorded. 
Twenty-seven laboratory experiments performed by Frank (2016) were first considered. Table 2 summarizes the 
non-dimensional characteristics of these tests on which an uncertainty analysis was applied while dimensional 
data are gathered in Table S3 in Supporting Information S1. Since Frank (2016) considered half embankments, 
parameter values have been adapted in this study to represent entire dams. To be consistent with other configura-
tions, both dam side slopes were set equal to 1:2 (V:H) in Test 28, whilst equal to 1:1.5 in Frank's (2016) original 
experiments.

To assess the impact of geometric scale on the results of sensitivity analysis, an upscaling was applied to the labo-
ratory tests to obtain field-scale configurations: dike heights were multiplied by a factor 10, while non-dimensional 
parameters were kept constant. The objective here is to show how dependencies between uncertainties in model 
inputs and model outputs evolve with the geometric scale. It is not intended to investigate how physical processes 
differ between the laboratory and field scales, but merely to assess potential differences in model behavior when 
the geometric scale is varied.

3.  Uncertainty Quantification Data and Methods
This section first provides a general description of uncertainty analysis procedures (Section 3.1). Uncertain input 
variables are then characterized in the numerical model, and uncertainty quantification methods are presented for 
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independent and dependent input variables (Section 3.2). Using the standard Monte Carlo method, uncertainty is 
propagated through the computational model and a global sensitivity analysis based on Sobol indices is presented 
(Section 3.3).

3.1.  Uncertainty Analysis Procedures

3.1.1.  Step 1: Uncertainty Characterization of Input Variables

Model predictions are directly affected by input uncertainties, highlighting the need for systematically quanti-
fying them to reliably predict physical processes, such as embankment failures (ASCE, 2011; Froehlich, 2008; 
Pappenberger & Beven,  2006). Different approaches exist to quantify uncertainties on physical parame-
ters, depending on data availability and modeling objectives, that is, description of a specific case or general 
representation of typical embankment failures. In the latter case, when the data set is large, maximum likelihood 
estimation is often used to define parameter distributions (Rossi, 2018). In contrast, when scarce data is available, 
Bayesian inference is preferred (Saltelli et al., 2004). When information on parameters of interest is too limited or 
not available at all (e.g., model parameters), plausible parameter distributions may be defined based on modeler 
expertise. Dependency between input variables is seldom considered, while this may influence input proba-
bility distributions significantly (Baroni & Tarantola, 2014; Da Veiga et al., 2009, 2021; Jacques et al., 2006; 
Li et al., 2010; Pheulpin et al., 2022). In the present case, nineteen independent input variables and two sets of 
dependent input variables are involved. Specific embankment configurations are considered, for which almost 
no information on parameter distributions is available. Therefore, probability density functions (PDF) associated 
to each input were mostly generated based on expert judgment, with a special care for dependent input variables 
(see Sections 3.2.1 and 3.2.2).

3.1.2.  Step 2: Uncertainty Propagation

The uncertainty in input variables must be propagated through the numerical model to assess its impact on the 
outputs. This procedure is crucial to properly interpret model outcomes, since it determines the variation range 
of model predictions (Pappenberger & Beven, 2006). It is most often implemented using a Monte Carlo sampling 

Table 1 
Summary of Parameters Involved in the Numerical Model

Symbol Description

Input parameters Su,Sd Upstream and downstream slopes of the dam, respectively

Lk Dam crest length

hd Dam height

φr Sediment repose angle

ρs Sediment density

d50 Sediment median size

p Dam material porosity

Qin Inflow discharge

Model parameters c1,c2 Weir efficiency coefficients involved in the breach discharge evaluation (Equation 2)

An, 𝐴𝐴 𝐴𝐴𝑛𝑛′ , nmin Parameters in Strickler's formula: 𝐴𝐴 𝐴𝐴 = max

(

𝑑𝑑
1∕6

50

𝐴𝐴𝑛𝑛

; 𝑛𝑛min

)

; 𝑛𝑛′ = max

(

𝑑𝑑
1∕6

50

𝐴𝐴′
𝑛𝑛

; 𝑛𝑛min

)

 , with n and n’ total and 

effective Manning's coefficients, respectively

θcr Critical Shields parameter

λ0,a,λ0,b Coefficient and exponent involved in the effective shear stress computation (Damgaard et al., 1997)

Sp Corey shape factor

C*a,C*b,C*c,C*d Regression coefficients involved in the suspended load concentration (Equation 9)

𝐴𝐴 𝐴𝐴∗
𝑏𝑏𝑏𝑏𝑏
,𝑞𝑞 ∗

𝑏𝑏𝑏𝑏𝑏
  Regression coefficients involved in the bed load transport capacity formula (Equation 9)

λ Empirical coefficient involved in mixing length computation

cb,coef Artificial breach widening limitation coefficient (Equation 15)
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method (Metropolis & Ulam, 1949). Many simulations are run using different sets of input variable values gener-
ated according to their probability distributions. As the number of runs increases, approximations of the model 
output statistical moments converge, for example, mean and variance (Janssen, 2013). The classical Monte Carlo 
sampling method is computationally expensive, making it suitable for fast models only. To reduce the number of 
runs required to reach a given accuracy on output statistical moments, advanced Monte Carlo sampling methods 
were developed (Hou et al., 2019). One of the most frequently used is the Latin Hypercube sampling method 
(McKay et al., 1979). Instead of selecting input values purely based on their probability distributions, this method 
favors sets of input values located in underrepresented areas of the input space (Helton & Davis, 2003). When 
considering smooth but computationally expensive models containing a limited number of input variables, a 
surrogate model (or metamodel) is often fitted to the original numerical model to mimic the relationship between 
input and output variables while improving computational efficiency (Jin et  al.,  2001; Queipo et  al.,  2005; 
Sudret,  2008). An alternate method is the point estimate method initially introduced by Rosenblueth  (1975). 

Table 2 
Frank's (2016) Experimental Parameters

Test ID Lr/hd lr/hd Ar/hd 2 hd (mm) Lk/hd zn,ini/hd Bini/hd d50/hd d50 (mm) Qin (l/s) hcr/hd

Scaling 11 150 5.7 10 −3 0.86 2.62

10 4.07 10/3 13.57 300 1/3 1/3 4/3 5.8 10 −3 1.75 14.8 9.4 10 −2

8 600 6.3 10 −3 3.78 83.6

12 150 5.7 10 −3 0.86 1.31

13 4.07 10/3 13.57 300 1/3 1/3 4/3 5.8 10 −3 1.75 7.4 5.9 10 −2

14 600 6.3 10 −3 3.78 41.8

15 150 0.43 2.62

16 4.07 10/3 13.57 300 1/3 1/3 4/3 2.9 10 −3 0.86 14.8 9.4 10 −2

17 600 1.75 83.6

Discharge 18 4.4 2.6 10 −2

19 11.47 20/3 76.47 300 1/3 1/3 4/3 5.8 10 −3 1.75 8.8 4.2 10 −2

20 18.4 6.8 10 −2

21 35.2 10.5 10 −2

Sediment 22 2.9 10 −3 0.86

20 11.47 20/3 76.47 300 1/3 1/3 4/3 5.8 10 −3 1.75 18.4 6.8 10 −2

23 1.3 10 −2 3.78

Initial breach 
width

20 4/3

24 5/3

25 11.47 20/3 76.47 300 1/3 1/3 2 5.8 10 −3 1.75 18.4 6.8 10 −2

26 8/3

27 4

Crest length 28 0

20 11.47 20/3 76.47 300 1/3 1/3 4/3 5.8 10 −3 1.75 18.4 6.8 10 −2

29 4/3

Reservoir water 
surface area

40 76.4

36 299

41 11.47 20/3 367 300 1/3 1/15 4/15 5.8 10 −3 1.75 0 0

42 521

43 1410

44 2298

Note. Lr = reservoir length; lr = reservoir width; Ar = reservoir area; hd = dam height; Lk = dam crest length; zn,ini = initial notch depth; Bini = initial notch width; 
d50 = median grain size; Qin = inflow discharge; hcr = critical flow depth.
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Based on a limited number of model evaluations, it aims at computing output statistical moments using statistical 
moments of the input variables. In this paper, uncertainty propagation was performed using our implementation 
of the physically based fully coupled hydro-morphodynamic model developed by Wu  (2016). Thanks to the 
computational efficiency of this model, a regular Monte Carlo sampling method was adopted here.

3.1.3.  Step 3: Results Exploitation

Uncertainty propagation results are generally exploited in two different ways. On the one hand, uncertainty quan-
tification focuses on the output variability characterization, including output main statistical moments, for exam-
ple, mean and variance, or complete probability distribution (Walker et al., 2003). On the other hand, sensitivity 
analyses highlight the relationships between uncertainties on specific input and output variables (Borgonovo 
& Plischke,  2016). Among them, global sensitivity analyses are generally preferred as derivatives and other 
local methods provide an incomplete picture of model response over the range of variability in the model inputs 
(Saltelli et al., 2019). In this context, screening techniques are widespread, with Morris method being the most 
common (Morris, 1991). This method evaluates two indicators. The first one reflects the mean output sensitiv-
ity to the variation of a specific input variable, while the second one describes the nonlinear behavior of this 
dependency within the input space (Iooss & Lemaître, 2015). Regression-based analyses provide an algebraic 
expression of the relationships between outputs and input variables (Helton et al., 2006). One of the simplest and 
most popular approaches is the least squares linearization technique, which consists in a multi-linear regression 
between model output and input variables. A coefficient, characterizing the relative contribution of each input 
uncertainty to the output variability, is assigned to each input. The larger this coefficient, the larger the impact 
of the considered input on the output variability. An example of more advanced regression-based analysis is the 
permutation feature importance, which relies on machine learning regression and evaluates how permutations of 
input parameters alter model predictions (Breiman, 2001). Moment-independent methods are usually preferred 
when the focus is set on the entire output distribution, especially when the output distribution is highly skewed or 
when it is multi-modal. The delta method computes sensitivity indicators that represent the normalized expected 
shift in the output distribution induced by uncertainties on a specific input variable (Borgonovo, 2006, 2007; 
Pianosi & Wagener, 2015). The use of a variance-based sensitivity analysis is shown to be particularly general in 
its applicability and in its capacity to reflect nonlinear processes and the effects of interactions among variables 
(Hall et al., 2009). The Sobol index of first order represents the output variability caused by a specific uncertain 
input subset. In contrast, the Sobol index of total order also includes the interactions of this subset with any other 
input subsets. Both indices aim at assessing the relative significance of input variables uncertainties (Iooss & 
Lemaître, 2015). It allows spotting the most critical input uncertainties as well as the non-influential ones, that 
is, factor prioritization and factor fixing.

Tables S1 and S2 in Supporting Information S1 provide an overview of existing studies applying uncertainty anal-
ysis to dam or dike breach models. In each of these studies, only a single case study was considered. Part of them 
solely focused on uncertainty quantification, for example, Abdedou et al.  (2020), Froehlich (2008), Froehlich 
and Goodell (2012), Peter et al. (2018), Vorogushyn et al. (2011) and Westoby et al. (2015). Others performed 
global sensitivity analysis. Among them, Alhasan et al. (2016) and Bellos et al. (2020) used a Morris screening 
technique, whilst Ahmadisharaf et al. (2016), Goeury et al. (2022) and Sattar (2014) performed regression-based 
analyses. Goeury et  al.  (2022) also used the moment-independent delta method because of the presence 
of multi-modal output distributions. Variance-based methods, such as Sobol indices, were used by Kalinina 
et al. (2020), Pheulpin et al. (2020) and Tsai et al. (2019), but also considering each only a single case study. In 
contrast, in the present work, Sobol indices of total order were computed for each input subset in twenty-seven 
embankment configurations both at laboratory and field scales.

3.2.  Input Distributions and Sampling Methods

Uncertain input variables are gathered in Table 1. They are divided into two types, namely model parameters that 
need to be set based on experimental observations and input parameters, for example, material characteristics and 
dam geometry parameters.

Values of the different input variables are selected randomly according to their respective probability distribu-
tions to feed the numerical model. It is therefore necessary to define a probability distribution function (PDF), 
or multivariate probability distribution assigned to each input variable or group of input variables, respectively. 
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The approach differs for variables whose values are assumed independent from each other and variables with 
dependent values. Both procedures are introduced hereafter.

3.2.1.  Independent Input Variables

A Beta distribution has been assigned as a PDF to all independent variables due to its high versatility, wide-spread 
use in sensitivity analyses in environmental sciences and beyond (e.g., Benke et  al.,  2008, Hall et  al.,  2005, 
Kalinina et al., 2020; Mokhtari & Frey, 2005), and its finite support. This last feature is of great interest as it 
allows narrowing the analysis to behavioral input samples, for example, avoiding negative values for uncertain 
physical inputs (Wagener & Pianosi, 2019). It is expressed as

PDF(𝑥𝑥; 𝛼𝛼𝛼 𝛼𝛼) =
𝑥𝑥𝛼𝛼−1(1 − 𝑥𝑥)

𝛽𝛽−1

𝐵𝐵(𝛼𝛼𝛼 𝛼𝛼)
with 𝑥𝑥 =

𝑥̃𝑥 − 𝑥̃𝑥min

𝑥̃𝑥max − 𝑥̃𝑥min

∈ [0; 1],� (17)

where x is the normalized form of the considered variable 𝐴𝐴 𝐴𝐴𝐴 that varies within the interval 𝐴𝐴 [𝑥̃𝑥min; 𝑥̃𝑥𝑚𝑚𝑚𝑚𝑚𝑚], α and β 
two real and positive parameters to be fixed and B the beta function.

In this work, we determined the values of parameters α and β from two features of the input variable x. First, we 
enforced the PDF to exhibit a maximum at a reference value, xref, so that

dPDF(𝑥𝑥; 𝛼𝛼𝛼 𝛼𝛼)

𝑑𝑑𝑑𝑑
|𝑥𝑥=𝑥𝑥ref = 0 with 𝑥𝑥ref ∈]0; 1[.� (18)

The second feature we considered is the variance of the variable x. However, due to the approximate knowl-
edge of this characteristic, a qualitative approach based on expert knowledge is used here. One of the two 
beta distribution parameters is fixed manually while the other is determined using Equation 18. PDF char-
acteristics of each uncertain input variable of the present study are presented in Table S4 in Supporting 
Information S1.

Note that the choice of a particular type of PDF and its parameters may have an influence on the global sensitivity 
analysis results. This aspect is discussed in Section 4.2.

3.2.2.  Dependent Input Variables

A multivariate probability distribution is needed to represent input dependency properly and generate relevant 
input samples. The typical case of regression coefficients 𝐴𝐴

{

𝐶𝐶∗
𝑎𝑎 , 𝐶𝐶

∗
𝑏𝑏
, 𝐶𝐶∗

𝑐𝑐 , 𝐶𝐶
∗
𝑑𝑑

}

and

{

𝑞𝑞∗
𝑏𝑏𝑏𝑏𝑏
, 𝑞𝑞∗

𝑏𝑏𝑏𝑏𝑏

}

 obtained through 
experimental data fitting (Wu, 2016) is handled here. The presented methods (Methods 1 and 2) aim at generating 
sets of regression coefficients that lead to meaningful regression curves with regards to experimental observa-
tions (Figure S4 in Supporting Information S1). No explicit expression of the multivariate probability distribution 
is provided through these methods.

3.2.2.1.  Method 1: Sample Generation Based on Bootstrapping

Let an empirical data vector containing n experimental points be written as

𝒅𝒅 = {𝑑𝑑1, 𝑑𝑑2, . . . , 𝑑𝑑𝑛𝑛}with 𝑑𝑑𝑖𝑖 =
(

𝑥𝑥exp,𝑖𝑖, 𝑦𝑦exp,𝑖𝑖
)

.� (19)

Based on these n experimental points, the regression function, f, can be expressed as

𝑦𝑦reg = 𝑓𝑓 (𝒄𝒄, 𝑥𝑥),� (20)

with c the vector containing the regression coefficients.

k samples of length n are generated with replacement from the experimental points of vector d. This procedure, 
called bootstrapping (Davison & Hinkley, 1997), leads to k vectors of length n: {d 1,d 2,…,d k}. For each vector, the 
value of the parameters contained in c is determined to best fit the experimental data using least square minimi-
zation method in a trust-region algorithm, leading to k sets of regression coefficients: {c 1,c 2,…,c k}. As illustrated 
in Figure S4 in Supporting Information S1, each set c i can be considered as a meaningful random sample of the 
considered dependent inputs with regards to experimental observations. This physically meaningful method was 
used to generate results presented in Section 4. As a comparison, a different sampling method (Method 2) is 
presented hereafter.
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3.2.2.2.  Method 2: Sample Generation Based on Parameters Decoupling

Based on a limited number of regressions k, this method aims at decoupling dependent regression parameters 
and generating independent marginal PDF. Conversely to Method 1, sets of regression coefficients can then 
be generated without performing any additional regression, reducing the computation time. In this context, a 
principal component analysis (PCA) is used to minimize the correlation between variables. However, zero corre-
lation implies decoupling in the sole case where parameters follow a Gaussian distribution. This condition is 
met through a change of variables. Special care should be taken to avoid alteration of parameters dependency 
through  the procedure. A flow chart of the method is provided in Figure 2.

First, k sets of p regression coefficients {c 1,c 2,…,c k} are generated according to the procedure related to Method 
1. Then, parameter values are adapted to fit a beta distribution support ([0;1]), so that

𝑐𝑐𝑖𝑖
𝑗𝑗𝑗beta

=
𝑐𝑐𝑖𝑖
𝑗𝑗
− min

(

𝑐𝑐1
𝑗𝑗
, 𝑐𝑐2

𝑗𝑗
, ..., 𝑐𝑐𝑘𝑘

𝑗𝑗

)

max
(

𝑐𝑐1
𝑗𝑗
, 𝑐𝑐2

𝑗𝑗
, ..., 𝑐𝑐𝑘𝑘

𝑗𝑗

)

− min
(

𝑐𝑐1
𝑗𝑗
, 𝑐𝑐2

𝑗𝑗
, ..., 𝑐𝑐𝑘𝑘

𝑗𝑗

) ,� (21)

where 𝐴𝐴 𝐴𝐴𝑖𝑖
𝑗𝑗
 is a value of the jth regression parameter observed in {c 1,c 2,…,c k}.

A beta distribution is then fitted on the discretized marginal probability distribution of each regression parameter 
using maximum likelihood estimates of the beta distribution parameters α and β (Fisher, 1912). The fitted beta 
distributions are then used to map the regression parameters in beta CDF coordinates, so that

𝑐𝑐𝑖𝑖
𝑗𝑗𝑗betaCDF

= CDFbeta

(

𝑐𝑐𝑖𝑖
𝑗𝑗𝑗beta

, (𝛼𝛼; 𝛽𝛽)
𝑗𝑗
)

,� (22)

with (α;β) j the fitted parameters of the beta distribution related to the jth regression parameter.

The resulting regression parameters are then transposed in Gaussian coordinates:

𝑐𝑐𝑖𝑖
𝑗𝑗𝑗gauss = CDF−1

gauss

(

𝑐𝑐𝑖𝑖
𝑗𝑗𝑗betaCDF

, 𝜇𝜇𝜇 𝜇𝜇2

)

,� (23)

with μ and σ 2 the mean and the variance of the Gaussian distribution. For the sake of simplification, it was arbi-
trarily decided to use μ = 0 and σ 2 = 1 in this study. Note that this choice has no implication on the results.

A principal component analysis (PCA) is then applied on the resulting data to minimize covariance. At this point, 
data approximately follow a Gaussian distribution. Then, Gaussian distributions are fitted on the data expressed 

Figure 2.  Flow chart of Method 2.
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in the principal axes using maximum likelihood estimates of the Gaussian distribution parameters μ and σ 2. Based 
on those PDF, parameter values are selected randomly and independently before being transposed in the initial 
physical axes to constitute the desired samples.

Although this method does not provide an explicit form of the multivariate probability distribution, it generates 
independent PDF for each regression coefficients. The computation time required for the sampling procedure is 
thus reduced. Nonetheless, those PDF are approximations of the multivariate probability distribution, and the 
accuracy of the results should thus be assessed systematically.

In this work, weir efficiency coefficients (c1,c2) are assumed dependent and varying proportionally. Their proba-
bility distributions are indirectly characterized through a linear mapping, so that

⎧

⎪

⎨

⎪

⎩

𝑐𝑐1 = 𝑐𝑐eff𝑐𝑐
ref

1

𝑐𝑐2 = 𝑐𝑐eff𝑐𝑐
ref

2

with 𝑐𝑐eff a randomvariablewith 𝑐𝑐ref
ef f

= 1.� (24)

3.3.  Global Sensitivity Analysis

The procedure of input uncertainty characterization was presented for independent and dependent input variables 
in Section 3.2. Those uncertainties were propagated to model outputs through our implementation of the numeri-
cal model of Wu (2016). Statistical descriptors are used to quantify the resulting uncertainties and to characterize 
the relation between uncertainties on input and output variables. In this work, Sobol indices of total order were 
used to highlight the most influential input uncertainties. It can be expressed as the ratio between significance 
descriptors and the global output variance.

Let the random variable 𝐴𝐴 𝑿𝑿 =
(

𝑋𝑋1, . . . , 𝑋𝑋𝑚𝑚1

)

 be partitioned into n statistically independent random subsets of 
variables, so that 𝐴𝐴 𝑿𝑿

1
=
(

𝑋𝑋1, . . . , 𝑋𝑋𝑚𝑚1

)

 , 𝐴𝐴 𝑿𝑿
2
=
(

𝑋𝑋𝑚𝑚1+1
, . . . , 𝑋𝑋𝑚𝑚2

)

 , …, 𝐴𝐴 𝑿𝑿
𝑛𝑛
=
(

𝑋𝑋𝑚𝑚1+. . .+𝑚𝑚𝑛𝑛−1+1, . . . , 𝑋𝑋𝑚𝑚1+. . .+𝑚𝑚𝑛𝑛

)

 . The 
significance descriptor related to subset j may be approximated as (Sobol, 2001; Arnst & Ponthot, 2014):

𝑠𝑠𝑿𝑿𝑗𝑗 = 𝐸𝐸
[

𝑉𝑉
(

𝑔𝑔
(

𝑿𝑿
𝑗𝑗
,𝒙𝒙∼𝑗𝑗

))]

≈ 𝑠𝑠𝜈𝜈
𝑿𝑿

𝑗𝑗 =
1

2𝜈𝜈

𝜈𝜈
∑

𝑙𝑙=1

[

𝑔𝑔
(

𝒙𝒙
𝑗𝑗

𝑙𝑙
,𝒙𝒙

∼𝑗𝑗

𝑙𝑙

)

− 𝑔𝑔
(

𝒙̃𝒙
𝑗𝑗

𝑙𝑙
,𝒙𝒙

∼𝑗𝑗

𝑙𝑙

)]2
,� (25)

where 𝐴𝐴 𝑿𝑿
∼𝑗𝑗 denotes the random variable that contains all the components of X that are not components of X j, 

𝐴𝐴 𝐴𝐴𝑿𝑿
∼𝑗𝑗 and 𝐴𝐴 𝐴𝐴𝑿𝑿

𝑗𝑗 the probability distributions of 𝐴𝐴 𝑿𝑿
∼𝑗𝑗 and X j, respectively, 𝐴𝐴

{

𝒙𝒙
𝑗𝑗

𝑙𝑙
, 1 ≤ 𝑙𝑙 ≤ 𝜈𝜈

}

 and 𝐴𝐴
{

𝒙̃𝒙
𝑗𝑗

𝑙𝑙
, 1 ≤ 𝑙𝑙 ≤ 𝜈𝜈

}

 two 
independent ensembles of independent and identically distributed (i.i.d.) samples from 𝐴𝐴 𝐴𝐴𝑿𝑿

𝑗𝑗 and 𝐴𝐴
{

𝒙𝒙
∼𝑗𝑗

𝑙𝑙
, 1 ≤ 𝑙𝑙 ≤ 𝜈𝜈

}

 
an independent ensemble of i.i.d. samples from 𝐴𝐴 𝐴𝐴𝑿𝑿

∼𝑗𝑗 , and g the model output function. As expressed Equation 25, 
the significance descriptor associated to X j represents the mean output variance obtained when the values of all 
input variables are fixed, except those related to input parameters contained in X j. Sobol indices of total order 
are finally obtained by dividing this indicator by the total output variance, that is, the variance obtained when all 
input variables are unknown and vary according to their respective PDF.

In Equation 25, the larger 𝐴𝐴 𝐴𝐴  the better the approximation of the significance descriptor. Noting that 𝐴𝐴 𝐴𝐴
(

𝒙𝒙
𝑗𝑗

𝑙𝑙
,𝒙𝒙

∼𝑗𝑗

𝑙𝑙

)

 
and 𝐴𝐴 𝐴𝐴

(

𝒙̃𝒙
𝑗𝑗

𝑙𝑙
,𝒙𝒙

∼𝑗𝑗

𝑙𝑙

)

 correspond to output values of two different runs, 2 𝐴𝐴 𝐴𝐴  runs are required to evaluate Equation 25.

4.  Results and Discussion
This section starts with the comparison of the two sampling methods of dependent inputs introduced in 
Section 3.2.2 and in Text S1 in Supporting Information S1. Using Method 1, a global sensitivity analysis is then 
applied to each configuration presented in Section 2.2. The focus is set on two model outputs, namely the peak 
breach discharge, Qb,peak, and the time to peak, tpeak, that is, time between the overtopping initiation and the peak 
breach discharge occurrence. All information used to characterize the independent input variables uncertainty is 
gathered in Table S4 in Supporting Information S1.

4.1.  Comparison of Dependent Input Samples Generation Methods

Before examining global sensitivity analysis results, we compare Method 1 and Method 2 used to generate samples 
of dependent input variables (Section 3.2.2). Figure S4 in Supporting Information S1 shows regression curves 
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obtained using random samples of 𝐴𝐴
{

𝐶𝐶∗
𝑎𝑎 , 𝐶𝐶

∗
𝑏𝑏
, 𝐶𝐶∗

𝑐𝑐 , 𝐶𝐶
∗
𝑑𝑑

}

and

{

𝑞𝑞∗
𝑏𝑏𝑏𝑏𝑏
, 𝑞𝑞∗

𝑏𝑏𝑏𝑏𝑏

}

 generated using Method 1. All regression 
curves seem in agreement with experimental point clouds, proving that Method 1 provides meaningful random 
samples. Conversely, Method 2 provides results that approximate the results obtained by Method 1, but compu-
tational cost is reduced. The objective is to determine which method presents the best trade-off between compu-
tational efficiency and accuracy. In this analysis, results are computed using Test 10 (reference configuration).

Sobol indices of total order were computed for the maximum breach discharge, Qb,peak, and the related elapsed 
time since overtopping initiation, tpeak. Using Method 1, relative variations in Sobol indices are smaller than 
1% when ν > 4,000 (Figure S5 in Supporting Information S1) and the results are thus considered as converged. 
Figure S6 in Supplement compares those values with results obtained by Method 2 using k = 500, k = 1,000 and 
k = 2,000. In all cases, results converged for ν = 4,000. Increasing the value of k does not improve accuracy on 
Sobol indices related to Qb,peak. Regarding tpeak, a significant improvement is observed when k rises from 500 to 
1,000, with no additional accuracy gain when k reaches 2,000. Therefore, k = 1,000 was chosen. The maximum 
error on Sobol indices is about 5% compared to Method 1 for both model outputs.

The computing time required to generate regression samples using Method 1 (k = ν = 4,000) and Method 2 
(k = 1,000; ν = 4,000) is presented in Table 3. Method 2 is about four times faster than Method 1. Nonetheless, the 
time required to perform a numerical simulation of Test 10 is about 0.21 s. Since 4,000 runs should be launched 
for each of the 21 parameters or parameters subsets, the total simulation time reaches about 18,500 s. The compu-
tation time saved on the regression coefficient samples generation is thus marginal in the present case. For this 
reason and to optimize results accuracy, Method 1 has been used to lead the global sensitivity in the following 
section.

4.2.  Application of the Global Sensitivity Analysis

Sobol indices of total order related to the peak breach discharge and the time to peak are presented in Figures 3a 
and 3b for laboratory-scale configurations and in Figures 4a and 4b for field-scale configurations. In those figures, 
the y-axis corresponds to the values of the Sobol indices while numbers along the x-axis refer to the tested config-
urations listed in Table 2. Circles aligned on a same vertical line refer to Sobol indices computed in a similar test 
configuration. One color is associate to each input variable. Only parameters with a Sobol index larger than 5% 
for at least one configuration are presented. Vertical dotted lines separate groups of configurations in which the 
value of a single parameter is varied.

When considering laboratory-scale configurations, uncertainties in seven input parameters appear to be criti-
cal for both outputs of interest, namely ceff, An, An’, nmin, θcr, λ and hd. Additionally, uncertainties in the inflow 
discharge (Qin) play a major role in the determination of Qb,peak, while tpeak is also slightly impacted by uncertain-
ties in 𝐴𝐴 𝐴𝐴∗

𝑏𝑏
 parameters, that is, 𝐴𝐴 𝐴𝐴∗

𝑏𝑏𝑏𝑏𝑏
 and 𝐴𝐴 𝐴𝐴∗

𝑏𝑏𝑏𝑏𝑏
 .

Results appear to be particularly different between configurations with no inflow discharge but an initial water 
level slightly higher than the initial breach depth (Tests 36 and 40 to 44) and tests with an inflow discharge (all 
other tests). In the latter case, uncertainties in input parameters affecting erosion, that is, effective shear stress and 
sediment concentration are almost systematically the most critical for both outputs, as already pointed in many 
previous works (Alhasan et al., 2016; Kalinina et al., 2020; Peter et al., 2018; Sattar, 2014; Westoby et al., 2015). 
Those include An (parameter in Strickler formula), θcr (critical Shields parameter) and λ (empirical coefficient 

Table 3 
Comparison of Computation Time Required to Generate Regression Coefficient Samples With Method 1 (k = ν = 4,000) 
and Method 2 (k = 1,000; ν = 4,000)

Method 1 Method 2

Computation time 
reduction

Regression procedure = sample 
generation (ν = k = 4,000)

Regression 
procedure 

(k = 1,000)

Sample 
generation 
(ν = 4,000)

Total 
time

𝐴𝐴
{

𝐶𝐶∗
𝑎𝑎 , 𝐶𝐶

∗
𝑏𝑏
, 𝐶𝐶∗

𝑐𝑐 , 𝐶𝐶
∗
𝑑𝑑

}

  411.9 [s] 103 [s] 0.6 [s] 103.6 [s] −75% (−308.3 [s])

𝐴𝐴
{

𝑞𝑞∗
𝑏𝑏𝑏𝑏𝑏
, 𝑞𝑞∗

𝑏𝑏𝑏𝑏𝑏

}

  5.1 [s] 1.3 [s] 0.2 [s] 1.5 [s] −71% (−3.6 [s])
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involved in mixing length computation). They dictate how fast the breach expands and are therefore key param-
eters in the breaching process modeling. Surprisingly, the influence of uncertainties in 𝐴𝐴 𝐴𝐴∗

𝑏𝑏
 and C* parameters is 

mostly negligible for both outputs, that is, influence of parameters related to bed load transport capacity and 
suspended load concentration, respectively. This can however be understood by considering their low uncertainty 

Figure 3.  Sobol indices of total order for (a) peak breach discharge, and (b) time to peak in laboratory-scale configurations (numbers = Frank's, 2016 test ID).

 19447973, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
033894 by U

niversity of L
iege L

ibrary L
éon G

raulich, W
iley O

nline L
ibrary on [30/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

SCHMITZ ET AL.

10.1029/2022WR033894

14 of 21

resulting from the bootstrapping method presented in Section 3.2.2 for input parameters with dependent PDF. 
A small uncertainty associated to parameter An’ also explains why it exhibits Sobol indices of negligible values.

When increasing the inflow discharge (Tests 18 to 21), Sobol indices related to bed load concentration (An and 
θcr) and the ones related to λ exhibit opposite trends for both outputs. As illustrated in Figure S7 in Supporting 

Figure 4.  Sobol indices of total order for (a) peak breach discharge, and (b) time to peak in field-scale configurations (numbers = Frank's, 2016 test ID).
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Information S1, suspended load corresponds to a larger fraction of the overall sediment concentration when the 
inflow discharge rises, to the expense of bed load. This induces a smaller relative impact of uncertainties in An and 
θcr, which leads to a higher relative influence of uncertainties in λ. Similar trends are observed when the initial 
breach width enlarges (Tests 20 and 24 to 27). The mixing length, Ls, involved in Equation 10 is the product of λ 
and the water free surface width on the considered reach, Bini. By increasing the initial breach width, Bini increases 
as well and uncertainties in λ have more impact on Ls, which strongly influences erosion dynamics. In this case, 
Sobol indices related to λ rise substantially to the expense of other parameters.

In Tests 27 (large initial breach width) and 29 (large dike crest width), the relative impact of uncertainties in 
Qin becomes remarkable in the determination of Qb,peak. In Test 27, the initial breach width is particularly large. 
In this case, additional breach expansion becomes less decisive for the maximum breach discharge value. This 
trend is illustrated in Figure S8 in Supporting Information S1, which shows a decreasing influence of uncertain-
ties in input parameters when the initial breach width increases, except for the inflow discharge coefficient. In 
Test 29 (large dam crest width), the breaching initiation phase (i.e., phase of limited overtopping flow and slow 
erosion) is particularly long due to the extremely large dike crest that must be eroded. The larger the dike crest, 
the smoother the resulting breach hydrograph, as highlighted by Schmitz et al. (2021) for fluvial dikes. Therefore, 
the maximum breach discharge becomes less sensitive to variations in input parameters, as highlighted in Figure 
S8 in Supporting Information S1. Nonetheless, the relation between uncertainties in Qb and Qin is not altered, and 
the value of the inflow discharge coefficient becomes more important in the determination of Qb,peak. Conversely, 
tpeak is extremely dependent on the duration of the breaching initiation phase, for which influence of erosion 
related parameters is predominant. For this reason, uncertainties in those parameters keep a dominant role for the 
determination of tpeak.

Although being negligible in most tested configurations, the impact of uncertainties in parameter nmin becomes 
more significant in Test 15 (very small median grain size) because the value of nmin is only considered in the 
computation of Manning's coefficients (Equations 4 and 7) when the median grain size, d50, is particularly small. 
In this case, nmin highly impacts the erosion process by replacing the role of parameter An. In the opposite case, its 
value is not seen at all by the numerical model and its Sobol index becomes zero.

When no inflow discharge is injected (Tests 36 and 40 to 44), observations are quite different. When the reservoir 
area increases, the water level in the reservoir decreases more slowly, leading to a greater water level above the 
breach bottom, htop. Through Equation 2, the influence of ceff on Qb and Qb,peak grows substantially, to the expense 
of the relative influence of erosion-related parameters. The dam breaching process presents in this case a rather 
long initiation phase because it is only driven by a small difference between water level in the reservoir and initial 
breach depth. For this reason, the dam height, hd, is critical to determine the duration of this initial phase and thus 
tpeak, so do erosion parameters.

Trends observed for field-scale configurations (Figures  4a, 4b and Figure S9 in Supporting Information  S1) 
are extremely similar to the ones presented for laboratory-scale tests. Though, several differences deserve to be 
highlighted. Due to the increased value of the median grain size in field-scale configurations, parameter nmin 
plays no role anymore. Conversely, Sobol indices related to Su and Lk slightly rise for Qb,peak. This difference is, 
however, not significant since they hardly rise above the 5% limit value while being just below this threshold in 
laboratory-scale configurations. The same explanation holds for Sobol indices of 𝐴𝐴 𝐴𝐴∗

𝑏𝑏
 parameters related to tpeak. 

The small impact of scaling on sensitivity analysis results is confirmed by configurations gathered in the three 
scale families (Tests 8 and 10 to 17). Besides the punctual significant impact of nmin in Test 15 (very small median 
grain size), results are poorly influenced by limited scale modifications in laboratory and field-scale cases. When 
analyzing a real-scale dam breaching with the presented numerical model, this observation is of great interest 
since it suggests that a sensitivity analysis might be applied to a down-scaled embankment to reduce computa-
tional cost while leading to similar results.

While sensitivity analysis allows ranking parameters according to their relative impact on specific model outputs, 
uncertainty quantification assesses the magnitude of the output uncertainties. Both aspects should be combined to 
properly underline the most critical parameter uncertainties, that is, parameter uncertainties with a critical impact 
on highly uncertain outputs. Based on the sensitivity analysis led in this study and uncertainty quantification 
results illustrated in Figures S10, S11 and S12 in Supporting Information S1, this combined approach was imple-
mented in Figure 5 to generate a decision tree. This diagram aims at identifying which parameter uncertainties 
should be minimized in priority, according to the output uncertainty in the considered configuration. An turns to 
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Figure 5.  Decision tree indicating most influential parameters (leading parameters are in red) along with output uncertainties magnitude. σ refers to standard deviation 
values displayed in Figure S12 in Supporting Information S1.
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be the most critical parameter globally. Though, when the median grain size, d50, drops below around 1 mm, the 
impact of nmin becomes predominant and tends to cancel the influence of An.

Overall, these results suggest that uncertainties in the estimation of the value of Manning's coefficient, n, consid-
erably influence the model outputs. This aspect is confirmed in Figure S14 in Supporting Information S1, in 
which relative variations in the calculated bed load transport capacity are given as a function of predefined rela-
tive variations in the value of parameter n. It shows that a predefined relative variation in parameter n leads to a 
larger relative variation in the bed load transport capacity. This is due to the model structure and equations, which 
involve parameter n at a power above unity, such as in Equation 5 and indirectly in Equation 9. Hence a given 
degree of uncertainty in n leads to greater degree of uncertainty in the model outcomes. This issue is strongly 
intertwined with the assumption of uniform flow on the downstream face of the dam (Equation 3). Although 
widespread (e.g., Cai et  al., 2022; Macchione, 2008; Shen et al., 2020), this assumption remains an intrinsic 
limitation of simplified models, while a spatially distributed (e.g., in 2D) approach would be needed to properly 
capture the complex flow processes involved in dam breach hydraulics.

To assess the influence on the results of the assumed type of PDF, we have undertaken new computations in 
which the Beta distributions associated to the most influential inputs (ceff, An, Qin, θcr, λ and hd, as identified in 
Figure 5) were replaced by truncated normal distributions. Each truncated normal distribution was defined using 
the same information as used to generate the corresponding Beta distribution (Section 3.2.1), that is, the mode, 
the variance, and the variation interval. Figures S12 and S13 in Supporting Information S1 show that this modi-
fication has no significant impact on the sensitivity analysis and uncertainty quantification results, that is, the 
decision tree provided in Figure 5 is not altered.

An alternate way to test the sensitivity of the results to the input uncertainty characterization is to keep the 
same probability distribution function, but to vary its parametrization, for example, its mean and variance. Bello 
et al. (2022) led this kind of analysis on a limited number of input variables to which a normal probability distri-
bution function was assigned. They independently varied the mean and variance of each input PDF by ±50% 
and assessed the impact on the sensitivity analysis results. It appeared that the relative impact of the input uncer-
tainties on the model output remained qualitatively the same, for example, the most critical input uncertainty 
did not vary. However, the magnitude of the output uncertainties was considerably influenced. Unsurprisingly, 
it is expected that the larger the variations in the mean, variance, or variation interval extremities of the input 
probability distribution functions, the greater the impact on the analysis results. Though, an in-depth exploration 
of combinations of PDF parametrizations gets cumbersome when considering many inputs variables.

The results presented here highlight the need to conduct a global sensitivity analysis and an uncertainty quantifi-
cation for each specific configuration of interest, especially when the main physical processes represented by the 
model vary from one configuration to the other (e.g., in the present case, when Qin is equal to or different from 
zero). This conclusion applies also to numerous other applications in water resources management and environ-
mental sciences, in which the relative weight of various physical processes represented in the model changes with 
the modeled configuration.

5.  Conclusion
This paper highlights the need for performing sensitivity analysis to identify most critical input variable uncer-
tainties in embankment breaching numerical models. It also demonstrated the dependency between sensitiv-
ity/uncertainty quantification results and test configuration. Uncertainty propagation was performed using our 
implementation of the model of Wu (2016), in which 21 sets of input variables were deemed uncertain. The 
performance of two new sampling methods of dependent inputs were assessed, showing that the direct bootstrap 
sampling method (Method 1) exhibited the best accuracy, although being more computationally demanding.

Probability distributions were associated to independent input variables. Two new methods were proposed to 
generate samples of regression coefficients (i.e., dependent input variables) complying with field data. Based 
on available empirical data, Method 1 generated new data clouds by bootstrapping and computed associated 
regression coefficients for each of them. This method led to meaningful results but had poor computational 
performance because a regression is performed for each input set. Method 2 used variable changes and PCA to 
decouple input variables and allow defining independent marginal probability distributions. Although slightly 
less accurate, this method reduced dependent inputs sampling procedure computation time by more than 70% 
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compared to Method 1. However, in the current study this gain was deemed negligible compared to the time 
required to run simulations using Monte Carlo procedure. Method 1 was finally used to lead the sensitivity anal-
ysis presented in this work.

Sobol indices of total order were computed for each input variable in twenty-seven configurations at both 
laboratory and field scales. It allowed assessing the relative impact of input uncertainties on the variability 
of two model outputs (peak breach discharge and time to reach the peak). Results were particularly different 
between configurations with no inflow discharge but an initial water level slightly higher than the initial 
breach invert level and tests with an inflow discharge. Conversely, the sensitivity of model predictions with 
respect to uncertainties in input parameters remains similar irrespective of the considered scale (laboratory vs. 
field scales), that is, there was almost no difference between the Sobol indices obtained for laboratory-scale 
and for field-scale configurations. Parameter An turned to be the most critical parameter globally. Though, 
when the median grain size dropped below 1 mm, the impact of nmin became predominant and canceled An 
influence. It comes out that uncertainties in Manning's coefficient value have a critical impact on model 
outputs variability. However, an accurate determination of this coefficient is not possible in practice, as it is 
a model parameter and not a measured quantity. This issue, together with the assumption of uniform flow on 
the dam downstream face, point at a limitation of simplified models, which may only be truly overcome by 
adopting a spatially distributed approach (e.g., 2D model) but at the expense of a considerably higher compu-
tational burden.

To further generalize the findings of this study, the influence of choosing a particular type of PDF (Beta distri-
bution) to characterize input uncertainties was assessed. The calculations were repeated with an alternate type of 
distribution functions. The PDF associated to the parameter uncertainties influencing most the output variability 
were defined as truncated normal distributions instead of the initially assumed Beta distributions. It turned out 
that this modification has no substantial impact on the analysis results. In contrast, extensive modifications in the 
PDF parametrization (e.g., strong modification of the variation interval or the variance) are expected to have more 
influence on the analysis results (Reed et al., 2022).

The present work allows identifying parameters whose uncertainty is critical for model outputs, depending on the 
configuration considered. The relevance of using highly uncertain model parameters which strongly influence 
the results may be questioned. Also, the reliability of the numerical model may be partly assessed by looking at 
the magnitude of the output uncertainties related to a given configuration. Finally, the procedure described in this 
paper may be used to determine whether a modification in the model structure brings a notable improvement in 
results accuracy but also a reduction of the output uncertainty ranges. The global sensitivity analysis procedure 
and conclusions presented in this study are not limited to the sole case of dam breaching but are also of relevance 
to a wide variety of modeling applications in environmental sciences. The global sensitivity analysis procedure 
presented in Section 3 is easily transferrable to other non-linear computational models containing independent 
and dependent uncertain scalar input variables. Its use is particularly relevant when the objective is to understand 
which input uncertainties are the most critical (i.e., factor prioritization) and which ones are negligible (i.e., 
factor fixing). This information allows simplifying subsequent analyses of the numerical model in the considered 
configuration as some uncertainties may be discarded.

To further generalize our findings and increase their robustness, similar studies should be performed using 
different numerical models of different types, additional test configurations and different sensitivity indicators, 
for example, delta indicator (Borgonovo,  2007). These observations would further support decision-making 
processes in risk management (Wagener & Pianosi, 2019). When dealing with non-scalar sources of uncertain-
ties, that is, spatially distributed or time-varying uncertain inputs, other more suitable techniques exist to gener-
ate relevant input samples (e.g., Baroni & Tarantola, 2014; Lilburne & Tarantola, 2009). With computational 
demanding models, the Monte Carlo procedure used in this work should be replaced by an optimized sampling 
method (e.g., Latin Hypercube Sampling). In this case, Method 2 used to generate samples of dependent inputs 
might lead to significant computational time saving overall.

Data Availability Statement
Data were not used, nor created for this research.
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